

Naval Facilities Engineering Command Washington Washington, DC

Final

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Naval Research Laboratory Chesapeake Beach, Maryland

April 2020

Approved for public release: distribution unlimited

Naval Facilities Engineering Command Washington Washington, DC

Final

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Naval Research Laboratory Chesapeake Beach, Maryland

April 2020

Prepared for NAVFAC Washington by CH2M HILL, Inc. Herndon, Virginia Contract N62470-16-D-9000 CTO JU23

Executive Summary

A Base-wide Expanded Site Inspection (ESI) was performed at the Naval Research Laboratory – Chesapeake Bay Detachment (NRL-CBD) to:

- Further evaluate whether historical practices led to site-related releases to the environment that pose a potential unacceptable risk to human health and/or the environment at five environmental restoration sites and one area of concern (AOC).
- Further delineate buried waste disposed of at the three landfill sites (Sites 3, 4, and 5).

The areas included in the investigation were selected based on recommendations presented in the *Final Base-Wide Site Inspection Report* (CH2M, 2016) and are summarized in Table ES-1.

Table ES-1. Reasons for Inclusion in Base-wide ESI Investigation

Investigation Area	Reason(s) for Inclusion in the Base-wide ESI Investigation
Site 3 – Landfill No. 1	Further evaluation for human health and ecological risks in surface soil
Site 4 – Landfill No. 2	Further evaluation for human health and ecological risks in surface soil
Site 5 – Landfill No. 3	Further evaluation for human health and ecological risks in surface soil
Site 7 – Road Oil Application	Further evaluation for ecological risks in surface soil
Site 9 – Photo-processing Waste	Further evaluation for ecological risks in surface soil
AOC D – Water Tower	Further evaluation for human health and ecological risks in surface soil

The purpose of this document is to report the findings of the Base-wide ESI based on the investigation objectives identified in the Uniform Federal Policy Sampling and Analysis Plan and to address the issues noted above. To support the Base-wide ESI, a field investigation consisting of test pitting, surface soil sampling, direct-push technology soil sampling, monitoring well installation, groundwater sampling, and x-ray fluorescence soil screening for lead was performed. Analytical data generated during this investigation were combined with data generated during the Site Inspection and evaluated in the human health risk screening and the ecological risk screening to determine potential risks associated with exposure to analytes in site media. The Base-wide ESI recommendations based on site characterization and potential site risks are summarized in Table ES-2.

Table ES-2. Base-wide ESI Recommendations

Investigation Area	Recommendation
Site 3 – Landfill No. 1	Further evaluation of surface soil
Site 4 – Landfill No. 2	Further evaluation of surface soil
Site 5 – Landfill No. 3	Further evaluation of surface soil
Site 7 – Road Oil Application	No further action
Site 9 – Photo-processing Waste	Further evaluation of hydroquinone in soil and groundwater
AOC D – Water Tower	Further evaluation of surface soil

A historical records review of Building 76 and its surrounding area at NRL-CBD was performed to investigate the presence of solid waste and debris at the base of the hill near the building. A site visit and historical records search of available base documents were conducted in early 2019. The document review noted Building 76 historically supported multiple trade shops (carpentry, machine, plumbing, and electrical) and is currently used for storage. Based on observations during the site visit it was suggested that subsurface construction debris noted along the western hillside of Building 76 may be related to the timeframe when Building 76 was constructed. The Navy is evaluating this area to determine whether a new environmental restoration site should be created.

AX0121191314WDC iii

Contents

Exec	utive Sum	ımary	iii
Acro	nyms and	Abbreviations	ix
1	Introd	uction	1-1
2	Facilit	y and Site Background	2-1
	2.1	NRL-CBD Facility Background, Mission, and History	2-1
	2.2	Facility Geology and Hydrogeology	2-1
	2.3	Land Use	
	2.4	Conceptual Site Model	
		2.4.1 Potential Source Areas	
		2.4.2 Transport Pathways	2-2
3	Invest	igation and Data Evaluation Methodology	3-1
	3.1	Investigation Methods	3-1
		3.1.1 Utility Clearance	3-1
		3.1.2 Test Pitting	
		3.1.3 Soil Sampling	
		3.1.4 XRF Field Screening	
		3.1.5 Monitoring Well Installation	
		3.1.6 Monitoring Well Development	
		3.1.7 Groundwater Sampling	
		3.1.8 Monitoring Well Land Survey	
	3.2	Analytical Methods	
	3.3	Data Validation Summary	
		3.3.1 Data Qualifiers	
		3.3.2 Data Quality Assessment Summary	
	3.4	Human Health Risk Screening Approach	
		3.4.1 Potentially Complete Exposure Pathways	
		3.4.2 Human Health Risk Screening Methodology	
		3.4.3 Step 1: Comparison to Screening Levels	
		3.4.4 Step 2: Risk Ratio Evaluation using Maximum Detected Concentrations	
		3.4.5 Step 3: Risk Ratio Evaluation using 95 percent Upper Confidence Limit on Mean 3.4.6 Comparison to Background	
		3.4.6 Comparison to Background	
	3.5	Ecological Risk Assessment Approach	
	5.5	3.5.1 Introduction	
		3.5.2 Screening-level Problem Formulation	
		3.5.3 Screening-level Assessment	
		3.5.4 Screening-level Risk Calculation	
	3.6	Historical Records Review of Building 76	
		-	
4		- Landfill No. 1	
	4.1	Site Description	
	4.2	Investigation Summary	
		4.2.1 Test Pitting	
		4.2.2 Soil Sampling	
	4.3	Analytical Results	
	4.3	4.3.1 Surface Soil Analytical Results	
		4.5.1 Surface Soil Analytical Nesalts	+-∠

		4.3.2	Subsurface Soil Analytical Results	4-2
		4.3.3	Groundwater Analytical Results	4-2
	4.4	Human	Health Risk Screening	4-3
	4.5	Ecologi	cal Risk Screening	4-5
	4.6	Site Cha	aracterization	4-5
	4.7	Finding	s and Recommendations	4-5
		4.7.1	Findings	4-5
		4.7.2	Recommendations	4-6
5	Site 4	– Landfill	No. 2	5-1
	5.1		scription	
	5.2		gation Summary	
		5.2.1	Test Pitting	5-1
		5.2.2	Soil Sampling	5-2
		5.2.3	Groundwater Sampling	5-2
	5.3	Analytic	cal Results	5-2
		5.3.1	Surface Soil Analytical Results	5-2
		5.3.2	Subsurface Soil Analytical Results	5-2
		5.3.3	Groundwater Analytical Results	5-3
	5.4	Human	Health Risk Screening	5-3
	5.5	Ecologi	cal Risk Screening	5-5
	5.6	Site Cha	aracterization	5-6
	5.7	Finding	s and Recommendations	5-6
		5.7.1	Findings	5-6
		5.7.2	Recommendations	5-7
6	Site 5	– Landfill	No. 3	6-1
	6.1		scription	
	6.2		gation Summary	
		6.2.1	Test Pitting	
		6.2.2	Soil Sampling	
		6.2.3	Groundwater Sampling	
	6.3	Analytic	cal Results	
		6.3.1	Surface Soil Analytical Results	
		6.3.2	Subsurface Soil Analytical Results	6-2
		6.3.3	Groundwater Analytical Results	
	6.4	Human	Health Risk Screening	6-3
	6.5	Ecologi	cal Risk Screening	6-5
	6.6	Site Cha	aracterization	6-5
	6.7	Finding	s and Recommendations	6-5
		6.7.1	Findings	6-5
		6.7.2	Risk Considerations	6-6
		6.7.3	Recommendations	6-6
7	Site 7	– Road O	il Application	7-1
_	7.1		scription	
	7.2		gation Summary	
	-	7.2.1	Soil Sampling	
	7.3		cal Results	
	-	7.3.1	Surface Soil Analytical Results	
		7.3.2	Subsurface Soil Analytical Results	
	7.4	Human	Health Risk Screening	
	7.5		cal Risk Screening	

	7.6	Site Characterization	7-3
	7.7	Findings and Recommendations	7-3
		7.7.1 Findings	7-3
		7.7.2 Recommendations	7-3
8	Site 9	9 – Photo-processing Waste Discharge	8-1
	8.1	Site Description	8-1
	8.2	Investigation Summary	8-1
		8.2.1 Soil Sampling	8-1
	8.3	Analytical Results	8-1
		8.3.1 Surface Soil Analytical Results	8-1
		8.3.2 Subsurface Soil Analytical Results	8-2
	8.4	Human Health Risk Screening	8-2
	8.5	Ecological Risk Screening	8-3
	8.6	Site Characterization	8-3
	8.7	Findings and Recommendations	8-4
		8.7.1 Findings	8-4
		8.7.2 Recommendations	8-4
9	AOC I	D – Water Tower	9-1
	9.1	Site Description	9-1
	9.2	Investigation Summary	9-1
		9.2.1 Soil Sampling	9-1
	9.3	Analytical Results	9-1
		9.3.1 XRF Surface and Subsurface Soil Screening Results	9-1
		9.3.2 Laboratory Surface and Subsurface Soil Analytical Results	9-2
		9.3.3 Statistical Analysis of XRF Results	9-2
	9.4	Human Health Risk Screening	9-2
	9.5	Ecological Risk Screening	9-3
	9.6	Site Characterization	9-3
	9.7	Findings and Recommendations	9-3
		9.7.1 Findings	9-3
		9.7.2 Recommendations	9-4
10	Sumn	mary and Recommendations	10-1
11	Refer	rences	11-1

Appendixes

Α	Test Pit	I nas

- B Soil Boring and Monitoring Well Construction Logs
- C Monitoring Well Development Logs and Groundwater Purge Logs
- D Monitoring Well Survey Report
- E Validated Analytical Data (Base-Wide Site Inspection and Expanded Site Inspection)
- F Human Health Risk Screening Tables
- G Ecological Risk Screening Tables
- H Building 76 Historical Records Review
- I Radiological Survey Report for April 3, 2018
- J Statistical Analysis of XRF Data

Tables

1-1	Summary	of o	Investigation	Areas

- 3-1 Descriptions of Data Validation Qualifiers
- 4-1 Site 3 Analytical Results Detected Constituents in Surface Soil
- 4-2 Site 3 Analytical Results Detected Constituents in Subsurface Soil
- 4-3 Site 3 Analytical Results Detected Constituents in Groundwater
- 4-4 Human Health and Ecological Risk COPCs for Site 3
- 5-1 Site 4 Analytical Results Detected Constituents in Surface Soil
- 5-2 Site 4 Analytical Results Detected Constituents in Subsurface Soil
- 5-3 Site 4 Analytical Results Detected Constituents in Groundwater
- 5-4 Human Health and Ecological Risk COPCs for Site 4
- 6-1 Site 5 Analytical Results Detected Constituents in Surface Soil
- 6-2 Site 5 Analytical Results Detected Constituents in Subsurface Soil
- 6-3 Site 5 Analytical Results Detected Constituents in Groundwater
- 6-4 Human Health and Ecological Risk COPCs for Site 5
- 7-1 Site 7 Analytical Results Detected Constituents in Surface Soil
- 7-2 Site 7 Analytical Results Detected Constituents in Subsurface Soil
- 7-3 Human Health and Ecological Risk COPCs for Site 7
- 8-1 Site 9 Analytical Results Detected Constituents in Surface Soil
- 8-2 Site 9 Analytical Results Detected Constituents in Subsurface Soil
- 8-3 Human Health and Ecological Risk COPCs for Site 9
- 9-1 AOC D Analytical Results Detected Constituents in Surface Soil
- 9-2 AOC D Analytical Results Detected Constituents in Subsurface Soil
- 9-3 Human Health and Ecological Risk COPCs for AOC D
- 10-1 Investigation Results Summary

Figures

- 1-1 Base Location Map
- 1-2 Site Location Map
- 2-1 IR Sites and AOC Location Map
- 2-2a Conceptual Site Model
- 2-2b Conceptual Site Model, A-A'
- 2-2c Conceptual Site Model, B-B'
- 4-1 Site 3 Sample Locations
- 4-2 Site 3 Human Health and Ecological Risk COPCs in Surface Soil
- 5-1 Site 4 Sample Locations
- 5-2 Site 4 Human Health Risk COPCs in Surface Soil
- 6-1 Site 5 Sample Locations
- 6-2 Site 5 Human Health Risk COPCs in Surface Soil
- 6-3 Site 5 Ecological Risk COPCs in Surface Soil
- 7-1 Site 7 Sample Locations
- 8-1 Site 9 Sample Locations
- 9-1 AOC D Sample Locations
- 9-2 AOC D XRF and Laboratory Results for Surface Soil
- 9-3 AOC D XRF and Laboratory Results for Subsurface Soil
- 9-4 AOC D Human Health and Ecological Risk COPC in Surface Soil

viii AX0121191314WDC

Acronyms and Abbreviations

 $\begin{array}{ll} \mu g/dL & \text{microgram per deciliter} \\ \mu g/L & \text{microgram per liter} \end{array}$

ALM Adult Lead Methodology amsl above mean sea level AOC area of concern

bgs below ground surface
BTV background threshold value

CH2M CH2M HILL, Inc.

CLEAN Comprehensive Long-term Environmental Action – Navy

CNO Chief of Naval Operations
COPC chemical of potential concern

CSM conceptual site model

DGM digital geophysical mapping

DO dissolved oxygen

DOT Department of Transportation

DPT direct-push technology

EPC exposure point concentration
ERA ecological risk assessment
ERS ecological risk screening
ESV ecological screening value

ft² square foot

HHRS human health risk screening

HI hazard index

HMW high molecular weight HQ hazard quotient

IAS Initial Assessment Study

IEUBK Integrated Exposure Uptake Biokinetic

IDW investigation-derived waste

LMW low molecular weight

MDE Maryland Department of the Environment

mg/kg milligram per kilogram

N/A not applicable

NAVFAC Naval Facilities Engineering Command

Navy Department of the Navy

NEESA Naval Energy and Environmental Support Activity

NRL-CBD Naval Research Laboratory – Chesapeake Bay Detachment

NRL-DC Naval Research Laboratory – Washington, D.C.

OLEM Office of Land and Emergency Management

ORP oxidation-reduction potential

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl PID photoionization detector

AX0121191314WDC ix

BASE-WIDE SITE INSPECTION REPORT, NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT

PPRTV Provisional Peer Reviewed Toxicity Value

QA quality assurance
QC quality control

RfD reference dose

RSL regional screening level

SAP Sampling and Analysis Plan

SI Site Inspection

SVOC semivolatile organic compound

TCLP toxicity characteristic leaching procedure

UCL upper confidence limit
UFP Uniform Federal Policy

USEPA United States Environmental Protection Agency

USWFS United States Fish and Wildlife Service

UTL Upper Tolerance Limit

VOC volatile organic compound

WOE weight-of-evidence
XRF x-ray fluorescence

x AX0121191314WDC

Introduction

This report was prepared under the Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC) Washington, Comprehensive Long-term Environmental Action – Navy (CLEAN) 9000 Contract N62470-16-D-9000, Contract Task Order JU23 and in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorizations Act of 1986. This deliverable has been submitted to NAVFAC Washington and the Maryland Department of the Environment (MDE), which serves as the lead regulatory agency.

This report presents the results of the Base-wide Expanded Site Inspection (ESI) conducted at the Naval Research Laboratory – Chesapeake Bay Detachment (NRL-CBD) located in Chesapeake Beach, Maryland (**Figure 1-1**). Six sites - Sites 3, 4, 5, 7, 9, and AOC D (**Figure 1-2**), were identified for investigation during the Base-wide Expanded Site Inspection (ESI) based on the recommendations from the Base-wide SI Report (CH2M HILL, 2016). **Table 1-1** lists the sites included in the Base-wide ESI based on the recommendations presented in the Final SI Report (CH2M, 2016).

Table 1-1. Summary of Investigation Areas

Investigation Area	Reason(s) for Inclusion in the Base-wide ESI
Site 3 – Landfill No 1	Further evaluation for human health and ecological risks in surface soil
Site 4 – Landfill No 2	Further evaluation for human health and ecological risks in surface soil
Site 5 – Landfill No 3	Further evaluation for human health and ecological risks in surface soil
Site 7 – Road Oil Application	Further evaluation for ecological risks in surface soil
Site 9 – Photo-processing Waste	Further evaluation for ecological risks in surface soil
AOC D – Water Tower	Further evaluation for human health and ecological risks in surface soil

The objectives of the Base-wide ESI were to:

- 1) Further evaluate whether historical practices led to site-related releases to the environment that pose a potential unacceptable risk to human health and/or the environment at five sites and one AOC (Sites 3, 4, 5, 7, 9, and AOC D).
- 2) Further delineate buried waste disposed of at the three landfill sites (Sites 3, 4, and 5).

ch2m:

Facility and Site Background

2.1 NRL-CBD Facility Background, Mission, and History

NRL-CBD is located south of Chesapeake Beach, Maryland and approximately 40 miles southeast of Washington, D.C. The installation occupies approximately 160 acres of land along the western shoreline of the Chesapeake Bay. The facility is separated into an eastern and western portion, separated by Bayside Road (Maryland State Route 261). The facility is bounded by the Chesapeake Bay to the east and offsite residential housing areas to the north, south, and west.

The mission of NRL-CBD is to provide and maintain facilities for use by the research divisions of the Naval Research Laboratory – Washington, D.C. (NRL-DC), for the testing, development, and evaluation of radar, radio, optical, and fire control equipment, along with other research projects requiring a maritime environment or open skies, but with land-based support facilities (NEESA, 1984).

The original acquisition of land for NRL-CBD was made in 1941, and construction progressed rapidly during World War II. Major expansion occurred in 1953 and 1954 with construction of a large laboratory building, shop facilities, and complete utility systems (NEESA, 1984).

2.2 Facility Geology and Hydrogeology

NRL-CBD is in the Atlantic Coastal Plain physiographic province. The sediments of the Coastal Plain are a thick sequence of unconsolidated sands, clays, and gravels and, at times, indurated lime or iron-cemented sands (NEESA, 1984). The two primary formations that underlie NRL-CBD are the Choptank formation, which ranges from 75 to 100 feet thick, and the underlying Calvert formation, which is approximately 150 feet thick (NEESA, 1984). Based on information obtained from the soil borings collected during the SI (CH2M, 2016), the 2017 Background Groundwater investigation (CH2M, 2017a), and the per- and polyfluoroalkyl substances investigation (CH2M, 2017b) at the facility, the soils underlying NRL-CBD are consistent with the Atlantic Coastal Plain and the Choptank formation. Soil lithologic descriptions at NRL-CBD consist predominantly of clays from ground surface to approximately 120 feet below ground surface (bgs) and then transitioning into clayey sand (between 120 and 200 feet bgs) and ultimately to poorly-graded sand (below 200 feet bgs).

Shallow groundwater across the facility has been encountered from depths ranging from 10 to 27 feet bgs. Localized groundwater flow is influenced by surface topography, which causes the groundwater flow to radiate to the northeast and southeast from Navy Court Road (Figure 2-1). This shallow water table is underlain by a thick clay layer (i.e., Calvert confining unit) that is believed to be laterally continuous and fully confining to the deeper Piney Point aquifer.

2.3 Land Use

NRL-CBD consists of laboratory buildings, shop facilities, and other structures that support its mission (see Section 2.1). The six sites investigated during the Base-wide ESI are located on the western portion of the facility (**Figure 2-1**) and currently and for the foreseeable future, are expected to have an industrial land use.

AX0121191314WDC 2-1

_

In addition to the facility at 5813 Bayside Drive, NRL-CBD also operates a boat from a small dock area (referred to as the Navy Dock) located in downtown Chesapeake Beach, Maryland (approximate address 8050 Bayside Road; Latitude = 38°41′30.05″ North, Longitude = 76°32′06.00″ West). The Navy Dock is approximately 1.7 miles north of the main NRL-CBD facility.

2.4 Conceptual Site Model

Figures 2-2a, 2-2b, and 2-2c present the current understanding of the conceptual site model (CSM) for the six sites investigated in the Base-wide ESI. The CSM describes the relationship between potential contaminant sources and their impacts to the receptors and the environmental media of concern. Section 2.4.1 describes the potential contamination sources at each Base-wide ESI site and Section 2.4.2 describes the transport pathway between the potential contamination sources to the media of impact (i.e., soil and/or groundwater).

The areas being evaluated during the Base-wide ESI are composed of two distinctly different habitat types. Site 5 is composed of wooded habitat, while Sites 3, 4, 7, and 9 and AOC D are composed of primarily mowed mixed grass habitats that are bordered by wooded habitat on one or more sides. Despite the variability in habitats, soil (surface and subsurface) and groundwater are the media of concern at the six Base-wide ESI sites.

2.4.1 Potential Source Areas

This section summarizes the potential source areas for each of the sites investigated during the Base-wide ESI. The site history and suspected past disposal practices are discussed in the subsequent sections for each specific site.

- Site 3 From 1942 until 1950, Site 3 was used as a landfill for municipal, shop, and laboratory wastes. After the landfill closed the site was used for storage. Based on the history of the site, the likely potential source areas that may be associated with an environmental release are the disposal pits and undocumented releases during the time the site was used as a storage area.
- Site 4 From 1950 until 1958, Site 4 was used as a landfill for municipal, shop, and laboratory wastes. Based on the history of the site, the likely potential source areas that may be associated with an environmental release are the disposal pits.
- Site 5 From 1958 until 1968, Site 5 was used as a landfill for municipal, shop, and laboratory wastes. After the landfill was closed the site was used for storage. Based on the history of the site, the likely potential source areas that may be associated with an environmental release are the disposal area and burn pits. In addition, undocumented releases from the time when the site was used as open storage may serve as a source.
- Site 7 From 1940 until 1952, Site 7 consisted of unpaved roads located on the portion of NRL-CBD located west of Bayside Road. The unpaved roads were treated with waste oils for dust control. Based on the history of the site, the likely sources of site-related constituents are the former oiled roadways, which are documented to have potentially contained polychlorinated biphenyl (PCB)-contaminated oil.
- **Site 9** From the late 1950s until 1975, Site 9 contained a photo-processing laboratory. Based on the history of the site, the likely source area that may be associated with an environmental release is the former drain pipe through which the photo processing wastes were reportedly disposed of. The building and drain pipes have been since demolished and removed from the site.
- AOC D Lead-based paint associated with routine maintenance of the water tower conducted during the 1950s through 1970s is thought to serve as a potential source for lead that may be found in surface soils at the site.

2.4.2 Transport Pathways

A transport pathway describes the mechanisms whereby site-related constituents, once released, may be transported from a source area to exposure media where receptor exposures may occur. The primary mechanisms for constituent transport from the potential source areas are:

• Infiltration/leaching of constituents from the landfill waste material into surface and subsurface soils and/or groundwater (for Sites 3, 4, and 5)

2-2 AX0121191314WDC

- Discharge/leaking of oil or related petroleum constituents from oil/petroleum storage vehicles driving on the unpaved site road at Site 7
- Discharge of photo-processing wastes into the surface and subsurface soils at Site 9
- Infiltration/leaching of lead from the water tower paint chips into surface and subsurface soils at AOC D Additional transport pathways may include:
- Overland flow/surficial runoff to downgradient terrestrial areas
- Suspension/deposition of particulates via wind to downgradient terrestrial areas
- Leaching of chemicals from surface soils into subsurface soil and groundwater via infiltrating precipitation
- Uptake by biota from soil (for example, vegetation and soil invertebrates) and trophic transfer to upper trophic level receptors (e.g., birds and mammals)

FIGURE 2-2a
Conceptual Site Model
Base-Wide Expanded Site Inspection Report
NRL-CBD
Chesapeake Beach, Maryland

Human Health Exposures and Receptors

Media - Soil

- · Current adult/adolescent trespassers and visitors, and adult industrial workers exposed to surface soil through incidental ingestion, dermal contact, and inhalation of particulate emissions.
- Future adult/adolescent trespassers and visitors, adult industrial workers, construction workers, and if the site is redeveloped adult and child residents exposed to surface and subsurface soil through incidental ingestion, dermal contact, and inhalation of particulate emissions.

Media - Groundwater

- · Current and future adult industrial workers as well as future adult and child residents exposed to shallow groundwater through vapor intrusion from the groundwater into indoor building air at any of the sites with buildings, or buildings downgradient of the site.
- Future construction workers exposed to shallow groundwater through dermal contact and inhalation of volatile emissions in an open excavation, if shallow groundwater is within 15 feet of the ground surface.
- Future residents or industrial workers who use the water as a potable water supply. Future residents receptors could be exposed to the groundwater through ingestion, and dermal contact and inhalation of volatile emissions while showering. Future industrial workers could be exposed to the groundwater through ingestion.

Additional Transport Pathways At Sites 3, 4, 7, and AOC D May Include:

- Overland flow/surficial runoff to downgradient terrestrial areas
- Suspension/deposition of particulates via wind to downgradient terrestrial areas
- Leaching of chemicals from surface soils into subsurface soil and groundwater via infiltrating precipitation
- Uptake by biota from soil (e.g., vegetation, soil invertebrates) and trophic transfer to upper trophic level receptors (e.g., birds and mammals)

Legend

_ <u>v</u> _ Water Table

Transport Pathway for infiltration/leaching of constituents from the landfill waste material into surface and subsurface soils and/or groundwater at Sites 3 and 4

Transport Pathway for discharge/leaking of oil or related petroleum constituents from oil/petroleum storage vehicles driving on the unpaved site road at Site 7

Transport Pathway for infiltration/leaching of lead from the water tower paint chips into surface and subsurface soils at AOC D

FIGURE 2-2b

Conceptual Site Model A – A' Basewide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Not to Scale

Human Health Exposures and Receptors

Media - Soil

- Current adult/adolescent trespassers and visitors, and adult industrial workers exposed to surface soil through incidental ingestion, dermal contact, and inhalation of
- Future adult/adolescent trespassers and visitors, adult industrial workers, construction workers, and if the site is redeveloped adult and child residents exposed to surface and subsurface soil through incidental ingestion, dermal contact, and inhalation of particulate emissions.

Media - Groundwater

- Current and future adult industrial workers as well as future adult and child residents exposed to shallow groundwater through vapor intrusion from the groundwater into indoor building air at any of the sites with buildings, or buildings downgradient of the site.
- Future construction workers exposed to shallow groundwater through dermal contact and inhalation of volatile emissions in an open excavation, if shallow groundwater is within 15 feet of the ground surface.
- Future residents or industrial workers who use the water as a potable water supply. Future residents receptors could be exposed to the groundwater through ingestion, and dermal contact and inhalation of volatile emissions while showering. Future industrial workers could be exposed to the groundwater through ingestion.

Additional Transport Pathways At Sites 5 and 9 May Include:

- Overland flow/surficial runoff to downgradient terrestrial areas
- Suspension/deposition of particulates via wind to downgradient terrestrial areas
- · Leaching of chemicals from surface soils into subsurface soil and groundwater via infiltrating precipitation
- Uptake by biota from soil (e.g., vegetation, soil invertebrates) and trophic transfer to upper trophic level receptors (e.g., birds and mammals)

Legend

_ 💌 _ Water Table

Transport Pathway for infiltration/leaching of constituents from the landfill waste material into surface and subsurface soils and/or groundwater at Site 5

Transport Pathway for discharge of photo-processing wastes into the surface and subsurface soils at Site 9

Ecological Exposures and Receptors

- Lower Trophic (plants and soil invertebrates): direct contact with contaminated soil (root uptake for plants)
- Upper Trophic (ground-foraging birds & small mammals, predatory birds): ingestion of chemicals from soil and food while foraging and the dermal absorption of chemicals from direct contact with soil

Ecological Exposures and Receptors Media - Surface Soil Media - Surface Soil Habitat – Mature upland forest (deciduous with scattered evergreen) and scrub shrub understory Habitat – Mowed mixed grass habitat bordered by wooded habitat on one or more sides Receptors and Exposure Pathways -Receptors and Exposure Pathways – • Lower Trophic (plants and soil invertebrates): direct contact with contaminated soil (root uptake for plants) • Upper Trophic (ground-foraging birds & small mammals, predatory birds): ingestion of chemicals from soil and food while foraging and the dermal absorption of chemicals from direct contact with soil Site 9 B' Access Road Former Building 43 **Photo Processing Waste Discharge** Landfill No. 3 Exact waste thickness is unknown

FIGURE 2-2c

Conceptual Site Model B - B' Basewide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Investigation and Data Evaluation Methodology

This section provides descriptions of the field investigation activities and analytical methods and data evaluation along with descriptions of the risk screening approach, methods, and calculations. Site-specific descriptions of the field activities, presentation of analytical results and site characterization, and risk screenings evaluations are presented in Sections 4 through 9.

3.1 Investigation Methods

The Base-wide ESI investigation utilized a phased data evaluation approach. Digital geophysical mapping results from the SI (CH2M, 2016) were used to select test pits at the three landfill sites (Sites 3, 4, and 5). Since the SI test pit locations were selected using the highest digital geophysical mapping (DGM) responses, the Base-wide ESI test pit locations were selected using the next highest DGM responses available. If waste was found in the test pit, the proposed soil boring closest to the test pit was to be placed adjacent to the test pit. If waste was not found in the test pit, the proposed soil boring closest to the test pit was to be placed at a location within the site boundary where it can provide for wider spatial coverage to determine the presence or absence of contamination. For sites where, historical land-filling practices were not suspected, such as at Sites 7 and 9 and AOC D, pre-determined sampling locations were selected to provide wider spatial coverage to determine the presence or absence of contamination. Investigation activities during the Base-wide ESI were performed in accordance with the Uniform Federal Policy Sampling and Analysis Plan (UFP-SAP) (CH2M, 2018) and described in the following sections, along with deviations encountered in the field.

3.1.1 Utility Clearance

Utility clearance was performed to identify subsurface utilities and metallic anomalies at proposed soil boring and monitoring well installation locations. Subsurface anomaly detection equipment, such as magnetometers and ground-penetrating radar, were used to find metallic features such as piping and wiring. Several proposed sampling locations at Sites 4, 5, and 7 were relocated because of the detection of subsurface utilities and anomalies during the clearance activities.

3.1.2 Test Pitting

Test pits were dug at the three landfill sites (Site 3, 4, and 5) during the Base-wide ESI to determine the presence of waste materials based on DGM results. As noted in Section 3.1, the SI test pit locations were selected based on highest DGM responses and the Base-wide ESI test pit locations were selected based on the next highest DGM responses. The dimension of each test pit was approximately 10 feet in length and 5 feet in width, and with a maximum depth of 10 feet bgs (see **Appendix A** for test pit logs). If waste was encountered prior to the depth of 10 feet bgs, the test pitting activities stopped at that depth. Groundwater was not encountered during the excavation of Base-wide ESI test pits.

The excavated material from each test pit was placed adjacent to the test pit and segregated into two stockpiles, a soil cover material pile and a waste material pile (if present). The CH2M HILL, Inc. (CH2M) onsite geologist recorded observations from each test pit, such as sidewalls and floor conditions and waste materials discovered (if present). The CH2M onsite geologist also prepared a sketch of the test pit findings. Once the test pit had been characterized, the test pit was backfilled first with excavated waste material (if present) and then followed with the excavated soil cover material. The surface of the test pits was restored to approximately the original grade and reseeded with grass and protected with straw cover. Additionally, as a Health and Safety precaution, radiological monitoring was performed during test pitting activities due to the potential for undocumented radiological items to have been disposed of in landfills.

3.1.3 Soil Sampling

For soil sampling locations at Sites 3, 4, 5, 7, and 9, a direct-push technology (DPT) drill rig was used to advance soil borings. Soil borings were advanced to 10 feet bgs at Sites 3, 4, 5, and 9; to 8 feet bgs at Site 7; and to 2 feet bgs at AOC D. Soil lithologic information was collected by the CH2M onsite geologist for each soil core. Soil descriptions, including grain size, color, moisture content, relative density, consistency, soil structure, minerology, and site-specific comments, were noted on the boring log form (**Appendix B**). Surface (0 to 0.5 foot bgs) and subsurface (depth ranges varied) soil samples were sampled from soil cores collected in 5-foot-long disposable acetate liners. Subsurface soil sampling depth intervals were selected based on elevated photoionization detector (PID) readings or distinct visual and odorous observations (i.e., soil staining, strong petroleum smells). If there were no elevated PID readings and/or no distinct visual and olfactory observations in the subsurface soil core, the sampling interval selected was between 8 to 10 feet bgs at Sites 3, 4, 5, and 9, and 5 to 8 feet bgs at Site 7. In addition to DPT soil collection, surface soil samples were collected using disposal plastic scoops at Site 5. Hand augering was used at AOC D for surface and subsurface soil samples because of the overhead and underground utility hazards and adjacent trees within the sampling area.

All soil samples were placed into laboratory-supplied jars and shipped in coolers to the laboratory according to temperature requirements noted in the UFP-SAP (CH2M, 2018). Surface and subsurface soil samples were analyzed for constituent groups shown in Worksheet #17 of the UFP-SAP and described in Section 3.2 below. Excess soil cuttings from each soil boring were containerized in 55-gallon Department of Transportation (DOT)-approved steel drums. The soil cuttings were analyzed for toxicity characteristic leaching procedure (TCLP) and the results showed non-hazardous characteristics. The soil drums were removed offsite by a waste subcontractor and disposed at an offsite facility.

3.1.4 XRF Field Screening

At AOC D, XRF field screening of lead in surface and subsurface soil samples was performed as detailed in the UFP-SAP (CH2M, 2018). A subset of the XRF screened samples (10 surface and 10 subsurface soil samples) were sent to the laboratory for lead analysis and to gauge the comparability of the XRF results to laboratory results. The XRF grid locations associated with the subset of the XRF screened samples were determined using a random number generator program prior to the Base-wide ESI mobilization.

A 100-foot by 100-foot area at AOC D was marked-out where the water tower sits at the center of this area. Twenty-five 20-foot by 20-foot square XRF grids were established inside this 100-foot by 100-foot area. A five-point composite soil sample (points were from the center and at each of the corners of the XRF grid) was collected for both the surface (0 to 0.5 foot bgs) and subsurface (1.5 to 2 feet bgs) soil intervals. As noted in Section 3.1.3, soil samples were collected using a hand auger rather than from the DPT because of safety hazards with nearby utility lines. Soil aliquots from each grid and for each sample interval (i.e., surface and subsurface) were placed in labeled 2-gallon resealable plastic bags for compositing.

Composited surface and subsurface soil samples were taken to the designated XRF sample preparation area and manually mixed thoroughly inside the 2-gallon resealable plastic bag to obtain a uniform consistency. After mixing, an aliquot of soil was transferred into a small resealable plastic bag. The aliquot was then carefully inspected to remove non-soil debris and noticeable lead fragments.

XRF field screening results for lead were statistically evaluated against lead analytical results to determine correlation between the two sets of data. Additional information regarding the statistical analysis of XRF results is discussed in Section 9.3

3.1.5 Monitoring Well Installation

Six monitoring wells were newly installed at Sites 3, 4, and 5 (one at Site 3, two at Site 4, and three at Site 5). The monitoring wells were installed using hollow-stem auger drilling methods and were constructed with 2-inch-diameter Schedule 40 polyvinyl chloride screen and riser. The depths of the newly installed monitoring wells at Sites 3, 4, and 5 range from 25 feet bgs to 40 feet bgs. The monitoring wells were constructed with 10 feet of

3-2 AX0121191314WDC

0.010-inch machine-slotted screen and the start of the well screen was placed 1-foot above the top of the water table. The annular space around each well screen was filled with silica sand to approximately 2 feet above the top of the screen interval and the remainder of the borehole annulus was filled with a minimum of 2 feet of hydrated bentonite directly above the sand filter pack, and overlain by a cement-bentonite grout seal to the ground surface. The newly installed monitoring wells were completed with an above-grade protective cover, concrete pad, and protective bollards. Well construction diagrams are provided in **Appendix B**.

3.1.6 Monitoring Well Development

The six newly installed monitoring wells at Sites 3, 4, and 5 were developed to remove sediments to the extent practicable using a surge block and whale pump. Development activities continued until at least three well volumes were purged (or until the monitoring well went dry). Water quality parameters, including turbidity, pH, specific conductivity, temperature, oxidation-reduction potential (ORP), and dissolved oxygen (DO), along with the volume of water removed, were recorded during well development. **Appendix C** contains the monitoring well development logs. Development water from each newly installed monitoring well was containerized in 55-gallon DOT-approved steel drums. The development water was analyzed for TCLP and the results showed non-hazardous characteristics. The aqueous drums were removed offsite by a waste subcontractor and disposed of at an offsite facility.

3.1.7 Groundwater Sampling

Groundwater samples were collected from existing and newly installed monitoring wells at Sites 3, 4, and 5. Groundwater samples were collected and analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides and PCBs, and metals, as identified in the UFP-SAP (CH2M, 2018) and in Section 3.2 below.

Groundwater samples were collected using a submersible pump following low-flow sampling protocol. Static water-level measurements were gauged and recorded immediately prior to the purging and sampling of a well and recorded during purging to document low-flow procedures. All groundwater samples were collected by placing the sample tubing intake in the middle of the screen interval. Water quality parameters (turbidity, pH, specific conductivity, temperature, ORP, and DO) were measured during well purging toward stabilization conditions using a water quality meter (i.e., Horiba), which was calibrated at least once each day the instrument was used. The aquifer was considered stable after at least one well volume was purged, and water quality readings collected 3 to 5 minutes apart were stabilized as follows:

- pH within 0.1 pH standard unit
- Conductivity within 3 percent
- DO within 10 percent
- ORP within 10 millivolts
- Turbidity measurement within 10 percent or is minimized to the extent practical for the well (ideally below 10 nephelometric turbidity units)

Groundwater purging logs are shown in **Appendix C**. Purged groundwater from each newly installed monitoring well was containerized in 55-gallon DOT-approved steel drums. The groundwater was analyzed for TCLP and the results showed non-hazardous characteristics. The aqueous drums were removed offsite by a waste subcontractor and disposed of at an offsite facility.

3.1.8 Monitoring Well Land Survey

Newly installed monitoring wells at Sites 3, 4, and 5 were surveyed by a Maryland-licensed surveyor. The horizontal location of the monitoring well and the vertical height of the well casing were recorded. The monitoring wells survey report is shown in **Appendix D**.

3.2 Analytical Methods

Soil and groundwater samples were analyzed in accordance with the methods specified in the UFP-SAP (CH2M, 2018). Surface soil and subsurface soil samples were analyzed for the following:

- SVOCs by Method SW-846 8270C
- Pesticides and PCBs by Methods SW-846 8082A and SW-846 8081A, respectively
- Target analyte list (including mercury) metals and hexavalent chromium by Methods SW-846 6020A and SW-846 7199, respectively

Groundwater samples were analyzed for the following:

- VOCs by Method SW-846 8260C
- SVOCs (including SIM polycyclic aromatic hydrocarbons [PAHs] by Methods SW-846 8270C and SW-846 8270D
 SIM
- Pesticides and PCBs by Methods SW-846 8082A and SW-846 8081A, respectively
- Target analyte list (including mercury) metals and hexavalent chromium by Method SW-846 6020A
- Filtered metals including hexavalent chromium by Method SW-846 7199

All analyses were performed at Jupiter Environmental Laboratories with the exception of hexavalent chromium (ALS Laboratories) and SIM PAHs (TestAmerica). The validated analytical data is provided in **Appendix E**.

3.3 Data Validation Summary

All results underwent analytical data validation according to the procedures listed in the UFP-SAP. Guidance and qualifiers were taken from "USEPA National Functional Guidelines for Organic Superfund Methods Data Review" (USEPA; 2017d), and "USEPA National Functional Guidelines for Inorganic Superfund Data Review" (USEPA, 2017e).

3.3.1 Data Qualifiers

Data validation qualifier descriptions and results are summarized in **Table 3-1**. Only one result per analyte per sample is presented. If a sample was re-extracted, re-analyzed, or diluted, it was reported twice or more by the laboratory. The result with the best data quality was selected for reporting and any other results were excluded to prevent redundancy. Such exclusion does not negatively affect data quality.

Table 3-1. Descriptions of Data Validation Qualifiers

Qualifier	Meaning	Description	Percent of Total	Number of Results
U	Nondetect or not detected at significantly greater than that in an associated blank	The analyte was not detected. Or, the analyte was detect, but the data validator determined that it was not detected at significantly greater than that in an associated blank. Therefore, it was U-qualified. These results are usable as nondetects at the reporting limit.	65	6,052
[none]	Detected	The analyte was detected. Qualification was not warranted. These results are usable as detects at the reported concentration.	17	1,623
UJ	Nondetect, estimated reporting limit	The analyte was not detected, but there was a QA/QC exceedance that warranted qualification. These results are usable as nondetects at the reporting limit.	10	929
J	Estimated	The analyte was detected, but there was a QA/QC exceedance that warranted qualification. Or, there may have been no QA/QC exceedance, but the analyte was detected at less than the limit of quantitation (i.e., the result is 'low'). These results are usable as detects at the reported concentration.	6.6	619

3-4 AX0121191314WDC

Table 3-1. Descriptions of Data Validation Qualifiers

Qualifier	Meaning	Description	Percent of Total	Number of Results
R	Rejected	The analyte may or may not have been detected, but there was a severe QA/QC exceedance. These results are not usable as detects or as nondetects. These may represent data gaps, or the data user may work around them.	0.45	42
J+	Potential high bias	The analyte was detected, but there was a QA/QC exceedance that may indicate a potential high bias. These results are usable as detects at the reported concentration.	0.42	39
J-	Potential low bias	The analyte was detected but there was a QA/QC exceedance that may indicate a potential low bias. These results are usable as detects at the reported concentration.	0.27	25

QA = quality assurance

QC = quality control

3.3.2 Data Quality Assessment Summary

The samples were collected as specified in the UFP-SAP (CH2M, 2018). The laboratory analyzed the samples in accordance with the SW-846 methods as stated in the UFP-SAP. The data packages were reviewed by the data validator on the basis of the criteria outlined in the UFP-SAP and **Table 3-1**.

The laboratory U-qualified 63 percent of the results as nondetect and further qualification was not warranted. Another 17 percent was reported as detected and further qualification was not warranted. When this is considered, 81 percent of the data are acceptable as reported by the laboratory. Of the total results, 6.6 percent were J-qualified as "estimated." Many of these J-qualifiers (75 percent of the J-qualified data) are present simply because the result was detected at less than the limit of quantitation. Results J-qualified for this reason are also usable as reported. Therefore, a total of 86 percent of the data reported by the laboratory as detections, nondetects, and estimated detects were not further qualified by data validation and are considered usable as reported. The remaining J-qualifiers resulted from dual-column reproducibility (precision), equipment blank contamination, field duplicate precision, low recovery in the initial calibration, high recovery of internal standards, matrix duplicate precision, low matrix spike recovery, serial dilution (precision), and low spiked surrogate recovery.

In some cases, an analyte was detected by the laboratory, but the data validator determined that the analyte was not detected at significantly greater than that in an associated blank. When this occurred, the data validator U-qualified the result such that it would no longer be distinguishable from other nondetect. If necessary, the concentration was raised to the limit of detection (reporting limit). These U-qualifiers amounted to 1.5 percent and resulted from contamination in related equipment rinseate blanks and laboratory method blanks. These results are usable as nondetects at the reported concentration, but the data validator should take extra caution when results U-qualified due to blank contamination exceed screening levels.

UJ-qualifiers amounted to 10 percent and resulted from blank spike/blank spike duplicate (precision), low recovery in the blank spike, low recovery in a continuing calibration verification, field duplicate (precision), low recovery in the internal calibration, method blank contamination, low recovery in a matrix spike, and low spiked surrogate recovery. These results are usable as nondetects at the reported level as long as the data user recognizes that the reporting limit is estimated.

R-qualifiers amounted to 0.45 percent and resulted from extremely low spiked surrogate recovery (20 pesticide compounds in CBD-S03-SS08-000H and 19 pesticide compounds in CBD-S03-SS09-000H) and extremely low matrix spike recovery (total/filtered mercury in CBD-S04-GW01-0518 and 2,4-dinitrophenol in CBD-S09-SB07-0810. These may indicate an unacceptable extreme low bias, or an inability to detect the contaminant in the sample, if

present. These rejected results are not usable for any purpose and may constitute a data gap. However, the data user is often able to exclude such minor data gaps because they are very small (0.45 percent of the results in this case), are limited to the affected samples/fractions/analytes, and do not affect other results which are not R-qualified. Although this affects the completeness of the data set, the completeness goal is still easily met (see below).

J⁺-qualifiers amounted to 0.42 percent and resulted from equipment blank contamination, internal standard recovery, and equipment blank contamination. This may indicate a potential high bias. These results are usable as detects at their reported concentration as long as the data user recognizes that they are estimated and potentially biased high. Therefore, the data user should exercise caution when these results are slightly greater than screening levels.

J⁻-qualifiers amounted to 0.27 percent and resulted from low recovery in the initial calibration, low matrix spike recovery, and low spiked surrogate recovery. This may indicate a potential low bias. These results are usable as detects at their reported concentration as long as the data user recognizes that they are estimated and potentially biased low. Therefore, the data user should exercise caution when these results are slightly less than screening levels.

Because all qualified results, with the exception of R-qualified results, are usable as qualified, greater than 99 percent of the data are complete and usable as qualified. A typical completeness goal of 95 percent is met. The overall conclusion is that the data set generated is acceptable and appropriate for its intended use.

3.4 Human Health Risk Screening Approach

A conservative human health risk screening (HHRS) was performed to determine the potential for unacceptable human health risks associated with exposure to site media (surface soil, subsurface soil, and groundwater) at Sites 3, 4, 5, 7, and 9 and AOC D. The results of the HHRS provide an initial indication of potential risks from exposure to COPCs identified for each site and are used to help determine whether the sites require further investigation (such as a baseline risk assessment or additional data collection) or future unrestricted (for example, residential) use of the site is acceptable based on human health risks. HHRS tables are shown in **Appendix F**.

3.4.1 Potentially Complete Exposure Pathways

The human health CSM presents an overview of site conditions, potential contaminant migration pathways, and exposure pathways to potential receptors. The CSM is presented in Section 2.4, while graphical representations of the CSM were presented in **Figures 2-2a through 2-2c**. The facility background and history are presented in Section 2.1 and land use is presented in Section 2.3. A description of each site and AOC is provided in Sections 4.1 through 9.1.

The potential source areas for each of the sites and AOCs are discussed in Section 2.4. The primary release and transport mechanism from the potential source areas for each site and AOC is infiltration and leaching of constituents from the potential source areas into surface and subsurface soils and/or groundwater. Additional release and transport pathways may include overland flow and surficial runoff, suspension and deposition of particulates via wind, and volatilization from soils and groundwater.

Access to NRL-CBD is restricted; however, once on the facility humans can be exposed to soil and groundwater at the individual sites. Current receptors may include adult and adolescent trespassers and visitors, as well as adult industrial workers exposed to surface soil through incidental ingestion, dermal contact, and inhalation of particulate and volatile emissions. Current receptors also could be exposed to shallow groundwater through vapor intrusion from the groundwater into indoor building air at any of the sites with buildings, or buildings downgradient of the site. However, for the sites where groundwater was collected (Sites 3, 4, 5, and 9), volatile constituents were not detected in groundwater or are insufficiently volatile and/or there are no occupied buildings onsite or 100 feet downgradient of the site (Site 9). Therefore, the vapor intrusion pathway is incomplete.

3-6 AX0121191314WDC

Future receptors include the current receptors. In addition, although there are no plans for redevelopment at NRL-CBD, the future receptors also include future residents and construction workers. Future receptors could be exposed to the surface and subsurface soil if future development activities occur at the site (for example, construction of residential housing or industrial buildings) or if utility or excavation work results in exposing subsurface soil. Exposure routes for future exposure to surface and subsurface soil are the same as those for current exposure to surface soil. Although shallow groundwater is not used as a water supply at the facility, as a conservative approach to evaluate potential future risks it is assumed that shallow groundwater beneath the sites could be used as a future water supply source. Potential future receptors for shallow groundwater could include future residents or industrial workers who might use the water as a potable water supply. Residents could be exposed to the groundwater through incidental ingestion, dermal contact, and inhalation of volatile emissions while showering. Industrial workers could be exposed to the groundwater through ingestion. Additionally, if shallow groundwater is within 15 feet of the ground surface, future construction workers could be exposed through dermal contact and inhalation of volatile emissions in an open excavation. Future receptors also could be exposed to shallow groundwater through vapor intrusion from the groundwater into indoor building air at any of the sites with buildings, or buildings downgradient of the site. However, as mentioned above, volatile constituents were not detected in groundwater or are insufficiently volatile, and therefore, the vapor intrusion pathway is incomplete.

3.4.2 Human Health Risk Screening Methodology

The HHRS was conducted in three steps using a risk-ratio technique (Navy, 2000). The three-step screening process is described in the following sections.

Soil and groundwater samples collected from Sites 3, 4, 5, 7, and 9 and AOC D in October 2012 and April and May 2018 were evaluated in the HHRS. Surface soil samples were collected 0 to 0.5 feet bgs. The depths of subsurface soil samples collected at the six sites ranged from 2 to 22 feet bgs. Although a human receptor would not be expected to contact soil from depths greater than about 12 feet bgs, these samples were included in the Basewide SI and ESI HHRS because of limited subsurface soil data and the subsurface soil sampling approach. Table 1 in **Appendix F** lists the samples included in the HHRS. The analytical data for the samples evaluated in the risk screening are presented in **Appendix F**. The data included in the HHRS were validated as described in the previous section. The data were evaluated to determine their reliability for use in the HHRS. A review of the data identified the following criteria for data usability:

- Data qualified with an R (rejected) were not used in the HHRS.
- Data qualified with a B (blank contamination) were treated as nondetected concentrations.
- Values flagged with a J, J+, J-, L, or K were treated as detected concentrations.

For duplicate samples, the maximum concentration between the two samples was used as the sample concentration. If the analyte was only detected in one of the samples, the detected concentration was used as the sample concentration. If the analyte was not detected in either of the samples, the higher detection limit was used as the sample detection limit.

3.4.3 Step 1: Comparison to Screening Levels

The maximum detected constituent concentrations for surface soil, subsurface soil, and groundwater were compared to the United States Environmental Protection Agency (USEPA) human health regional screening levels (RSLs) (USEPA 2019). RSLs based on noncarcinogenic effects were based on a hazard quotient (HQ) of 0.1 to account for exposure to multiple constituents. RSLs based on carcinogenic endpoints were based on a carcinogenic risk of 1×10^{-6} .

Surface soil and subsurface soil data were compared to residential soil RSLs (USEPA, 2019). Although industrial workers are the most likely receptors at the sites, trespassers and visitors (adult and youth) are also potential receptors, in addition to hypothetical future residential receptors. Residential soil RSLs are more conservative (that is, lower) than industrial soil RSLs and are therefore protective of all potential receptors (such as trespassers,

visitors, residents, industrial workers, and construction workers). If the maximum detected concentration was greater than the residential soil RSL the constituent was carried forward to Step 2.

Groundwater data were compared to tap water RSLs (USEPA, 2019). An RSL exceedance was used to identify the groundwater COPCs, which were then carried forward to Step 2. Filtered and unfiltered groundwater samples were collected for metals analysis. Following current USEPA risk assessment guidance (USEPA, 2014), the unfiltered groundwater samples were evaluated in the HHRS. The maximum contaminant levels (USEPA, 2018) also were presented in the comparison table. However, these values are provided for informational purposes and risk management, if applicable, and were not used to identify COPCs.

Lead is not evaluated in the same manner as the other COPCs. It is regulated by USEPA based on blood-lead uptake using a physiologically based pharmacokinetic model called the Integrated Exposure Uptake Biokinetic (IEUBK) Model. As a screening tool, lead is currently screened at 400 milligrams per kilogram (mg/kg) in soil based on residential exposure (the residential soil RSL, USEPA, 2019). If the maximum lead concentration is greater than 400 mg/kg, it is retained as a COPC for the site or AOC. For groundwater, lead is screened against the federal action level of 15 micrograms per liter (µg/L) (USEPA, 2018). If the maximum lead concentration is greater than the action level, it is retained as a COPC for the site or AOC. If lead was identified as a COPC it was further evaluated in the HHRS using the IEUBK Model (USEPA, 2010). If blood lead levels for a child resident identified by the IEUBK model are above current blood lead goals, the Adult Lead Model (ALM; USEPA, 2017a) was used to evaluate exposure to lead in soil by industrial workers. The average concentration of lead in either soil and/or groundwater were used as the lead concentration in the IEUBK (and ALM model if used). All the other default model input parameters were used in the model, except for the mother's blood lead concentration at childbirth (MatPb) variable, which was updated to 0.6 micrograms per deciliter (µg/dL) based on the recommendation in USEPA's Office of Land and Emergency Management (OLEM) Directive 9285.6-56 (USEPA, 2017b). Additionally, following current USEPA guidance (OLEM Directive 9200.2-177, USEPA, 2017c), the default age range of 0 to 84 months was modified to 12 to 72 months based on current science and the U.S. Centers for Disease Control and Prevention's recommendation.

If a chemical was 100 percent nondetected in a medium, it was not selected as a COPC. Although nondetected chemicals were not selected as COPCs, sample-specific detection limits (that is, adjusted method detection limits) were compared to screening levels to evaluate if the nondetected chemicals could be present at concentrations less than the detection limit but at concentrations greater than the screening levels and potentially contribute to site risk.

3.4.4 Step 2: Risk Ratio Evaluation using Maximum Detected Concentrations

For constituents identified as COPCs in Step 1, a risk level was calculated using the following equation:

The concentration is the maximum detected concentration (the same concentration that was used in Step 1). The acceptable risk level is 1 for noncarcinogens and 1×10^{-6} for carcinogens (as presented in the Navy human health risk screening guidance [Navy, 2000]). The RSL is the residential soil RSL or tap water RSL based on a HQ of 1 (USEPA, 2018a). All the risk levels for each constituent within a medium are summed to calculate the cumulative hazard index (HI) (for noncarcinogens) and cumulative carcinogenic risk (for carcinogens). A cumulative HI is also calculated for each target organ and effect. For Step 1 COPCs that elicit both noncarcinogenic and carcinogenic effects, a risk level is calculated for both noncarcinogenic and carcinogenic endpoints using the RSL based on noncarcinogenic effects and the RSL based on carcinogenic endpoints for that constituent.

Following the Navy risk ratio screening methodology (Navy, 2000), if the cumulative HI for a target organ or effect is greater than the risk-ratio screening benchmark of 0.5, or the cumulative carcinogenic risk is greater than 5×10^{-5} , the constituents contributing to these values are retained as COPCs and evaluated in Step 3.

3-8 AX0121191314WDC

MDE uses an acceptable carcinogenic risk range of 1×10^{-6} to 1×10^{-5} , which is a smaller range of acceptable risk than specified by the National Oil and Hazardous Substances Pollution Contingency Plan (1×10^{-6} to 1×10^{-4}) and is lower than the target risk ratio carcinogenic risk of 5×10^{-5} specified in the Navy guidance (Navy, 2000), and an acceptable cumulative noncarcinogenic hazard of 1. If the cumulative HI for a target organ or effect is greater than the MDE-acceptable HI of 1 or the cumulative carcinogenic risk is greater than the MDE-acceptable carcinogenic risk of 1×10^{-5} , the constituent will be retained as an MDE COPC and further evaluated. Due to the differences in the acceptable risk levels used by the Navy versus MDE and USEPA, the HHRS results are presented in this report to reflect the acceptable risk levels used by the Navy, USEPA, and MDE

3.4.5 Step 3: Risk Ratio Evaluation using 95 percent Upper Confidence Limit on Mean

For constituents identified as COPCs in Step 2, a risk level was calculated, as previously discussed, for Step 2. However, the 95% UCL of the arithmetic mean was used in place of the maximum detected concentration to obtain a more site-specific risk ratio for data sets containing 10 or more samples. The 95% UCL of the arithmetic mean of the data set was calculated using USEPA's ProUCL statistical software program (USEPA, 2015; USEPA, 2016). If the cumulative HI by target organ/effect is greater than the risk-ratio screening benchmark of 0.5, or the cumulative carcinogenic risk is greater than the risk-ratio screening benchmark of 5×10^{-5} specified in the Navy risk ratio guidance document (Navy, 2000), the constituents contributing to these values are considered COPCs and there is a potential for unacceptable human health risks associated with exposure to the site. Additionally, if the cumulative HI by target organ and effect is greater than the MDE target HI of 1 or the cumulative carcinogenic risk is greater than the MDE target carcinogenic risk of 1×10^{-5} , the constituents contributing to these values are considered MDE COPCs and there is a potential for unacceptable human health risks associated with exposure to the site based on MDE target risk levels. Constituents were considered USEPA COPCs when the HI by target organ and effect was greater than the USEPA target HI of 1 or the cumulative carcinogenic risk was greater than the upper end of USEPA target carcinogenic risk range of 1×10^{-6} .

Step 3 was only performed for media with COPCs from Step 2 having ten or more samples. Ten or more samples are needed to perform the statistical calculations necessary to estimate the Step 3 exposure concentration. The most current version of the ProUCL software program (USEPA, 2016) was used to test the data distribution and calculate 95 percent UCL exposure point concentrations (EPCs) used for the Step 3 risk-ratio calculations. In cases where the recommended UCL exceeded the maximum detected concentration, the maximum concentration was used as the EPC. Step 3 of the risk screening evaluation was not performed for Site 4 groundwater because only five samples were available and a 95% UCL could not be calculated.

3.4.6 Comparison to Background

COPCs identified after Step 3 of the three-step risk ratio screening process were compared to background concentrations. Soil data were compared to site-specific background threshold values (BTVs; 95% Upper Tolerance Limits [UTLs] with 95% coverage) for surface soil and subsurface soil metals concentrations (Tetra Tech, 2015) and groundwater data were compared to the site-specific BTVs (95% UTLs with 95% coverage) for metals and SVOCs (CH2M, 2017).

3.4.7 General Uncertainties Associated with Human Health Risk Screening Evaluation

The uncertainty associated with the data analysis is minimal, as the data have been fully validated prior to use in the risk assessment.

The uncertainty related to the selection of COPCs has been addressed by using conservative assumptions when applicable. The general assumptions used in the COPC selection process were conservative to ensure that actual COPCs were not eliminated from the quantitative risk assessment and that the highest possible risk was estimated. RSLs based on residential assumptions were used to select the COPCs for all of the scenarios, including non-residential scenarios.

To conservatively evaluate unrestricted land use, it was assumed that the sites may be used for residential purposes in the future; however, this is not a likely scenario. It is also not likely that shallow groundwater from the sites and AOCs will be used as a future potable water supply.

3.5 Ecological Risk Assessment Approach

3.5.1 Introduction

This section summarizes the ecological risk assessment (ERA) component of the Base-wide ESI for the NRL-CBD. The Base-wide ESI was conducted in accordance with Navy policy for ERAs (CNO, 1999), with Navy guidance for implementing this ERA policy (NAVFAC, 2001), and with USEPA ERA Guidance for Superfund (USEPA, 1997).

The objectives of the ERA are to:

- Describe the environmental setting at the sites with an emphasis on ecological receptors
- Refine the ecological CSM for exposure pathways for ecological receptors
- Determine whether contaminants present in site media due to historical site operations could represent a potential risk to environmental receptors

Results of the ERA will be used to determine if further action or ecological evaluation is necessary.

An ERA was conducted in 2016 as part of the SI (CH2M, 2016). Six of the eight sites evaluated were retained for additional evaluation. Consequently, additional sampling was conducted at these 6 sites (Sites 3, 4, 5, 7, and 9 and AOC D) as part of this Base-wide ESI. This ERA was conducted with chemical analytical data collected during the SI conducted in October 2012 (CH2M, 2016) and with data collected to support this Base-wide ESI in 2018. The ERA focuses on the evaluation of chemical analytical data for surface soil because, as discussed in Section 3.5.2, this is the only medium to which potential ecological receptors are likely to have a significant exposure to chemicals at the sites.

The ecological risk assessment is comprised of the following sections:

- Section 3.5.2 Screening-level Problem Formulation provides an overview of the site activities, setting and habitats, further develops the CSM, and identifies receptor groups for screening in the Base-wide ESI.
- Section 3.5.3 Screening-level Assessment. establishes chemical exposure levels (ecological screening values [ESVs]) that are protective for the potential ecological receptors identified for screening. Identifies the analytical chemistry data evaluated in the ERA, data groupings, and exposure models used to estimate the potential exposure of ecological receptors to site-related chemicals.
- Section 3.5.4 Screening-level Risk Calculation compares estimated exposure concentrations with ESVs to
 derive screening-level risk estimates to identify COPCs. Evaluates the site-relatedness of chemicals, based on a
 comparison to background concentrations and discusses uncertainties associated with the risk calculation.

Results of the ERA screening are presented within each of the site-specific sections (Sections 4 through 9), with a final summary of the evaluation and recommendations presented in Section 10.

3.5.2 Screening-level Problem Formulation

The product of the screening-level problem formulation is the preliminary CSM. The purpose of the CSM is to describe how ecological receptors may be exposed to chemical constituents originating from sites. Development of the CSM requires identifying and describing major habitats and ecological receptors, media of potential concern, and potential contaminant sources. This information is used along with an understanding of how chemicals move through the environment (transport and exposure pathways) to build the CSM. Potentially complete exposure pathways and receptors are identified as part of the CSM.

3-10 AX0121191314WDC

Although the objective of the CSM is to discuss each potential exposure pathways to site receptors, the focus of the Base-wide ESI evaluation is on initially determining whether there are chemicals that are site-related that could represent a potential risk to ecological receptors. Accordingly, the CSM for the Base-wide ESI focuses on screening these chemicals against conservative ESVs that are protective to a wide range of potential ecological receptors, rather than focusing on specific species identified as representing complete exposure pathways in the CSM.

The screening-level problem formulation is organized into two sections. The Environmental Setting section presents information pertaining to the environmental setting and onsite habitats and biota being assessed. An overview of the facility, sites, and surrounding land use is described in Section 2. The Ecological Exposure Pathways and Receptors section expands upon the preliminary CSM presented in Section 2.4, discussing the pathways and routes by which ecological receptors could be exposed to chemicals.

3.5.2.1 Environmental Setting

The areas being evaluated in the Base-wide ESI are composed of two habitat types. Site 5 is composed of wooded habitat, while Sites 3, 4, 7, and 9 and AOC D are composed of primarily mowed mixed grass habitats that are bordered by wooded habitat on one or more sides. The wooded areas are covered by mostly mature upland trees with little scrub shrub understory. The trees in the wooded areas are primarily deciduous, with some scattered stands of evergreen trees.

Trees within Sites 3, 4, 9, and AOC D were removed as part of historical site activities. The seeded grasses at these Sites are regularly mowed as part of site maintenance activities. Site 7 encompasses the areas bordering the roadways, and habitats within these areas are also composed of mostly mowed mixed grass communities.

The wooded onsite habitats are expected to support a variety of both lower-trophic-level terrestrial invertebrate species (such as earthworms) and upper-trophic-level birds and mammals typical of eastern deciduous woodland habitats. The mowed mixed grass communities are also expected to support lower-trophic-level terrestrial invertebrates but are expected to support a more limited range of mostly urban-adapted wildlife species that typically use mowed lawn habitats, such as Eastern gray squirrels and American robin.

A literature-based search for federally listed endangered, threatened, or other species of special concern was conducted for Calvert County through the Chesapeake Bay Field Office of the United States Fish and Wildlife Service (USFWS, 2018). The Sensitive Joint Vetch (*Aeschynomene virginica*), which has a Federally Threatened status, was identified as potentially present in Calvert County. However, it is not known if this species is present on the facility. The Puritan Tiger Beetle (*Cicindela puritana*) and Northeastern Beach Tiger Beetle (*Cicindela dorsalis dorsalis*) were identified as a Federally Threatened species, but would be localized to the beach cliffs.

3.5.2.2 Ecological Exposure Pathways and Receptors

Based on the woodland and mowed mixed grass communities present at the areas being evaluated, there are potentially complete exposure pathways for lower-trophic-level terrestrial receptors (primarily terrestrial plants and soil invertebrate communities) and upper-trophic-level birds and mammals typical of eastern deciduous woodland and mowed lawn habitats. Potential exposure pathways for lower-trophic-level receptors primarily consist of direct exposure to chemicals in surface soil. Terrestrial plants also could be exposed to chemicals through roots during water and nutrient uptake. Upper-trophic-level receptors (birds and mammals) could be exposed to chemicals via the following potential exposure pathways:

- Incidental ingestion of chemicals from surface soil while foraging or grooming
- Ingestion of chemicals that have accumulated in prey
- Direct (dermal) contact with chemicals in surface soils
- Inhalation of gaseous chemicals or chemicals adhered to suspended particulate matter.

Lower-trophic-level species (such as plants and soil invertebrates) are likely to have their greatest exposure through direct contact with contaminated media. Terrestrial wildlife may be exposed to chemicals via the ingestion of chemicals from soil or food while foraging and the dermal absorption of chemicals from soil via direct

contact. The relative importance of these exposure routes depends in part on the chemical being evaluated. For chemicals having the potential to bioaccumulate, the greatest exposure to wildlife is likely to be from the ingestion of prey. For chemicals having a limited potential to bioaccumulate, the exposure of wildlife to chemicals is likely to be greatest through the direct ingestion of the contaminated media, such as soil. Consistent with the scope of an Base-wide ESI, the ERA evaluation will focus only on the initial screening of chemicals based on the direct exposure of lower-trophic-level receptors (terrestrial plants and soil invertebrates). This screening provides a conservative indication of whether there are chemicals in surface soil that could represent a potential for adverse effect and warrant further evaluation for their potential to represent an ecological risk.

3.5.3 Screening-level Assessment

This section discusses the approach for conducting the Base-wide ESI ERA. The result of the evaluation are presented by site. If this ERA indicates no unacceptable potential for adverse effect to ecological receptors, the screening process can be terminated. Chemicals indicating a potential for ecological risk are summarized at the end of the ERA and recommendations are made concerning the need for additional evaluation.

3.5.3.1 Screening-level Effects Evaluation

The purpose of the screening-level effects evaluation is to establish chemical exposure levels (screening values) that represent conservative thresholds for adverse ecological effects. Screening levels are developed to be protective of selected ecological receptors from direct exposure to chemicals in environmental media, which in this case is surface soils.

Media-specific screening values for soil are designed to identify chemical concentrations that are protective of terrestrial plant and soil invertebrate communities. Media-specific screening values for soil were preferentially based upon the lowest of plant and invertebrate USEPA Soil Screening Levels (ecological soil screening levels). When media-specific screening values were not available from this preferred source, other available alternate toxicological values from the scientific literature were used for screening. The selected surface soil screening values (and their reference source) are provided in **Table 1 of Appendix G**.

3.5.3.2 Screening-level Exposure Estimates

The screening-level exposure estimate summarizes the analytical data to be considered for use in the ERA, the data groupings, and the exposure models and input parameters that are used to estimate the potential exposure of ecological receptors to chemicals at each site.

3.5.3.3 Available Analytical Data and Data Groupings

The ERA focused on the evaluation of surface soil (0 to 0.5 foot bgs) for each of the evaluated sites. Subsurface soils and soils under paved surfaces were not evaluated in the ERA. Subsurface soils were not evaluated because the exposure of most ecological receptors is expected to be significantly less in deeper soils. Soils beneath paved surfaces were not evaluated because they are considered inaccessible to ecological receptors. All other surface soil data were grouped by site for evaluation. Samples used in the risk evaluation for each site are presented in **Table 2 of Appendix G**.

PAHs were evaluated based on summing the detected concentrations of high molecular weight (HMW) PAHs PAHs) and low molecular weight (LMW) PAHs PAHs), by sample. LMW PAHs were assumed to include 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene. HMW PAHs were assumed to include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene.

3.5.3.4 Exposure Estimation

The following guidelines were used in the Base-wide ESI to estimate the potential direct exposure of ecological receptors to chemicals in soils:

3-12 AX0121191314WDC

- For each data group, the maximum detected chemical concentrations in surface soil and a calculated EPC represented by an upper confidence limit of the mean (such as the 95% UCL) were used to conservatively estimate potential direct chemical exposures. The arithmetic mean was used instead of the 95% UCL when the 95% UCL could not be calculated or the 95% UCL was higher than the maximum detected concentration. EPCs were calculated using ProUCL V5.1 (USEPA, 2017).
- For chemicals not detected in any samples of a data grouping, the maximum method detection limit and an EPC represented by half of the maximum method detection limit were used to estimate the potential direct exposure.
- For samples with duplicate analyses, the higher of the two detected concentrations was used if both values
 were detects. In cases where one result was a detected concentration and the other a nondetect, the
 detected value was used for screening.

3.5.4 Screening-level Risk Calculation

The screening-level risk calculation is the final step of the ERA for the Base-wide ESI. In this step, maximum detected values (or maximum detection limits for nondetected analytes) and EPCs are compared to the corresponding screening values to derive screening risk estimates. For each site, the outcome of this step is a list of COPCs that warrant further consideration and a list of chemicals that can be eliminated from further consideration based on the conclusion that they are unlikely to adversely affect the ecological receptors of concern.

3.5.4.1 Selection of Chemicals of Potential Concern

COPCs were selected using the HQ method as well a weight-of-evidence (WOE) approach that considers the magnitude of the risks based on central tendency EPCs, toxicity information, frequency of detection, magnitude of exceedance, background (when available), and the distribution of detected concentrations. HQs were calculated by dividing the maximum detected chemical concentration in data grouping being evaluated by the corresponding screening value. Chemicals with HQs greater than or equal to 1.0 are considered to pose potential risk but are further evaluated using the WOE approach. HQs that are equal to or less than 1 indicate that risks are unlikely, enabling a conclusion of no unacceptable risk to be reached with a high level of confidence and negating the need for further evaluation of that chemical-pathway-receptor combination. In the Base-wide ESI ERA, detected chemicals without screening values were not retained as COPCs and are further discussed in the uncertainties.

In addition to comparing chemical concentrations to ESVs, the maximum detected concentrations of the inorganic chemicals detected in surface soil at each site were compared to background concentrations. The 95% UTL for inorganic constituents in Soil Groups 2 (Sites 4 and 5) and 3 (AOC D and Sites 3, 7, and 9) (Tetra Tech, 2015) were used for this comparison. The maximum concentration of inorganic constituents detected at a site was compared to a background 95% UTL to determine if chemicals are detected at concentrations exceeding background. Constituents that are not present at concentrations exceeding background 95% UTLs were considered to be present at naturally-occurring concentrations and were not recommended for further evaluation in the ERA process regardless of the estimated HQ.

The ERS results for the six sites are detailed in the ERA summary sections within each site-specific section.

3.5.4.2 Uncertainties

Uncertainties are present in all risk assessments because of the limitations in the available data and the need to make assumptions and extrapolations based on incomplete information. The following paragraphs summarize the primary uncertainties associated with this evaluation.

Data Available for Evaluation – Samples were in most cases collected from locations where the highest chemical concentrations would be expected to occur based on site observations or information available about historical site activities. In most cases, concentrations are expected to be much lower outside of the immediate and localized area of sampling. Based on the collected samples, however, only concentrations occurring within the areas where the highest concentrations are present were characterized. Based on the bias of collecting samples

from locations where chemicals are likely to be present at their highest concentration, risks are likely in most cases to be overestimated by this screening.

Non-detected Chemicals – The current assessment focused on the evaluation of detected chemicals. There is some uncertainty associated with the possible occurrence of non-detected chemicals in soils if the reporting limits of those chemicals also exceed the ESV. Although it cannot be determined definitively that such chemicals do not occur onsite, based on the general bias of samples to potential source areas, it is considered unlikely that chemicals potentially posing a risk to ecological receptors would not have been detected in soil.

Detected Chemicals Without ESVs – Chemicals without ESVs were not identified for additional focused evaluation. There is uncertainty associated with these chemicals as it cannot be determined definitively if they represent a potential risk to ecological receptors. However, risk is unlikely. Volatile compounds are expected to be transient in surface soils and are considered unlikely to represent a long-term exposure to ecological receptors, unless there is an ongoing source of the compound at the site. Furthermore, most of these compounds were detected in only one or two of the samples and the highly localized presence of these compounds is not likely to represent a risk to ecological receptor populations, which is the focus of an ERA. ESVs are not available for aluminum and iron.

Direct Exposure Screening – Lower trophic level receptors (plants and terrestrial invertebrates) were considered to have the highest level of exposure and were chosen for evaluation in this ERA. Birds and mammals were not evaluated for exposures through the food chain. For some analytes that are known to bioaccumulate, this may underestimate risk. However, all sites, except for Site 5, consist of mowed habitat and would only support limited bird and mammal receptors such as squirrels and American robin. Higher quality habitat is located nearby and would be more attractive.

3.6 Historical Records Review of Building 76

A historical records review of Building 76 and its surrounding area at NRL-CBD was performed to investigate the presence of solid waste and debris at the base of the hill near the building. A site visit and historical records search of available base documents were conducted in early 2019. The document review noted Building 76 historically supported multiple trade shops (carpentry, machine, plumbing, and electrical) and is currently used for storage. Based on observations during the site visit it was suggested that subsurface construction debris noted along the western hillside of Building 76 may be related to the timeframe when Building 76 was constructed. The Navy is evaluating this area to determine whether a new environmental restoration site should be created. The findings of the review and site visit are presented in **Appendix H**.

3-14 AX0121191314WDC

Site 3 – Landfill No. 1

4.1 Site Description

Site 3, also known as Landfill No. 1 or "Old Junk Row," is located on the western portion of NRL-CBD, south and adjacent to the main access road (**Figure 4-1**). According to the Initial Assessment Study (IAS), the site consisted of four to six 25-foot by 25-foot by 20-foot-deep excavation pits occupying 3,750 square feet (ft²) (NEESA, 1984). However, after landfilling operations ceased the site was used as open storage, during which time best management practices were followed and the potential for undocumented spills remained. A photograph from April 1958 shows the site during the time it was used as open storage. Based on use of the site as a storage area, the current site occupies an area of 81,411 ft². The site is relatively flat with an approximate elevation of 125 feet amsl. The area occupying the site is currently used as maintained office space consisting of three research buildings (Buildings 301, 307, and 314) and a parking lot.

Landfill No. 1 was operational from 1942 through 1950. As previously mentioned, the landfill consisted of four to six pits and accepted three types of waste: municipal waste such as household garbage and tree trimming refuse, shop wastes such as wooden boxes, cardboard cartons, oily rags, absorbent materials, empty oil cans, lubricant cans, and paint sludges, and non-toxic laboratory waste such as paper towels, cardboard boxes, and small quantities of waste solvents (NEESA, 1984). Once the landfill was filled with refuse to within 4 feet of ground surface, the remaining space was backfilled with excavated soil to ground surface (NEESA, 1984). After the landfill was closed, the area on top of the landfill was designated "Old Junk Row" and used as open storage for disabled heavy equipment, demolition debris, and out-of-service laboratory equipment used in radar, sonar, and optics research (NEESA, 1984). During a site visit while the IAS was being conducted, crusted and stained soils were observed in the area. In the late 1980s, research buildings were constructed at the site in association with development of the Fire Testing Area.

4.2 Investigation Summary

The Site 3 field activities were conducted in April and May 2018. The following sections describe the observations noted during test pitting activities and the soil and groundwater sampling details.

4.2.1 Test Pitting

Three new test pits were dug at Site 3 to further assess the presence or absence of waste material at the site (**Figure 4-1**). The complete test pit logs are provided in **Appendix A**. A summary of the results for each test pit is provided as follows:

- **Test Pit 3** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of silty sand to sandy silt. No waste materials or soil staining were found in this test pit.
- **Test Pit 4** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of silty sand to sandy silt. No waste materials or soil staining were found in this test pit.
- **Test Pit 5** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of silty sand. No waste materials or soil staining were found in this test pit.

4.2.2 Soil Sampling

Ten soil borings were advanced during the Base-wide ESI at Site 3 to further assess whether historical activities at the site contributed to the presence of contamination in soil (**Figure 4-1**). The soil borings were advanced to a depth of 10 feet bgs using a DPT rig. No signs of contamination (soil staining or odors) were observed in any of the soil borings. At each boring, surface soil samples were collected from 0 to 0.5 foot bgs and subsurface soil samples

were collected from 8 to 10 feet bgs. All 10 soil borings were analyzed for pesticides in the surface and subsurface intervals; while 5 of 10 borings were analyzed for SVOCs, PCBs, and metals in the surface and subsurface intervals.

4.2.3 Groundwater Sampling

One permanent monitoring well (CBD-S03-MW03) was newly installed during the Base-wide ESI at Site 3 (**Figure 4-1**). Groundwater samples from the newly installed monitoring well and two existing monitoring wells at Site 3 were collected during the Base-wide ESI and analyzed for VOCs, SVOCs, PCBs, pesticides, total and dissolved metals, and total and dissolved mercury.

4.3 Analytical Results

A summary of the constituents detected in surface soil, subsurface soil, and groundwater during the Base-wide ESI at Site 3 are presented in **Tables 4-1, 4-2**, and **4-3** respectively, and discussed as follows. The complete analytical results for both the SI and ESI data are presented in **Appendix E**.

4.3.1 Surface Soil Analytical Results

A total of 10 surface soil samples were collected at Site 3 during the 2018 Base-Wide ESI field activities. The results of the surface soil sampling are summarized as follows:

- **SVOCs** Fifteen SVOCs (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) were detected in surface soil. The majority of the SVOC detections was associated with the soil samples collected from two locations (CBD-S03-DP11 and CBD-S03-DP14).
- Pesticides and PCBs One pesticide (4,4'-DDE) was detected in surface soil at three locations (CBD-S03-DP06, CBD-S03-DP09, and CBD-S03-DP15). One PCB (Aroclor-1260) was detected in surface soil at five locations (CBD-S03-DP11, CBD-S03-DP12, CBD-S03-DP13, CBD-S03-DP14, and CBD-S03-DP15).
- Metals Twenty-two metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in surface soil. Detections of metals were found in all surface soil samples.

4.3.2 Subsurface Soil Analytical Results

A total of 10 subsurface soil samples were collected at Site 3 during the 2018 Base-wide ESI field activities. The results of the subsurface soil sampling are summarized as follows:

- **SVOCs** Twelve SVOCs (acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) were detected in subsurface soil. The SVOC detections were only present at one sample location (CBD-S03-DP12).
- Pesticides and PCBs One PCB (Aroclor-1260) was detected in subsurface soil at two locations (CBD-S03-DP14 and CBD-S03-DP15).
- Metals Twenty-one metals (aluminum, antimony, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in subsurface soil. Detections of metals were found in all subsurface soil samples.

4.3.3 Groundwater Analytical Results

Three groundwater samples were collected at Site 3 during the 2018 Base-wide ESI field activities. The results of the groundwater sampling are summarized as follows:

• **VOCs** – One VOC (toluene) was detected in CBD-S03-MW03.

4-2 AX0121191314WDC

- **SVOCs** Twelve SVOCs (2-methylnaphthalene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benze[g,h,i]perylene, benzo[k]fluoranthene, chrysene, fluoranthene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and pyrene) were detected in the groundwater samples. Monitoring well CBD-S03-MW03 had more SVOC detections than the other two monitoring wells at the site.
- **Pesticides and PCBs** No pesticides or PCBs were detected in the groundwater samples.
- Metals Twenty total metals (aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, thallium, vanadium, and zinc) and 20 dissolved metals (aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, sodium, thallium, vanadium, and zinc) were detected in the groundwater samples. In general, the magnitude of the dissolved metals concentrations did not decrease significantly when compared against their total metals counterparts.

4.4 Human Health Risk Screening

The HHRS for Site 3 was conducted in three steps using the risk-ratio technique (Navy, 2000) described in Section 3.4. Results were reported for the Navy, USEPA, and MDE target risk levels. Table 1 in **Appendix F** lists the samples that were included in the Site 3 HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.1**.

4.4.1.1 Surface Soil

The risk-based screening and risk-ratio evaluation for surface soil at Site 3 are provided in **Appendix F.1, Tables 2.1 through 2.1c**.

Step 1: Aroclor-1260, aluminum, arsenic, cobalt, iron, and thallium were identified as COPCs (**Appendix F.1, Table 2.1**).

Step 2: The cumulative cancer risk was calculated to be 4×10^{-5} ; this value does not exceed the 5×10^{-5} Navy risk-ratio screening benchmark or the upper limit of the USEPA target risk range (1×10^{-4}); however, it does exceed the MDE target risk level of 1×10^{-5} . Target organ HIs are 0.1 to 0.7; which is less than the USEPA and MDE cumulative target organ HI of 1. However, the dermal target organ HI of 0.7 is greater than the the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5. No constituents were identified as COPCs compared to the USEPA target risk levels; however, Aroclor-1260 and arsenic are COPCs based on the MDE target risk level and arsenic and thallium were retained as COPCs compared to Navy target levels (**Appendix F.1, Table 2.1a**).

Step 3 (for MDE and Navy target level only): Cumulative cancer risk of 2×10^{-5} was calculated; this value is greater than the MDE 1×10^{-5} target risk level. The cumulative target organ HIs are 0.2 and 0.4 which is less than than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5. and the USEPA and MDE cumulative target organ HI of 1. Constituents contributing to the cumulative cancer risk were identified as COPCs under MDE target risk levels and include Aroclor-1260 and arsenic. The ProUCL output file that includes the 95% UCLs used for Site 3 surface soil is included in **Appendix F.1**. Additionally, the maximum detected arsenic concentration exceeds the site-specific surface soil BTV. (**Appendix F.1**, **Table 2.1c**).

Of the constituents that were 100 percent nondetected, the maximum detection limit for PCBs (Aroclor-1221, Aroclor-1232, Aroclor-1242, Aroclor-1248, and Aroclor-1254) in surface soil slightly exceed their respective RSL (within 10 times the RSL). Because of the low level of exceedances, it is unlikely that if these PCBs are present in surface soil at concentrations below the detection limits they would contribute significantly to site risks. Screening criteria were not available for several constituents.

Exposure to surface soil at Site 3 would not be expected to result in unacceptable human health risks based on the Navy or USEPA target risk levels. However, based on the MDE target risk levels, exposure to surface soil may result in unacceptable human health risks associated with Aroclor-1260 and arsenic. The concentrations of Aroclor-1260 and arsenic detected in only one of the surface soil samples (CBD-S03-SS03-1012) exceed a

AX0121191314WDC 4-3

screening level based on a 1×10^{-5} carcinogenic risk. Therefore, the potential unacceptable risk is primarily associated with the concentration detected in sample CBD-S03-SS03-1012.

4.4.1.2 Subsurface Soil

The risk-based screening and risk-ratio evaluation for subsurface soil at Site 3 are provided in **Appendix F.1**, **Tables 2.2 and 2.2b**.

Step 1: Arsenic, chromium (hexavalent), cobalt, iron, manganese, and thallium were identified as COPCs (Appendix F.1, Table 2.2).

Step 2: The cumulative cancer risk was calculated to be 1×10^{-5} ; this value is less than the 5×10^{-5} Navy risk-ratio screening benchmark, less than the USEPA target risk level of 1×10^{-4} and does not exceed the MDE target risk level of 1×10^{-5} . Target organ HIs are 0.1 to 0.6; which is less than the USEPA and MDE cumulative target organ HI of 1. However, the dermal target organ HI of 0.6 is greater than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5. Arsenic and thallium were identified as COPCs for subsurface soil based on Navy target organ HI(**Appendix F1, Table 2.2a**).

Step 3 (for Navy target level only): The dermal target organ HI of 0.3 was calculated; this value is less than the Navy cumulative target organ HI risk ratio screening benchmark of 0.5. The ProUCL output file that includes the 95% UCLs used for Site 3 subsurface soil is included in **Appendix F.1**. Based on Step 3, arsenic and thallium were not identified as Navy COPCs since the cumulative target organ HI risk ratio is less than 0.5 (**Appendix F.1**, **Table 2.2b**).

Of the constituents that were 100 percent nondetected, none exceeded the screening criteria. However, screening criteria were not available for several constituents.

Exposure to subsurface soil at Site 3 would not be expected to result in any unacceptable human health risks.

4.4.1.3 Groundwater

The risk-based screening and risk-ratio evaluation for groundwater at Site 3 are provided in **Appendix F.1**, **Tables 2.3 and 2.3b**.

Step 1: Aluminum, arsenic, cadmium, chromium, cobalt, iron, manganese, and thallium were identified as COPCs (Appendix F.1, Table 2.3).

Step 2: The cumulative cancer risk was calculated to be 1×10^{-5} ; this value is less than the 5×10^{-5} Navy risk-ratio screening benchmark, less than the USEPA target risk level of 1×10^{-4} and does not exceed the MDE target risk level of 1×10^{-5} . The dermal, thyroid, respiratory, and gastrointestinal target organ HIs are greater than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but do not exceed the USEPA and MDE cumulative target organ HI of 1. Arsenic, cobalt, iron, and thallium were identified as COPCs based on exceedances of the Navy target organ HI risk ratio screening benchmark. Although arsenic, cobalt, iron and thallium were identified as COPCs when compared to the Navy target organ HI risk ratio, the maximum detected concentrations of these constituents were less than concentrations detected in unimpacted groundwater (**Appendix F.1, Table 2.3b**). No COPCs were identified based on comparisons to USEPA and MDE target risk levels.

Of the constituents that were 100 percent nondetected, the maximum detection limit for PCBs (Aroclor-1221, Aroclor-1232, Aroclor-1242, Aroclor-1248, Aroclor-1254, and Aroclor-1260) and one pesticide (aldrin) slightly exceed their respective RSL (within ten times the RSLs). Because of the low level of exceedances, it is unlikely that if they are present at concentrations below the detection limits they would contribute significantly to site risks. Screening criteria were not available for several constituents.

Exposure to groundwater at Site 3 would not be expected to result in any unacceptable site-related human health risks because the constituents identified as potential COPCs are present at concentrations that are consistent with concentrations in unimpacted groundwater.

4-4 AX0121191314WDC

4.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

Of the detected analytes, Aroclor-1260 was retained as a COPC (**Appendix G, Table 3**) and had an EPC-based HQ of 20. All other analytes either were not detected, had EPC-based HQs less than 1, were consistent with background, or were macronutrients. Consequently, exposure to surface soil at Site 3 may result in unacceptable ecological risk associated with Aroclor-1260 and further evaluation of risk or consideration of remediation is recommended.

4.6 Site Characterization

The potential for waste disposal at Site 3 was characterized through the installation of five test pits located across the site based on the results of the DGM survey performed in 2012. Based on the results of the test pitting activities conducted, no observations of waste were encountered in any of the test pits and no other indications of waste placement such as soil staining or elevated PID readings were noted.

The Base-wide SI and ESI soil and groundwater analytical data for Site 3 were evaluated for site characterization based on the human health and ecological risk screening results noted in Sections 4.4 and 4.5. Aroclor-1260 and arsenic were determined to be human health COPCs in surface soil, while Aroclor-1260 was also determined to be an ecological COPC in surface soil. **Figure 4-2** shows the analytical results of Aroclor-1260 and arsenic in surface soil at Site 3.

Aroclor-1260 concentrations are several orders of magnitude higher in eastern portion of the site when compared to the western portion of the site. The location with the maximum detection of Aroclor-1260 (5,500 μ g/kg) is located at CBD-S03-DP03 (**Figure 4-2**). Spatially, concentrations of Arclor-1260 drop off by one to two orders of magnitude with distance from the maximum detected location. However, concentrations to the north/northeast remain above the residential soil RSL (240 μ g/kg) while the area to the south/southwest has not been delineated. The maximum detected concentration of arsenic was also located at CBD-S03-DP03 and is an order of magnitude higher than arsenic levels at all other sample locations. This location appears to be a singular exceedance of the background concentration (6.4 mg/kg).

Groundwater at Site 3 has been characterized through the installation of monitoring wells and the collection representative groundwater samples. Groundwater elevation were observed between approximately 14 and 17 ft bgs with the overall groundwater flow to the southeast. No human health COPCs were identified through the risk screening.

4.7 Findings and Recommendations

4.7.1 Findings

Based on the results of the test pitting activities conducted, no observations of waste were encountered in any of the test pits and no other indications of waste placement such as soil staining or elevated PID readings were noted. SVOCs, PCBs, pesticides, and metals were detected in surface and subsurface soils at Site 3 during the Base-wide ESI. In addition, one VOC, SVOCs, and metals were detected in groundwater at Site 3. Based on the HHRS and ERS, the constituents presented in **Table 4-4** may present potentially unacceptable site-related risk and were retained as COPCs for Site 3.

AX0121191314WDC 4-5

Table 4-4. Human Health and Ecological Risk COPCs for Site 3

Madia	COPCs	
Media	Human Health	Ecological
Surface Soil	Aroclor-1260 ¹ and Arsenic ^{1.}	Aroclor-1260
Subsurface Soil	None	N/A
Groundwater	None	N/A

Note:

4.7.2 Recommendations

Site 3 is recommended for further evaluation based upon potentially unacceptable human health risks with Aroclor-1260 and arsenic in surface soil and ecological risks associated with Aroclor-1260 in surface soil.

4-6 AX0121191314WDC

^{1.} Only considered a COPC under MDE target risk levels.

Table 4-1. Site 3 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	NRL-CBD SS Eco		CBD-S03-DP06	CBD-S03-DP07	CBD-S03-DP08	CBD-S03-DP09	CBD-S03-DP10	CBD-S	03-DP11	CBD-S03-DP12
Sample ID		RSLs Residential Soil	CBD-S03-SS06-000H	CBD-S03-SS07-000H	CBD-S03-SS08-000H	CBD-S03-SS09-000H	CBD-S03-SS10-000H	CBD-S03-SS11-000H	CBD-S03-SS11P-000H	CBD-S03-SS12-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18
Chemical Name			0 17 007 10	0.7007.0	0 17 007 10	0.7007.0	0 17 007 10	0 17 007 10	1	0.70.7.0
Onomical Hamo										
Semivolatile Organic Compounds (UG/KG)										
Acenaphthene		360,000	NA	NA	NA	NA	NA	1.3 U	0.76 J	1.6 U
Acenaphthylene			NA	NA	NA	NA	NA	0.49 J	1.8 J	1.6 U
Anthracene		1,800,000	NA	NA	NA	NA	NA	5.1 U	2.6 J	6.5 U
Benzo(a)anthracene		1,100	NA	NA	NA	NA	NA	5.1 U	15	6.5 U
Benzo(a)pyrene		110	NA	NA	NA	NA	NA	4 J	20 J	2.9 J
Benzo(b)fluoranthene		1,100	NA	NA	NA	NA	NA	9.8 UJ	40 J	10 U
Benzo(g,h,i)perylene			NA	NA	NA	NA	NA	4.5 J	19 J	10 U
Benzo(k)fluoranthene		11,000	NA	NA	NA	NA	NA	5.1 U	13	6.5 U
Chrysene		110,000	NA	NA	NA	NA	NA	5.1 UJ	24 J	6.5 U
Dibenz(a,h)anthracene		110	NA	NA	NA NA	NA	NA	7.8 U	3.7 J	10 U
Fluoranthene		240,000	NA	NA	NA NA	NA	NA	5.1 UJ	29 J	6.6 U
Fluorene		240,000	NA	NA	NA	NA	NA	3.1 U	1.2 J	4 U
Indeno(1,2,3-cd)pyrene		1,100	NA	NA	NA NA	NA NA	NA	5 J	22 J	10 U
Phenanthrene			NA	NA NA	NA	NA	NA	7.8 U	14	6.6 J
Pyrene		180,000	NA	NA	NA	NA	NA	4.5 J	25 J	3.4 J
Pesticide/Polychlorinated Biphenyls (UG/KG)										
4,4'-DDE	100	2,000	2.73	0.13 U	0.134 R	7.94 J-	0.132 U	0.299 U	0.142 U	0.252 UJ
Aroclor-1260	160	240	NA	NA	NA	NA	NA	36 J	70 J	51 J
Total Matala (MC/I/C)										
Total Metals (MG/KG)		7 700	NIA.	NA.	NIA.	NIA.	NIA.	0.000	5.000	7,000
Aluminum		7,700	NA NA	NA NA	NA NA	NA NA	NA NA	6,800 0.15 J	5,200 0.13 J	7,000
Antimony	5 6.8	3.1 0.68	NA NA	NA NA	NA NA	NA NA	NA NA	3.2	2.5	0.13 J 2.9
Arsenic	110	1,500	NA NA		NA NA	NA NA		3.2	2.5	
Barium		1,500	NA NA	NA NA	NA NA	NA NA	NA NA	0.36 J	0.31 J	37 0.52 J
Beryllium Cadmium	2.5 32	7.1	NA NA	NA NA	NA NA	NA NA	NA NA	0.36 J 0.25 J	0.31 J	0.52 J
Calcium	 	7.1	NA NA	NA NA	NA NA	NA NA	NA NA	780,000	666,000	258
Chromium	10	0.3	NA NA	NA NA	NA NA	NA NA	NA NA	12	8.9	11
Cobalt	13	2.3	NA NA	NA NA	NA NA	NA NA	NA NA	2.4	1.8	3.5
Copper	70	310	NA NA	NA NA	NA NA	NA NA	NA NA	6.1	6.6	6.8
Iron		5,500	NA NA	NA NA	NA NA	NA NA	NA NA	9,800	7,600	9,800
Lead	120	400	NA	NA NA	NA NA	NA NA	NA NA	15	12	11
Magnesium			NA NA	NA NA	NA NA	NA NA	NA NA	797,000	625,000	735
Manganese	220	180	NA NA	NA NA	NA NA	NA NA	NA NA	97	83	110
Nickel	38	150	NA NA	8.1	6.1	8.7				
Potassium			NA NA	NA NA	NA	NA NA	NA NA	577,000	514,000	399
Selenium	0.52	39	NA NA	NA NA	NA	NA NA	NA NA	0.87	0.95	1.3
Silver	560	39	NA	NA NA	NA	NA	NA	0.18 U	0.15 U	0.11 J
Sodium			NA	NA NA	NA	NA	NA	215,000 J	379,000 J	12.9 U
Thallium	0.05	0.078	NA	NA	NA	NA	NA	0.2 J	0.16 J	0.24 J
Vanadium	60	39	NA	NA	NA	NA	NA	16	12	14
Zinc	120	2,300	NA	NA	NA	NA	NA	48	41	43

Notes:

Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs

(1019)
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519 ESVs are provided for Total LMW PAHs and Total HMW

PAHs

NA - Not analyzed

- J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower

R - Unreliable Result

- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 4-1. Site 3 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID			CBD-S03-DP06	CBD-S03-DP13	CBD-S03-DP14	CBD-S03-DP15
Sample ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S03-SS06-000H	CBD-S03-SS13-000H	CBD-S03-SS14-000H	CBD-S03-SS15-000H
	ESVs (1019)	(HQ=0.1) 0519				
Sample Date			04/03/18	04/03/18	04/04/18	04/03/18
Chemical Name						
Semivolatile Organic Compounds (UG/KG)						
Acenaphthene		360,000	NA	1.2 U	0.81 J	1.1 U
Acenaphthylene		360,000	NA NA	0.69 J	12	1.1 U
Anthracene		1,800,000	NA NA	5 U	13	4.6 U
Benzo(a)anthracene		1,100	NA NA	7.5 U	29	4.6 U
Benzo(a)pyrene		110	NA NA	7.5 J	41	4.6 U
Benzo(b)fluoranthene	 	1,100	NA NA	15	97	7.1 U
Benzo(g,h,i)perylene	 		NA NA	9.1 J	42	7.1 U
Benzo(k)fluoranthene	 	11,000	NA NA	8.9 U	30	4.6 U
Chrysene		110,000	NA	10 U	47	4.6 U
Dibenz(a,h)anthracene		110	NA NA	5.2 J	10 J	7.1 U
Fluoranthene		240,000	NA NA	6.7 U	52	4.6 U
Fluorene		240,000	NA	3.1 U	2.1 J	2.8 U
Indeno(1,2,3-cd)pyrene		1,100	NA NA	10 J	51	7.1 U
Phenanthrene			NA	7.7 U	13	7.1 U
Pyrene		180,000	NA	5.9 J	48	7.1 U
<u> - </u>		100,000		0.0 0		•
Pesticide/Polychlorinated Biphenyls (UG/KG)						
4,4'-DDE	100	2,000	2.73	0.146 U	0.131 UJ	13.5
Aroclor-1260	160	240	NA	1,200	1,600	350
Total Metals (MG/KG)						
Aluminum		7,700	NA	5,600	7,200	4,800
Antimony	5	3.1	NA	0.11 J	0.076 J	0.2 J
Arsenic	6.8	0.68	NA	3.3	2.5	3.8
Barium	110	1,500	NA	25	42	27
Beryllium	2.5	16	NA	0.37 J	0.57 J	0.24 J
Cadmium	32	7.1	NA	0.37	0.24 J	1.7
Calcium			NA	543	360	935
Chromium	10	0.3	NA	16	14	11
Cobalt	13	2.3	NA	1.8	3.9	1.9
Copper	70	310	NA	5.1	5.8	16
Iron		5,500	NA	10,000	9,800	9,200
Lead	120	400	NA	17	17	95
Magnesium			NA	789	662	607
Manganese	220	180	NA	81	130	100
Nickel	38	150	NA	5.1	8.8	7.4
Potassium			NA	958	344	414
Selenium	0.52	39	NA	0.75	1.1	0.76
Silver	560	39	NA	0.14 J	0.16 U	0.12 J
Sodium			NA	6.3 U	14.1 J+	22.4 J+
				0.47 1	0.19 J	0.12 J
Thallium	0.05	0.078	NA	0.17 J		
Thallium Vanadium	0.05 60 120	0.078 39 2.300	NA NA NA	16 29	13 43	13

Notes:

Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs

(1019)
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519 ESVs are provided for Total LMW PAHs and Total HMW

PAHs

- NA Not analyzed
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower

- R Unreliable Result
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be
- inaccurate MG/KG Milligrams per kilogram
- UG/KG Micrograms per kilogram

Table 4-2. Site 3 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID		CBD-S03-DP06	CBD-S03-DP07	CBD-S03-DP08	CBD-S03-DP09	CBD-S03-DP10	CBD-S03-DP11	CBD-S03-DP12	CBD-S03-DP13
Sample ID	RSLs Residential Soil	CBD-S03-SB06-0810	CBD-S03-SB07-0810	CBD-S03-SB08-0810	CBD-S03-SB09-0810	CBD-S03-SB10-0810	CBD-S03-SB11-0810	CBD-S03-SB12-0810	CBD-S03-SB13-0810
Sample Date	(HQ=0.1) 0519	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18	04/03/18
Chemical Name		0 1/00/10	0 1/00/10	0 11 001 10	0 1100110	3 35, 13	0 1/00/10	0 1,70 11 10	0 17007 10
Chemical Name									
Semivolatile Organic Compounds (UG/KG)									
Acenaphthene	360,000	NA	NA	NA	NA	NA	1.1 U	0.58 J	1.2 U
Anthracene	1,800,000	NA NA	NA NA	NA NA	NA NA	NA NA	4.3 U	1.7 J	4.8 U
Benzo(a)anthracene	1,100	NA	NA	NA	NA	NA	4.3 U	11	4.8 U
Benzo(a)pyrene	110	NA	NA	NA	NA	NA	4.3 U	14	4.8 U
Benzo(b)fluoranthene	1,100	NA	NA	NA	NA	NA	6.7 U	26	7.4 U
Benzo(g,h,i)perylene		NA	NA	NA	NA	NA	6.7 U	12	7.4 U
Chrysene	110,000	NA	NA	NA	NA	NA	4.3 U	16	4.8 U
Dibenz(a,h)anthracene	110	NA	NA	NA	NA	NA	6.7 U	3.2 J	7.4 U
Fluoranthene	240,000	NA	NA	NA	NA	NA	4.3 U	16	4.8 U
Indeno(1,2,3-cd)pyrene	1,100	NA	NA	NA	NA	NA	6.7 U	15	7.4 U
Phenanthrene		NA	NA	NA	NA	NA	6.7 U	8.6 J	7.4 U
Pyrene	180,000	NA	NA	NA	NA	NA	6.7 U	13	7.4 U
Besticide/Beharbleringtod Binkenade (UC/VC)									
Pesticide/Polychlorinated Biphenyls (UG/KG)	0.10	N1.0	N14	.	N. A.	N. A.	0.4.11	2.2.11	0.011
Aroclor-1260	240	NA	NA	NA	NA	NA	6.4 U	6.6 U	6.6 U
Total Metals (MG/KG)									
Aluminum	7,700	NA	NA	NA	NA	NA	2,000	4,100	2,100
Antimony	3.1	NA	NA	NA	NA	NA	0.14 U	0.11 J	0.1 J
Arsenic	0.68	NA	NA	NA	NA	NA	0.61	4.2	0.28
Barium	1,500	NA	NA	NA	NA	NA	5.4	7.3	3.5
Beryllium	16	NA	NA	NA	NA	NA	0.28 U	0.19 J	0.27 U
Calcium		NA	NA	NA	NA	NA	343	363	322
Chromium	0.3	NA	NA	NA	NA	NA	7.6	14	8.8
Cobalt	2.3	NA	NA	NA	NA	NA	0.54	0.72	0.28
Copper	310	NA	NA	NA	NA	NA	1.1	3.3	1.2
Iron	5,500	NA	NA	NA	NA	NA	1,800	7,300	1,900
Lead	400	NA	NA	NA	NA	NA	1.6	2.6	1.7
Magnesium		NA	NA	NA	NA	NA	435	655	437
Manganese	180	NA	NA	NA	NA	NA	3	6.5	2.5
Nickel	150	NA	NA	NA	NA	NA	0.87	1.2	0.59
Potassium		NA	NA	NA	NA	NA	300	417	307
Selenium	39	NA	NA	NA	NA	NA	0.3 J	0.5 J	0.27 U
Silver	39	NA	NA	NA	NA	NA	0.14 U	0.076 J	0.077 J
Sodium		NA	NA	NA	NA	NA	4.8 U	6.6 U	5.3 U
Thallium	0.078	NA	NA	NA	NA	NA	0.066 J	0.12 J	0.13 J
Vanadium	39	NA	NA	NA	NA	NA	3.2	10	3.6
Zinc #REF!	2,300	NA	NA	NA	NA	NA	6	9.9	3.3

#REF!

Notes:

Shading indicates detections
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed

J - Analyte present, value may or may not be accurate or

precise
J+ - Analyte present, value may be biased high, actual value

may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 4-2. Site 3 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	DOL D (1.15.11	CBD-S03-DP14	CBD-S0	03-DP15	
Sample ID	RSLs Residential Soil	CBD-S03-SB14-0810	CBD-S03-SB15-0810	CBD-S03-SB15P-0810	
Sample Date	(HQ=0.1) 0519	04/04/18	04/03/18	04/03/18	
•		04/04/10	04/03/10	04/03/10	
Chemical Name					
Semivolatile Organic Compounds (UG/KG)					
Acenaphthene	360,000	1.2 U	1.1 U	1.3 U	
Anthracene	1,800,000	5 U	4.4 U	5.4 U	
Benzo(a)anthracene	1,100	5 U	4.4 U	5.4 U	
Benzo(a)pyrene	110	5 U	4.4 U	5.4 U	
Benzo(b)fluoranthene	1,100	7.7 U	6.8 U	8.3 U	
Benzo(g,h,i)perylene		7.7 U	6.8 U	8.3 U	
Chrysene	110,000	5 U	4.4 U	5.4 U	
Dibenz(a,h)anthracene	110	7.7 U	6.8 U	8.3 U	
Fluoranthene	240,000	5 U	4.4 U	5.4 U	
Indeno(1,2,3-cd)pyrene	1,100	7.7 U	6.8 U	8.3 U	
Phenanthrene		7.7 U	6.8 U	8.3 U	
Pyrene	180,000	7.7 U	6.8 U	8.3 U	
Pesticide/Polychlorinated Biphenyls (UG/KG)					
Aroclor-1260	240	4.9 J	23 J	6.5 UJ	
Total Metals (MG/KG)					
Aluminum	7,700	2,200	3,500	4,300	
Antimony	3.1	0.099 J	0.17 U	0.17 U	
Arsenic	0.68	0.59	1.9 J	3.4 J	
Barium	1,500	3.1	4.8	6.7	
Beryllium	16	0.27 U	0.33 U	0.33 U	
Calcium		47.4	453	491	
Chromium	0.3	3.5	15	15	
Cobalt	2.3	0.24 J	0.32 J	0.55	
Copper	310	1.4	1.5	1.8	
Iron	5,500	2,300	4,900	6,200	
Lead	400	2.1	2.2	2.4	
Magnesium		180	521	579	
Manganese	180	3.9	2.3 J	6.9 J	
Nickel	150	0.62	0.65 J	1.2	
Potassium		217	401	424	
Selenium	39	0.27 U	0.33 U	0.34 J	
Silver	39	0.064 J	0.17 U	0.17 U	
Sodium		6 U	21 J+	18.3 J+	
Thallium	0.078	0.14 U	0.17 U	0.17 U	
Vanadium	39	5.1	6	8.5	
Zinc	2,300	2.6	6.8	6.4	

#REF!

Notes:

Shading indicates detections
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed

J - Analyte present, value may or may not be accurate or

J - Analyte present, value may or may not be accurate or precise
J+ - Analyte present, value may be biased high, actual value may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Page 2 of 2

Page	2	of	

Table 4-3. Site 3 Analytical Results – Detected Constituents in Groundwater

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID		CBD-S03-MW01	CBD-S03-MW02	CBD-S03-MW03
Sample ID	RSLs Tapwater	CBD-S03-GW01-0418	CBD-S03-GW02-0518	CBD-S03-GW03-0418
Sample Date	(HQ=0.1) 0519	04/25/18	05/03/18	04/25/18
Chemical Name				
Volatile Organic Compounds (UG/L)				
Toluene	110	0.4 U	0.4 U	1.34 J
Semivolatile Organic Compounds (UG/L)				
2-Methylnaphthalene	3.6	0.014 U	0.01 J	0.012 U
Benzo(a)anthracene	0.03	0.014 U	0.0059 J	0.026 J
Benzo(a)pyrene	0.025	0.014 U	0.013 U	0.015 J
Benzo(b)fluoranthene	0.25	0.014 U	0.013 U	0.03 J
Benzo(g,h,i)perylene Benzo(k)fluoranthene	2.5	0.014 U 0.014 U	0.013 U 0.013 U	0.019 J 0.037 J
Chrysene	25	0.014 U	0.0042 J	0.037 J
Fluoranthene	80	0.0052 J	0.0076 J	0.023 J
Indeno(1,2,3-cd)pyrene	0.25	0.023 U	0.021 U	0.022 J
Naphthalene	0.17	0.014 U	0.018 J	0.012 U
Phenanthrene Pyrene	 12	0.023 U 0.023 U	0.03 J 0.021 U	0.013 J 0.023 J
i yiche	12	0.020 0	0.021 0	0.020 0
Pesticide/Polychlorinated Biphenyls (UG/L)				
No Detections				
Total Matala (UC/L)				
Total Metals (UG/L) Aluminum	2,000	5,400	160	270
Arsenic	0.052	0.23 J	0.59	0.51
Barium	380	16	16	34
Beryllium	2.5	0.45 J	0.13 U	0.96
Cadmium	0.92	3.2	0.15 J	1
Calcium Chromium	0.035	6,000 3.4	50,900 0.63	9,420 0.15 U
Cobalt	0.033	1.8	0.49 J	6.8
Copper	80	1.5	0.29 U	0.07 J
Iron	1,400	770	260	7,700
Lead	15	2.4	0.13 U	0.1 J
Magnesium	 43	3,380 20	25,500 48	4,670 90
Manganese Nickel	39	5.7	3.2	21
Potassium		2,100	1,800	3,140
Selenium	10	1.1	0.5 U	0.5 U
Sodium		21,100	5,520	9,860
Thallium Vanadium	0.02 8.6	0.28 J 2.1	0.5 U 1.5	0.5 U 0.25 J
Zinc	600	31	3.1 J+	280
			5,,,,,	
Dissolved Metals (UG/L)				
Aluminum, Dissolved	2,000	53	9.9	240
Arsenic, Dissolved Barium, Dissolved	0.052 380	0.13 U 11	0.52 15	0.56
Beryllium, Dissolved	2.5	0.35 J	0.13 U	2.2
Cadmium, Dissolved	0.92	2.9	0.14 J	1.1
Calcium, Dissolved		6,050	49,400	9,960
Chromium, Dissolved	0.035	0.43 J	0.13 U	0.11 J
Cobalt, Dissolved Copper, Dissolved	0.6 80	1.5 1.3	0.41 J 0.51	6.9 1.3
Copper, Dissolved Iron, Dissolved	1,400	1.3	0.51	7,400
Lead, Dissolved	15	0.37 J	0.13 U	0.11 J
Magnesium, Dissolved		2,820	25,200	4,510
Manganese, Dissolved	43	14	44	88
Mercury, Dissolved	0.57	0.11 J	0.13 U	0.16 J
Nickel, Dissolved Potassium, Dissolved	39 	4.5 1,740	3.7 1,710	21 3,030
Sodium, Dissolved		20,200	5,370	9,600
Thallium, Dissolved	0.02	0.23 J	0.5 U	0.5 U
Vanadium, Dissolved	8.6	0.13 U	1.1	0.15 J
Zinc, Dissolved	600	26	3.1	280

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Tapwater
(HQ=0.1) 0519

NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise J+ - Analyte present, value may be biased high, actual

value may be lower

U - The material was analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be

inaccurate

UG/L - Micrograms per liter

Existing Monitoring Well Location

Imagery: Calvert County, MD - 2017

ESI Monitoring Well Location

ESI SS/SB Location for SVOCs, PCBs, Pesticides, and Metals

ESI SS/SB Location for Pesticides Only

SI SS/SB Location

ESI Test Pit Location

SI Test Pit Location

Site Boundary

Notes: SS = surface soil SB = soil boring

SVOCs = semivolatile organic compounds

PCBs = polychlorinated biphenyls ESI = Expanded Site Inspection

SI = Site Inspection

Figure 4-1 Site 3 Landfill No. 1 **Sample Locations**

Base-Wide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Ch2m:

Existing Monitoring Well Location

Imagery: Calvert County, MD - 2017

ESI Monitoring Well Location

ESI SS/SB Location for SVOCs, PCBs, Pesticides, and Metals

ESI SS/SB Location for Pesticides Only

Notes: SI SS/SB Location

SS = surface soil **ESI Test Pit Location** SB = soil boring

SVOCs = semivolatile organic compounds SI Test Pit Location PCBs = polychlorinated biphenyls

ESI = Expanded Site Inspection Site Boundary SI = Site Inspection

37.5 75 Feet

Human Health and Ecological Risk COPCs in Surface Soil Base-Wide Expanded Site

Site 3 Landfill No. 1

Inspection Report NRL-CBD

Chesapeake Beach, Maryland

Site 4 – Landfill No. 2

5.1 Site Description

Site 4, also known as Landfill No. 2, is located on the western portion of NRL-CBD and is located west and adjacent to Site 3 (**Figure 5-1**). Landfill No. 2 was operational from 1950 through 1958. The IAS presented a similar site description for Site 4 as that presented for Site 3 (that is, four to six pits that were 25 feet by 25 feet by 20 feet deep), with the exception that no open storage was conducted on the site after the landfill was closed. Based on ground disturbance observed in historical photographs dated March 1955 and April 1958, the site boundary encompasses an area of 21,637 ft². Currently, the site is a relatively flat, large, open mowed grassy area with an approximate elevation of 135 feet amsl. During a recent site visit several small depressions were observed on the ground surface within the area of Site 4.

5.2 Investigation Summary

The Site 4 Base-wide ESI field activities were conducted in April and May 2018. The following sections describe the observations noted during test pitting activities and the soil and groundwater sampling details.

5.2.1 Test Pitting

Five new test pits were dug at Site 4 to further assess the presence or absence of waste material at the site (**Figure 5-1**). The complete test pit logs are shown in **Appendix A**. A summary of the results for each test pit is provided as follows:

- Test Pit 6 The test pit was dug to a depth of 9.5 feet bgs. Fiberglass and corroded metal debris were encountered at 6.5 feet bgs and cans, bottles, and other litter items persisted deeper into the test pit. Soils encountered consisted of clayey sand to silty sand at 3 feet bgs and litter fragments were observed to be tied with silty sand throughout the test pit. A radiological object was encountered at 8.5 feet bgs and additional information is provided below and fully described in Appendix I.
- **Test Pit 7** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of clayey sand to silty sand at 4 feet bgs. No waste materials or soil staining were found in this test pit.
- **Test Pit 8** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of clayey sand to silty sand at 5 feet bgs. No waste materials or soil staining were found in this test pit.
- Test Pit 9 The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of silty sand with some cobbles. A few nails, glass shards, and a piece of rebar were encountered at the top 2 feet of the test pit. Otherwise, no waste materials or soil staining were found in the rest of the test pit.
- **Test Pit 10** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of silty sand. No waste materials or soil staining were found in this test pit.

Radiological Object - On April 3, 2018, a heavy metallic object was found in Test Pit 6 at Site 4. This metallic object was frisked with radiological instruments to determine its potential as a radiological source item. After characterization by the onsite radiological technician, the object was determined to be radioactive and subsequently double-bagged and taped for security. Field activities were temporarily suspended and NAVFAC Washington and NRL were notified of the discovery. The soil surrounding the item was frisked to evaluate whether the subsurface soil had been potentially exposed to radiological energy. No readings were noted, indicating that the radioactivity was limited to the item and not the surrounding subsurface soil. The radiological item was securely placed back at the bottom of the test pit and backfilled with the procedure noted above.

AX0121191314WDC 5-1

5.2.2 Soil Sampling

Ten soil borings were advanced during the Base-wide ESI at Site 4 to further assess whether historical activities at the site contributed to the presence of contamination in soil (**Figure 5-1**). The soil borings were advanced to a depth of 10 feet bgs using a DPT. Because of the discovery of the radiological object, proposed soil boring CBD-S04-DP12 was relocated adjacent to Test Pit 6. No signs of contamination (soil staining or odors) were observed in any of the soil borings. At each boring, surface soil samples were collected from 0 to 0.5 foot bgs and subsurface soil samples were collected from 8 to 10 feet bgs. All 10 soil borings were analyzed for pesticides in the surface and subsurface intervals; while 5 of 10 borings were analyzed for SVOCs, PCBs, and metals in the surface and subsurface intervals. In addition, hexavalent chromium was additionally analyzed in three soil borings (three surface and three subsurface soil samples).

5.2.3 Groundwater Sampling

Two permanent monitoring wells (CBD-S04-MW02 and CBD-S04-MW03) were newly installed during the Basewide ESI at Site 4. Groundwater samples from two newly installed monitoring wells and one existing monitoring well (CBD-S04-MW01) at Site 4 were collected during the Base-wide ESI and analyzed for VOCs, SVOCs, PCBs, pesticides, total and dissolved metals, total and dissolved mercury, and dissolved hexavalent chromium.

5.3 Analytical Results

A summary of the constituents detected in soil and groundwater during the Base-wide ESI at Site 4 are presented in **Tables 5-1, 5-2**, and **5-3** respectively, and discussed as follows. The complete analytical results for both the SI and ESI data are presented in **Appendix E**.

5.3.1 Surface Soil Analytical Results

A total of 10 surface soil samples were collected at Site 4 during the 2018 Base-wide ESI field activities. The results of the surface soil sampling are summarized as follows:

- **SVOCs** Fifteen SVOCs (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) were detected in surface soil. The majority of the SVOC detections was associated with the soil samples collected from four locations (CBD-S04-DP12, CBD-S04-DP14, CBD-S04-DP15, and CBD-S04-DP16).
- **Pesticides and PCBs** –One Pesticide (4,4'-DDE) was detected in surface soil at two locations (CBD-S04-DP10 and CBD-S04-DP14). No PCBs were detected in surface soil.
- Metals Twenty-four metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium (hexavalent), chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in surface soil. Detections of metals were found in all surface soil samples.

5.3.2 Subsurface Soil Analytical Results

A total of 10 subsurface soil samples were collected at Site 4 during the 2018 Base-wide ESI field activities. The results of the subsurface soil sampling are summarized as follows:

• **SVOCs** – Sixteen SVOCs (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and pyrene) were detected in subsurface soil. The detections were present at only one sample location (CBD-S04-DP16).

5-2 AX0121191314WDC

- **Pesticides and PCBs** Five pesticides (4,4'-DDD, 4,4'-DDE, 4-4'-DDT, alpha-chlordane, and dieldrin) were detected in subsurface soil at two locations (CBD-S04-DP12 and CBD-S04-DP16). One PCB (Aroclor-1260) was detected in subsurface soil only at one location (CBD-S04-DP16).
- **Metals** Twenty-four metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium (hexavalent), chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in subsurface soil. Detections of metals were found in all subsurface soil samples.

5.3.3 Groundwater Analytical Results

Three groundwater samples were collected at Site 4 during the 2018 Base-wide ESI field activities. The results of the groundwater sampling are summarized as follows:

- VOCs No VOCs were detected in the groundwater samples.
- **SVOCs** Seven SVOCs (2-methylnaphthalene, benzo[a]anthracene, benzo[k]fluoranthene, chrysene, fluoranthene, naphthalene, and phenanthrene) were detected in the groundwater samples.
- Pesticides and PCBs No pesticides or PCBs were detected in the groundwater samples.
- Metals Nineteen total metals (aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, thallium, vanadium, and zinc) and 19 dissolved metals (aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, magnesium, manganese, nickel, potassium, selenium, sodium, thallium, vanadium, and zinc) were detected in the groundwater samples. In general, the magnitude of the dissolved metals concentrations did not decrease significantly when compared against their total metals counterparts.

5.4 Human Health Risk Screening

The HHRS evaluation for Site 4 was conducted in three steps using the risk-ratio technique (Navy, 2000) described in detail in Section 3.4. Results were reported for the Navy, USEPA, and MDE target risk levels. Table 1 in **Appendix F** lists the samples that were included in the Site 4 HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.2**.

5.4.1.1 Surface Soil

The risk-based screening and risk-ratio evaluation for surface soil at Site 4 are provided in **Appendix F.2**, **Tables 2.1 through 2.1c**.

Step 1: Seven constituents were identified as COPCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, Aroclor-1260, aluminum, and arsenic (Appendix F.2, Table 2.1).

Step 2: The cumulative cancer risk was calculated as 5×10^{-5} ; this value does not exceed the Navy risk-ratio screening benchmark of 5×10^{-5} or the upper limit of the USEPA target risk range of 1×10^{-4} ; however, it does exceed the 1×10^{-5} MDE target risk level. The cumulative HI is 0.7; however, the cumulative target organ HIs range from 0.2 to 0.3. Although the cumulative HI exceeds an HI of 0.5, no target organ HIs exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 or the USEPA or MDE target HI of 1. No COPCs were identified compared to the Navy or USEPA target HI levels. However, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, Aroclor-1260, and arsenic are COPCs based on the MDE target risk level (Appendix F.2, Table 2.1a).

Step 3 (for MDE target level only): Cumulative cancer risk of 5×10^{-5} ; this value does not exceed the Navy risk-ratio screening benchmark of 5×10^{-5} or the upper limit of the USEPA target risk range of 1×10^{-4} ; however, it does exceed the MDE target risk level of 1×10^{-5} . Constituents contributing to the cumulative cancer risk were identified as COPCs under MDE target risk levels and include benzo(a)anthracene, benzo(a)pyrene,

AX0121191314WDC 5-3

benzo(b)fluoranthene, dibenz(a,h)anthracene, and arsenic (**Appendix F.2, Table 2.1b**). Additionally, the arsenic maximum detected concentration exceeds the site-specific surface soil BTV. (**Appendix F.2, Table 2.1c**). The contribution from Aroclor-1260 to the carcinogenic risk (9×10^{-7}) is minimal, and therefore Aroclor-1260 was not identified as a COPC based on cumulative carcinogenic risk. The ProUCL output file that includes the 95% UCLs used for Site 4 surface soil is included in **Appendix F.2**.

No screening criteria were available for carbazole and dimethyl phthalate. Therefore, potential risks could not be evaluated for these constituents.

Of the constituents that were 100 percent nondetected, none exceeded the RSL. However, screening criteria were not available for several constituents.

Exposure to surface soil at Site 4 would not be expected to result in unacceptable human health risks based on the Navy or USEPA target risk levels; however, based on the MDE target risk levels exposure to surface soil may result in unacceptable human health risks associated with PAHs and arsenic. The contribution from Aroclor-1260 to the carcinogenic risk (9×10^{-7}) is minimal, and therefore, Aroclor-1260 was not identified as a COPC based on cumulative carcinogenic risk. Aroclor-1260 was only detected in 4 of the 11 surface soil samples and only the maximum detected concentration (in sample CBD-S04-SS03-1012) exceeds the RSL. This is the same sample where the maximum concentrations of the PAHs were detected. All arsenic concentrations exceed the screening level based on a carcinogenic risk of 1×10^{-6} ; however, only 2 of the 11 locations (CBD-S04-SS13-000H and CBD-S04-SS15-000H) had detected concentrations exceeding a screening level based on carcinogenic risk of 1×10^{-5} . Location CBD-S04-SS13-000H is on the western side of the site, and location CBD-S04-SS15-000H is on the eastern side.

5.4.1.2 Subsurface Soil

The risk-based screening and risk-ratio evaluation for subsurface soil at Site 4 are provided in **Appendix F.2**, **Tables 2.2 through 2.2c**.

Step 1: Eleven constituents were identified as COPCs: benzo(a)pyrene, aluminum, arsenic, cadmium, hexavalent chromium, cobalt, copper, iron, lead, manganese and thallium (Appendix F.2, Table 2.2).

Step 2: The cumulative cancer risk was calculated as 2×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} and the USEPA target risk level but greater than the MDE target risk level. Benzo(a)pyrene, arsenic, and hexavalent chromium are identified as COPCs based on the MDE target risk level. The cumulative target organ HI for three organs (respiratory, thyroid, and gastrointestinal) exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but are less than the USEPA and MDE cumulative target organ target HI of 1. Hexavalent chromium, cobalt, copper, and iron are identified as COPCs based on the Navy benchmark value (**Appendix F.2, Table 2.2a**).

Step 3: Cumulative cancer risk of 1 × 10⁻⁵; this value is less than the Navy risk-ratio screening benchmark of 5 × 10⁻⁵ and the USEPA and MDE target risk levels. The cumulative target organ HI for three target organs (respiratory, thyroid, and gastrointestinal) exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but are less than the USEPA and MDE cumulative target organ target HI of 1. Hexavalent chromium and cobalt, are identified as COPCs based on the Navy benchmark value (**Appendix F.2, Table 2.2b**). The maximum detected concentrations of hexavalent chromium and cobalt exceed their respective site-specific subsurface soil BTV. (**Appendix F.1, Table 2.2c**). However, because hexavalent chromium and cobalt were not identified as COPCs based on MDE target level, they are not retained as COPCs for Site 4 subsurface soil. The ProUCL output file that includes the 95% UCLs used for Site 4 subsurface soil is included in **Appendix F.2**.

The maximum detected concentration of lead in the subsurface soil exceeds the screening level and background BTV. As discussed in Section 3.4, potential risks associated with exposure to lead are not evaluated in the same manner as the other COPCs; therefore, lead is not included in the Step 2 or 3 evaluations. Exposure to lead in subsurface soil by a potential future child resident was evaluated using the IEUBK model. The IEUBK model was run using the average lead subsurface soil concentration (70.7 mg/kg) and average (of the detected values, lead was detected in three of the five groundwater samples) lead groundwater concentration (6.85 μ g/L). The output

5-4 AX0121191314WDC

from the IEUBK model is provided in **Appendix F.2, Table 2.2d, Figure Lead.1**, and the RAGS D IEUBK Lead Worksheet identified as **Table Lead.1**. The predicted geometric mean blood lead level for a young child exposed to Site 4 subsurface soil and groundwater is $1.8 \,\mu\text{g/L}$ with $0.02 \,\text{percent}$ of the population potentially experiencing concentrations exceeding $10 \,\mu\text{g/L}$. This is less than the current blood lead goal as described in the 1994 Office of Solid Waste and Emergency Response (OSWER) directive (USEPA, 1994) of no more than 5 percent of children exceeding $10 \,\mu\text{g/dL}$ blood lead. Because the IEUBK model determined that exposure to lead in subsurface soil by a child resident, the most conservative potential receptor, would not result in a blood lead level exceeding the current blood lead goal, exposure to lead in subsurface soil by future industrial workers was not evaluated.

No screening criteria were available for dimethyl phthalate. Therefore, potential risks could not be evaluated for this constituent.

Of the constituents that were 100 percent nondetected, none exceeded the RSL. Screening criteria were not available for several constituents.

Exposure to subsurface soil at Site 4 would not be expected to result in any unacceptable site-related human health risks based on the MDE target risk levels.

5.4.1.3 Groundwater

The risk-based screening and risk-ratio evaluation for groundwater at Site 4 are provided in **Appendix F.2**. Total metals concentrations were used for the HHRS.

Step 1: Aluminum, arsenic, cadmium, chromium, cobalt, iron, manganese, and thallium were identified as COPCs (Appendix F.2, Table 2.3).

Step 2: Cumulative cancer risk of 2×10^{-4} ; this value is greater than the Navy, USEPA, and MDE risk-ratio screening benchmark levels of 5×10^{-5} , 1×10^{-4} , and 1×10^{-5} , respectively. The cumulative hazard index is 6. The dermal, thyroid and respiratory target organ HIs are greater than 1 which is greater than the Navy, USEPA, and MDE cumulative target organ HIs. The neurological target organ HI is 0.9 which is greater than the Navy target organ HI. Arsenic and chromium contribute to the cumulative cancer risk that exceeds Navy, USEPA, and MDE risk ratio screening levels. Arsenic, chromium, cobalt, and thallium contribute to target organ HIs above the Navy risk ratio screening benchmark of 0.5, and the USEPA and MDE target HI. Aluminum and manganese contribute to a target organ HI that only exceeds the Navy benchmark level.

The maximum detected concentrations of arsenic, chromium, cobalt, manganese, and thallium are below the site-specific BTV. Although the maximum detected concentration of aluminum is greater than it's site-specific BTV (Appendix F.2, Table 2.3b), aluminum was not identified as a COPC for Site 4 groundwater because the cumulative target organ HI is less than both the USEPA and MDE target level (Appendix F.2, Table 2.3a).

Step 3 was not performed because fewer than 10 samples were available for groundwater.

Of the constituents that were 100 percent nondetected, some of the VOCs, SVOCs, and PCBs exceeded their respective RSLs. However, the detection limits were generally within an order of magnitude of the screening levels, and it is unlikely that if these constituents are present in groundwater at concentrations less than the detection limits they would contribute significantly to site risks. Screening criteria were not available for several constituents.

Exposure to groundwater at Site 4 would not be expected to result in unacceptable human health risks based on the MDE target levels.

5.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

AX0121191314WDC 5-5

No surface soil COPCs were identified for Site 4 (**Appendix G, Table 4**). While HMW PAHs had an EPC-based HQ of 3, this was driven by one sample location (CBD-S04-DP03). Concentrations from other samples collected across the site were an order of magnitude lower. Therefore, HMW PAHs are not considered to pose a significant risk to ecological receptor populations on a sitewide basis. Additionally, habitat consists of mowed grass and more desirable habitat is located nearby.

All other analytes either were not detected, had EPC-based HQs less than 1, were consistent with background, or were macronutrients. Additionally, four detected analytes lacked screening values. As discussed in Section 3.4.6, these analytes were not identified as COPCs. Consequently, no unacceptable risk was identified, and no further ecological investigation or evaluation is recommended for surface soils at Site 4.

5.6 Site Characterization

The potential for waste disposal at Site 4 was characterized through the installation of 10 test pits located across the site based on the results of the DGM survey performed in 2012. Based on the results of the test pitting activities conducted, multiple observations of waste were encountered in test pits. Waste material was described as consisting of primarily glass, brick, and metal (wires, pipes and fencing) as well as a metallic radiological item. Overall waste was observed in the subsurface with starting depths ranging from 1 to 6.5 feet bgs and extending to depths of 8.5 feet bgs however the testpits were terminated before the full thickness of the waste could be confirmed. In two test pits (Test pits 5 and 9) waste was observed at a much shallower depth ranging from 0-2.5 feet bgs with the bottom of waste confirmed. The location of these two test pits on the periphery of the site boundary in conjunction with the location of the deeper waste placement within the interior of the site boundary indicates that the lateral extent maybe bounded to the north and south.

The Base-wide SI and ESI soil and groundwater analytical data for Site 4 were evaluated for site characterization based on the human health and ecological risk screening results noted in Sections 5.4 and 5.5. PAHs and arsenic were determined to be human health COPCs in surface soil. **Figure 5-2** shows the analytical results of PAHs and arsenic in surface soil at Site 4. PAH concentrations increase by several orders of magnitude from the western portion of the site to the eastern portion of the site. The maximum concentrations of PAHs were detected at CBD-S04-DP03 and the maximum concentration of arsenic was detected at CBD-S04-DP15. No COPCs were identified in the subsurface soil.

Groundwater at Site 4 has been characterized through the installation of monitoring wells and the collection representative groundwater samples. Groundwater elevations were observed between approximately 15 and 20 ft bgs with the overall groundwater flow to the south. No human health COPCs were identified through the risk screening.

5.7 Findings and Recommendations

5.7.1 Findings

Based on the results of the test pitting activities conducted, observations of waste were encountered in several testpits. Waste material was described as consisting of primarily glass, brick, and metal (wires, pipes and fencing) as well as a metallic radiological item. Overall waste was observed in the subsurface with starting depths ranging from 1 to 6.5 feet bgs and extending to depths of 8.5 feet bgs however the testpits were terminated before the full thickness of the waste could be confirmed.

SVOCs, a pesticide, and metals were detected during the ESI in surface soil at Site 4. SVOCs, pesticides, a PCB, and metals were detected during the ESI in subsurface soil at Site 4. In addition, SVOCs and metals were detected during the ESI in groundwater at Site 4. Based on the HHRS and ERA, the constituents presented in **Table 5-4** may present potentially unacceptable risk and were retained as COPCs for Site 4.

5-6 AX0121191314WDC

Table 5-4. Human Health and Ecological Risk COPCs for Site 4

B. A	COPCs		
Media	Human Health	Ecological	
Surface Soil	Benzo(a)anthracene ¹ , benzo(a)pyrene ¹ , benzo(b)fluoranthene ¹ , dibenz(a,h)anthracene ¹ , arsenic ¹	None	
Subsurface Soil	None	N/A	
Groundwater	None	N/A	

Note:

5.7.2 Recommendations

Site 4 is recommended for further evaluation based upon potential unacceptable human health risks associated with benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and arsenic in surface soil. Although there are unacceptable risks based on Navy target levels, no further evaluation is recommended for subsurface soil because there are no unacceptable risks when compared to USEPA or MDE target levels.

AX0121191314WDC 5-7

^{1.} Only considered a COPC under MDE target risk levels.

Table 5-1. Site 4 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	NDL CDD CC F	DOL - Desidential C. II	CBD-S04-DP07	CBD-S04-DP08	CBD-S04-DP09	CBD-S04-DP10	CBD-S04-DP11	CBD-S04-DP12	CBD-S	604-DP13
Sample ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S04-SS07-000H	CBD-S04-SS08-000H	CBD-S04-SS09-000H	CBD-S04-SS10-000H	CBD-S04-SS11-000H	CBD-S04-SS12-000H	CBD-S04-SS13-000H	CBD-S04-SS13P-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	04/05/18	04/05/18	04/04/18	04/04/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name			04700710	04700710	04/04/10	04/04/10	04/00/10	04/00/10	04/00/10	04/06/10
Onemical Name										
Semivolatile Organic Compounds (UG/KG)										
Acenaphthene		360,000	NA	NA	NA	NA	NA	1.1 U	1.2 U	1.2 U
Acenaphthylene			NA	NA	NA	NA	NA	1.6 J	1.2 U	1.2 U
Anthracene		1,800,000	NA	NA	NA	NA	NA	1.6 J	5.1 U	5 U
Benzo(a)anthracene	-	1,100	NA	NA	NA	NA	NA	8.2 J	5.1 U	5 U
Benzo(a)pyrene		110	NA	NA	NA	NA	NA	8 J	5.1 U	5 U
Benzo(b)fluoranthene		1,100	NA	NA	NA	NA	NA	15	7.8 U	7.7 U
Benzo(g,h,i)perylene			NA	NA	NA	NA	NA	5.3 J	7.8 U	7.7 U
Benzo(k)fluoranthene		11,000	NA	NA	NA	NA	NA	5.3 J	5.1 U	5 U
Chrysene		110,000	NA	NA	NA	NA	NA	11	5.1 U	5 U
Dibenz(a,h)anthracene	-	110	NA	NA	NA	NA	NA	7.2 U	7.8 U	7.7 U
Fluoranthene	-	240,000	NA	NA	NA	NA	NA	17	5.1 U	5 U
Fluorene	-	240,000	NA	NA	NA	NA	NA	2.9 U	3.1 U	3.1 U
Indeno(1,2,3-cd)pyrene		1,100	NA	NA	NA	NA	NA	6.7 J	7.8 U	7.7 U
Phenanthrene			NA	NA	NA	NA	NA	6.2 J	7.8 U	7.7 U
Pyrene		180,000	NA	NA	NA	NA	NA	14	7.8 U	7.7 U
Pesticide/Polychlorinated Biphenyls (UG/KG)										
4,4'-DDE	100	2,000	0.229 U	0.134 U	0.131 U	0.519	0.223 U	0.136 U	0.236 U	0.156 U
Total Metals (MG/KG)										
Aluminum	-	7,700	NA	NA	NA	NA	NA	8,500 J-	7,700 J	21,000 J
Antimony	5	3.1	NA	NA	NA	NA	NA	0.14 U	0.17 U	0.17 U
Arsenic	6.8	0.68	NA	NA	NA	NA	NA	5.8	1.9 J	7.7 J
Barium	110	1,500	NA	NA	NA	NA	NA	6.3	8.5 J	13 J
Beryllium	2.5	16	NA	NA	NA	NA	NA	0.23 J	0.31 J	0.8
Cadmium	32	7.1	NA	NA	NA	NA	NA	0.14 U	0.17 U	0.17 U
Calcium			NA	NA	NA	NA	NA	229	405 J	893 J
Chromium (hexavalent)	0.4	0.3	NA	NA	NA NA	NA	NA	0.11 J	NA NA	NA .
Chromium	10	0.3	NA NA	NA NA	NA NA	NA NA	NA NA	15	11 J	32 J
Cobalt	13	2.3	NA NA	NA NA	NA NA	NA NA	NA NA	0.55	0.68 J	1.2 J
Copper	70	310	NA NA	NA NA	NA NA	NA NA	NA NA	3.1	2.5 J	6.1 J
Iron		5,500	NA NA	NA NA	NA NA	NA NA	NA NA	22,000	12,000 J	37,000 J
Lead	120	400	NA NA	NA NA	NA NA	NA NA	NA NA	4.9 796	5 J	9.9 J 1,670 J
Magnesium			NA NA	NA NA	NA NA	NA NA	NA NA		621 J	
Manganese	220	180 2.3	NA NA	NA NA	NA NA	NA NA	NA NA	6.4	10	8.3
Mercury Nickel	0.05 38		NA NA	NA NA	NA NA	NA NA	NA NA	0.14 U 0.99	0.17 U 1.3 J	0.17 U 2.1 J
		150	NA NA	NA NA	NA NA	NA NA	NA NA	693	1.3 J 560 J	2.1 J 1,180 J
Potassium Selenium	0.52	39	NA NA	NA NA	NA NA	NA NA	NA NA	693 1.3 J-	0.48 J-	1,180 J 1.1 J-
Silver	0.52 560	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.14 U	0.48 J- 0.17 U	0.17 U
Sodium	200	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.14 U 8.5 U	7.2 U	18.9 J+
Thallium	0.05	0.078	NA NA	NA NA	NA NA	NA NA	NA NA	0.065 J	0.17 U	0.099 J
Vanadium	60	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.065 J 19	0.17 U	32 J
Zinc	120	2,300	NA NA	NA NA	NA NA	NA NA	NA NA	25	7.8 J	20 J
Notes:	120	2,000	INA INA	INA	INA	INA	INA	23	1.0 3	20 3

Notes:
Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs

(1019)
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519
ESVs are provided for Total LMW PAHs and Total HMW

PAHs

- NA Not analyzed
 J Analyte present, value may or may not be accurate or
- precise
 J- Analyte present, value may be biased low, actual value
- may be higher J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected UJ Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 5-1. Site 4 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID			CBD-S04-DP14	CBD-S04-DP15	CBD-S04-DP16
Sample ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S04-SS14-000H	CBD-S04-SS15-000H	CBD-S04-SS16-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	04/05/18	04/05/18	04/05/18
Chemical Name			04/00/10	0-1/00/10	04/00/10
Chemical Name					
Semivolatile Organic Compounds (UG/KG)					
Acenaphthene		360,000	0.85 J	3.9 J	0.58 J
Acenaphthylene			1.1 J	4.5 J	0.56 J
Anthracene		1,800,000	2.9 J	13	2.4 J
Benzo(a)anthracene		1,100	19	150 J	20
Benzo(a)pyrene		110	21	180 J	23
Benzo(b)fluoranthene		1,100	42	270 J	38
Benzo(g,h,i)perylene			17	130 J	21
Benzo(k)fluoranthene		11,000	14	94 J	13
Chrysene		110,000	28	170 J	25
Dibenz(a,h)anthracene		110	3.8 J	34 J	5.1 J
Fluoranthene		240,000	43	210 J	25
Fluorene		240,000	2.8 U	3.2 J	3.1 U
Indeno(1,2,3-cd)pyrene		1,100	20	160 J	24
Phenanthrene			14	49 J	12
Pyrene		180,000	36	190 J	20
Pesticide/Polychlorinated Biphenyls (UG/KG)					
4,4'-DDE	100	2,000	0.188 J	0.138 U	0.13 U
Total Metals (MG/KG)					
Aluminum		7,700	8,100 J-	6,400	7,100 J-
Antimony	5	3.1	0.14 U	0.084 J	0.29
Arsenic	6.8	0.68	2.7 J	8.3	3.5 J
Barium	110	1,500	27	14	85
Beryllium	2.5	16	0.47 J	0.29 J	0.64
Cadmium	32	7.1	0.14 U	0.14 U	0.32
Calcium			389	314	477
Chromium (hexavalent)	0.4	0.3	0.11 J	NA	0.05 J
Chromium	10	0.3	11	14	15
Cobalt	13	2.3	2.2	0.93	2.7
Copper	70	310	2.9	2.8	46
Iron		5,500	11,000	8,600	10,000
Lead	120	400	6	3.2	160
Magnesium			677	987	670
Manganese	220	180	61	14	84
Mercury	0.05	2.3	0.14 U	0.14 U	0.18 J
Nickel	38	150	3.9	2.1	11
Potassium	-		432	444	474
Selenium	0.52	39	1.2 J	1.2	1.1 J+
Silver	560	39	0.14 U	0.081 J	1.6
Sodium			10.4 U	6.7 U	9.8 U
Thallium	0.05	0.078	0.12 J	0.18 J	0.15 J
	0.05				
Vanadium Zinc	60 120	39 2,300	15 17 J	20 15	16 170 J

Notes:
Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs

(1019) Bolding idicates exceedance of RSLs Residential Soil (HQ=0.1) 0519 ESVs are provided for Total LMW PAHs and Total HMW

PAHs

- NA Not analyzed
 J Analyte present, value may or may not be accurate or
- precise
 J- Analyte present, value may be biased low, actual value may be higher J+ - Analyte present, value may be biased high, actual value
- may be lower
- U The material was analyzed for, but not detected UJ Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram

Page 2 of 2

Table 5-2. Site 4 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	RSLs Residential Soil	CBD-S04-DP07	CBD-S04-DP08	CBD-S04-DP09	CBD-S04-DP10	CBD-S04-DP11	CBD-S	604-DP12	CBD-S04-DP13	CBD-S04-DP14
Sample ID	(HQ=0.1) 0519	CBD-S04-SB07-0810	CBD-S04-SB08-0810	CBD-S04-SB09-0810	CBD-S04-SB10-0810	CBD-S04-SB11-0810	CBD-S04-SB12-0810	CBD-S04-SB12P-0810	CBD-S04-SB13-0810	CBD-S04-SB14-0810
Sample Date	(HQ=0.1) 0519	04/05/18	04/05/18	04/04/18	04/04/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name										
Semivolatile Organic Compounds (UG/KG)										
Acenaphthene	360,000	NA	NA	NA	NA	NA	1.1 U	1.1 U	1.1 U	1.2 U
Acenaphthylene		NA	NA	NA	NA	NA	1.1 U	1.1 U	1.1 U	1.2 U
Anthracene	1,800,000	NA	NA	NA	NA	NA	4.4 U	4.3 U	4.5 U	5 U
Benzo(a)anthracene	1,100	NA NA	NA NA	NA NA	NA	NA NA	4.4 U	4.3 U	4.5 U	5 U
Benzo(a)pyrene	110	NA NA	NA	NA NA	NA NA	NA NA	4.4 U	4.3 U	4.5 U	5 U
Benzo(b)fluoranthene	1,100	NA NA	NA NA	NA NA	NA NA	NA NA	6.7 U 6.7 U	6.6 U 6.6 U	6.9 U 6.9 U	7.6 U 7.6 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	11,000	NA NA	NA NA	NA NA	NA NA	NA NA	4.4 U	4.3 U	4.5 U	7.6 U
Chrysene	110,000	NA NA	NA NA	NA NA	NA NA	NA NA	4.4 U	4.3 U	4.5 U	5 U
Dibenz(a,h)anthracene	110	NA NA	NA NA	NA NA	NA NA	NA NA	6.7 U	6.6 U	6.9 U	7.6 U
Fluoranthene	240,000	NA NA	NA NA	NA NA	NA NA	NA NA	4.4 U	4.3 U	4.5 U	5 U
Fluorene	240,000	NA NA	NA NA	NA NA	NA NA	NA NA	2.7 U	2.6 U	2.7 U	3.1 U
Indeno(1,2,3-cd)pyrene	1,100	NA NA	NA NA	NA NA	NA NA	NA NA	6.7 U	6.6 U	6.9 U	7.6 U
Naphthalene	3,800	NA	NA	NA	NA	NA	2 U	4.2 U	2.1 U	2.3 U
Phenanthrene		NA	NA	NA	NA	NA	6.7 U	6.6 U	6.9 U	7.6 U
Pyrene	180,000	NA	NA	NA	NA	NA	6.7 U	6.6 U	6.9 U	7.6 U
Pesticide/Polychlorinated Biphenyls (UG/KG)										
4,4'-DDD	190	0.124 U	0.123 U	0.14 UJ	0.13 U	0.127 U	0.346 J	0.245 U	0.125 U	0.128 U
4,4'-DDE	2,000	0.124 U	0.123 U	0.14 UJ	0.13 U	0.127 U	0.512	0.245 U	0.125 U	0.128 U
4,4'-DDT	1,900	0.248 U	0.245 U	0.28 UJ	0.261 U	0.255 U	7.53 J	0.491 UJ	0.249 U	0.257 U
alpha-Chlordane	1,700	0.124 U	0.123 U	0.14 UJ	0.13 U	0.127 U	0.283 J	0.245 U	0.125 U	0.128 U
Aroclor-1260	240	NA 0.424 H	NA 0.402 H	NA 0.44 III	NA 0.42 H	NA 0.407.11	12 U	12 U	6.2 U	6.4 U
Dieldrin	34	0.124 U	0.123 U	0.14 UJ	0.13 U	0.127 U	6.29 J	0.245 UJ	0.125 U	0.128 U
Total Metals (MG/KG)										
Aluminum	7,700	NA	NA	NA	NA	NA	3,200	3,100	2,200 J-	2,900
Antimony	3.1	NA NA	NA NA	NA NA	NA NA	NA NA	0.23 J	0.18 J	0.054 J	0.078 J
Arsenic	0.68	NA NA	NA NA	NA	NA NA	NA NA	3.2	2.5	2.2	2 J
Barium	1,500	NA	NA	NA	NA	NA	12 J	5.7 J	6.9	5.3
Beryllium	16	NA	NA	NA	NA	NA	0.74	0.33 J	0.56	0.86
Cadmium	7.1	NA	NA	NA	NA	NA	0.48	0.18 U	0.32	0.14 U
Calcium		NA	NA	NA	NA	NA	31.3	19	22.7	40.8
Chromium (hexavalent)	0.3	NA	NA	NA	NA	NA	0.18 J	0.24 J	NA	0.1 J
Chromium	0.3	NA	NA	NA	NA	NA	8.6	6.7	7.4	10
Cobalt	2.3	NA	NA	NA	NA	NA	13 J	6.1 J	10	2.1
Copper	310	NA	NA	NA	NA	NA	3.2 J	1.9 J	2.4	1.7
Iron	5,500	NA	NA	NA	NA	NA	16,000 J	8,200 J	8,200	5,100
Lead	400	NA	NA	NA	NA	NA	1.5 J	0.9 J	1.3	2.3
Magnesium		NA	NA	NA	NA	NA	498	476	438	542
Manganese	180	NA	NA	NA	NA	NA	350 J	64 J	140	11
Mercury	2.3	NA	NA	NA	NA	NA	0.17 U	0.18 U	0.13 U	0.14 U
Nickel	150	NA NA	NA	NA	NA	NA	30 J	11 J	18	3.6
Potassium		NA NA	NA NA	NA NA	NA NA	NA NA	390	330	291	345
Selenium	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.59 J	0.47 J	0.83 J-	0.79 J
Silver	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.078 J	0.18 U	0.13 U	0.088 J
Sodium Thallium	0.078	NA NA	NA NA	NA NA	NA NA	NA NA	4.8 U 0.17 J	4.2 U 0.18 U	2.6 U 0.074 J	5.5 U 0.14 U
Vanadium	39						9.9	9.7		6.7
Vanadium Zinc	2,300	NA NA	NA NA	NA NA	NA NA	NA NA	9.9 23 J	9.7 12 J	12 21	18 J
#REF!	2,300	INA	INA	I INA	I INA	INA INA	23 J	IZ J	۷ ا	10 J

Notes:

Shading indicates detections
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed
J - Analyte present, value may or may not be accurate or

precise
J- - Analyte present, value may be biased low, actual value

may be higher
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be
inaccurate
MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 5-2. Site 4 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	DCI a Danidantial Call	CBD-S04-DP15	CBD-S04-DP16	
Sample ID	RSLs Residential Soil	CBD-S04-SB15-0810	CBD-S04-SB16-0810	
Sample Date	(HQ=0.1) 0519	04/05/18	04/05/18	
Chemical Name		0 17 007 10	0 1,00,10	
Chemical Name				
Semivolatile Organic Compounds (UG/KG)				
Acenaphthene	360,000	1.2 U	56	
Acenaphthylene		1.2 U	5 J	
Anthracene	1,800,000	4.8 U	170	
Benzo(a)anthracene	1,100	4.8 U	490	
Benzo(a)pyrene	110	4.8 U	470	
Benzo(b)fluoranthene	1,100	7.4 U	620	
Benzo(g,h,i)perylene		7.4 U	340	
Benzo(k)fluoranthene	11,000	4.8 U	230	
Chrysene	110,000	4.8 U	470	
Dibenz(a,h)anthracene	110	7.4 U	89	
Fluoranthene	240,000	4.8 U	850	
Fluorene	240,000	2.9 U	48	
Indeno(1,2,3-cd)pyrene	1,100	7.4 U	420	
Naphthalene	3,800	2.2 U	19	
Phenanthrene		7.4 U	630	
Pyrene	180,000	7.4 U	670	
Destinists (Debughtering 4 of Discharged (110/160)				
Pesticide/Polychlorinated Biphenyls (UG/KG)	400	0.424.11	0.13 U	
4,4'-DDD 4,4'-DDE	190 2,000	0.131 U 0.131 U	8.31	
4,4-DDT	1,900	0.131 U 0.262 U	0.31 0.26 U	
alpha-Chlordane	1,700	0.262 U 0.131 U	0.26 U 0.13 U	
Aroclor-1260	240	6.6 U	160	
Dieldrin	34	0.131 U	0.13 U	
Dicidiii		0.101 0	0.10 0	
Total Metals (MG/KG)				
Aluminum	7,700	2,700 J-	8,300 J-	
Antimony	3.1	0.14 U	0.79	
Arsenic	0.68	5.7	4.1	
Barium	1,500	5.7	150	
Beryllium	16	0.35 J	0.83	
Cadmium	7.1	0.14 U	15	
Calcium		305	3,700	
Chromium (hexavalent)	0.3	NA	0.31 J	
Chromium	0.3	11	33	
Cobalt	2.3	0.92	18	
Copper	310	2.2	480	
Iron	5,500	6,600	46,000	
Lead	400	1.5	690	
Magnesium		661	1,420	
Manganese	180	2.3	570	
Mercury	2.3	0.14 U	1.2	
Nickel	150	1.8	48	
Potassium		319	303	
Selenium	39	0.37 J-	0.79 J-	
Silver	39	0.14 U	0.86	
Sodium		4 U	131	
Thallium	0.078	0.083 J	0.07 J	
Vanadium	39	7.9	12	
Zinc #REF!	2,300	19	2,000	

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed

- J Analyte present, value may or may not be accurate or
- precise
 J- Analyte present, value may be biased low, actual value may be higher
 U - The material was analyzed for, but not detected
 UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

EXCEED? YES YES

YES YES

Table 5-3. Site 4 Analytical Results – Detected Constituents in Groundwater

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID		CBD-S04-MW01	CBD-S0	04-MW02	CBD-S04-MW03
Sample ID	RSLs Tapwater	CBD-S04-GW01-0518	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-GW03-0518
Sample Date	(HQ=0.1) 0519	05/03/18	05/03/18	05/03/18	05/03/18
		03/03/16	03/03/16	03/03/18	03/03/18
Chemical Name					
Volatile Organic Compounds (UG/L)					
	-				
No Detections					
Semivolatile Organic Compounds (UG/L)					
2-Methylnaphthalene	3.6	0.014 U	0.0054 J	0.012 U	0.013 U
Benzo(a)anthracene	0.03	0.014 UJ	0.012 U	0.0032 J	0.013 U
Benzo(k)fluoranthene	2.5	0.021 J	0.012 U	0.012 U	0.013 U
Chrysene	25	0.004 J	0.0061 J	0.004 J	0.013 U
Fluoranthene	80	0.0062 J	0.0054 J	0.0045 J	0.013 U
Naphthalene	0.17	0.01 J	0.0075 J	0.0058 J	0.0077 J
Phenanthrene		0.023 U	0.014 J	0.012 J	0.021 U
·-		3.1.20	3.677	1.012 0	
Pesticide/Polychlorinated Biphenyls (UG/L)					
No Detections					
Total Metals (UG/L)					
Aluminum	2,000	13,000	30	31	44
Arsenic	0.052	1.5	0.13 U	0.13 U	0.21 J
Barium	380	41	34	34	40
Beryllium	2.5	0.79 J-	0.43 J	0.42 J	0.13 U
Cadmium	0.92	2.9	0.62	0.62	0.51
Calcium		4,250	8,780	8,770	22,300
Chromium	0.035	5.7	0.85	0.87	0.24 J
Cobalt	0.6	9.8	2.2	2.2	5
Copper	80	6.9	0.42 U	0.42 U	0.72
Iron	1,400	2,800	9 U	7.8 U	260
Lead	15	1.8 J-	0.13 U	0.13 U	0.13 U
Magnesium		3,560	2,570	2,560	10,400
Manganese	43	74	13	13	120
Nickel	39	13	7.9	8	8.8
Potassium		2,840	2,240	2,260	2,840
Sodium		5,490	7,910	7,890	13,000
Thallium	0.02	0.54 J	0.5 U	0.5 U	0.2 J
Vanadium	8.6	4.6	0.059 J	0.061 J	0.17 J
Zinc	600	120	25	25	23
Dissolved Metals (UG/L)	-				
Aluminum, Dissolved	2,000	100	21	19	35
Arsenic, Dissolved	0.052	1.1	0.13 U	0.13 U	0.2 J
Barium, Dissolved	380	1.1	33	32	37
Beryllium, Dissolved	2.5	0.35 J	0.56	0.5	0.14 J
Cadmium, Dissolved	0.92	1.1	0.63	0.61	0.14 3
Calcium, Dissolved	0.92	6,750	8,420	8,520	24,500
Chromium, Dissolved	0.035	0,730 0.13 U	0.83	0.84	0.12 J
Cobalt, Dissolved	0.033	5.9	2.2	2.2	5.9
Copper, Dissolved	80	0.13 U	0.89	1.3	0.13 U
Copper, Dissolved	I I δυ	U.13 U	0.89	1.3	U.13 U

Table 5-3. Site 4 Analytical Results – Detected Constituents in Groundwater

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	RSLs Tapwater	CBD-S04-MW01	CBD-S0	CBD-S04-MW03	
Sample ID	(HQ=0.1) 0519	CBD-S04-GW01-0518	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-GW03-0518
Sample Date	(1102-0.1) 0319	05/03/18	05/03/18	05/03/18	05/03/18
Chemical Name					
Iron, Dissolved	1,400	960	5 U	4.8 J	190
Magnesium, Dissolved		3,360	2,450	2,420	8,120
Manganese, Dissolved	43	61	13	14	100
Nickel, Dissolved	39	8.6	8.1	9.5	9.9
Potassium, Dissolved		1,870	2,110	2,120	2,790
Selenium, Dissolved	10	0.5 U	0.29 J	0.4 J	0.72 J
Sodium, Dissolved		6,690	7,640	7,660	15,200
Thallium, Dissolved	0.02	0.22 J	0.5 U	0.5 U	0.37 J
Vanadium, Dissolved	8.6	0.12 J	0.053 J	0.13 U	0.081 J
Zinc, Dissolved	600	42	26	26	31

#REF!

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Tapwater (HQ=0.1) 0519

NA - Not analyzed

- J Analyte present, value may or may not be accurate or precise
- J- Analyte present, value may be biased low, actual value may be higher
- R Unreliable Result
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate

UG/L - Micrograms per liter

Imagery: Calvert County, MD - 2017 1 inch = 30 feet

SI SS Location (for DP06)

ESI Test Pit Location

Site 5 – Landfill No. 3

6.1 Site Description

Site 5, also known as Landfill No. 3 or "New Junk Row," is located on the western portion of NRL-CBD (**Figure 6-1**). Landfill No. 3 was operational from 1958 through 1968. Similar to Sites 3 and 4, the IAS stated that the site consisted of four to six pits (25 feet by 25 feet by 20 feet deep) and occupied an area of 3,750 ft². However, an aerial photograph dated May 1964 shows ground disturbance in an area that is 56,114 ft² in size. In addition to the landfill pits, the IAS states that two burn pits were located onsite as well. After the land-filling operations were complete, the site was designated as "New Junk Row" and used for the open storage of assorted debris consisting of rusted laboratory equipment, heavy equipment, and missile packing crates. During a site visit conducted during the IAS, two empty drums with no labels were observed and areas where open burning took place were noted to have oil-stained soil patches and were devoid of grass cover (NEESA, 1984). Currently, the site is largely wooded with a grass clearing where the former access road used to be located and is relatively flat with an approximate maximum elevation of 155 feet amsl.

6.2 Investigation Summary

The Site 5 Base-wide ESI field activities were conducted in April and May 2018. The following sections describe the observations noted during test pitting activities and the soil and groundwater sampling details.

6.2.1 Test Pitting

Three new test pits were dug at Site 5 to further assess the presence or absence of waste material at the site (**Figure 6-1**). The complete test pit logs are provided in **Appendix A**. A summary of the results for each test pit is provided as follows:

- **Test Pit 7** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of clayey sand and silty sand. No waste materials or soil staining were found in this test pit.
- **Test Pit 8** The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of clayey sand to sandy clay at 4 feet bgs. No waste materials or soil staining were found in this test pit.
- Test Pit 9 The test pit was dug to a depth of 10 feet bgs. Soils encountered consisted of clayey sand to sand with some clay at 6 feet bgs. Scrap metal and wiring were encountered at 2 to 3 feet bgs. Additional wiring and degraded metal also were encountered at 9 to 10 ft bgs. Wastes encountered consisted primarily of a few individual items, and no clear layers of waste were determined. No signs of soil staining were found in this test pit.

6.2.2 Soil Sampling

Ten soil borings were advanced during the Base-wide ESI at Site 5 to further assess whether historical activities at the site contributed to the presence of contamination in soil (**Figure 6-1**). The soil borings were advanced to a depth of 10 feet bgs using a DPT rig. No signs of contamination (soil staining or odors) were observed in any of the soil borings. At each boring, surface soil samples were collected from 0 to 0.5 feet bgs and subsurface soil samples were collected from 8 to 10 feet bgs. All 10 soil borings were analyzed for pesticides in the surface and subsurface intervals; while five of ten borings were analyzed for SVOCs, PCBs, and metals in the surface and subsurface intervals. In addition, seven surface soil samples were additionally sampled across Site 5 and analyzed for SVOCs, pesticides, PCBs, and metals.

AX0121191314WDC 6-1

6.2.3 Groundwater Sampling

Three permanent monitoring wells (CBD-S05-MW01, CBD-S05-MW02, and CBD-S05-MW03) were newly installed during the Base-wide ESI at Site 5. Groundwater samples were analyzed for VOCs, SVOCs, PCBs, pesticides, total and dissolved metals, and total and dissolved mercury.

6.3 Analytical Results

A summary of the constituents detected in soil and groundwater during the Base-wide ESI at Site 5 are presented in **Tables 6-1, 6-2**, and **6-3** respectively, and discussed as follows. The complete analytical results for both the SI and ESI are presented in **Appendix E**.

6.3.1 Surface Soil Analytical Results

A total of 17 surface soil samples were collected at Site 5 during the 2018 Base-wide ESI field activities. The results of the surface soil sampling are summarized as follows.

- **SVOCs** Eighteen SVOCs (2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, di-n-butylphthalate, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and pyrene) were detected in surface soil. The SVOC detections were found in all surface soil samples except at location CBD-S05-DP14.
- Pesticides and PCBs —Four pesticides, (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and alpha-chlordane) were detected in surface soil samples at nine locations (CBD-S05-DP07, CBD-S05-DP09, CBD-S05-DP10, CBD-S05-DP11, CBD-S05-DP12, CBD-S05-DP13, CBD-S05-DP14, CBD-S05-SS21, and CBD-S05-SS23). No PCBs were detected in surface soil.
- **Metals** Twenty-three metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in surface soil. Detections of metals were found in all surface soil samples.

6.3.2 Subsurface Soil Analytical Results

A total of ten subsurface soil samples were collected at Site 5 during the 2018 Base-wide ESI field activities. The results of the subsurface soil sampling are summarized as follows.

- **SVOCs** Eleven SVOCs (benzo[a]anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, naphthalene, and phenanthrene) were detected in subsurface soil. The SVOC detections were only present at one sample location (CBD-SO5-DP15).
- **Pesticides and PCBs** Two pesticides (aldrin and endosulfan II) were detected in subsurface soil at CBD-S05-DP12 and CBD-S05-DP15, respectively. No PCBs were detected in subsurface soil.
- Metals Twenty metals (aluminum, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in subsurface soil. Detections of metals were found in all subsurface soil samples.

6.3.3 Groundwater Analytical Results

Three groundwater samples were collected at Site 5 during the 2018 Base-wide ESI field activities. The results of the groundwater sampling are summarized as follows.

VOCs – One VOC (carbon disulfide) was detected in CBD-S05-MW01 and CBD-S05-MW03.

6-2 AX0121191314WDC

- **SVOCs** Three SVOCs (benzo[a]anthracene, chrysene, and fluoranthene) were detected in the groundwater samples. Fluoranthene was detected in all three groundwater samples.
- Pesticides and PCBs No pesticides and PCBs were detected in the groundwater samples.
- Metals Nineteen total metals (aluminum, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, thallium, vanadium, and zinc) and 18 dissolved metals (aluminum, arsenic, barium, cadmium, calcium, chromium, cobalt, copper, iron, magnesium, manganese, mercury, nickel, potassium, selenium, sodium, vanadium, and zinc) were detected in the groundwater samples. In general, the magnitude of the dissolved metals concentrations did not decrease significantly when compared against their total metals counterparts.

6.4 Human Health Risk Screening

The HHRS for Site 5 was conducted in three steps using the risk-ratio technique (Navy, 2000) described in detail in Section 3.4. Results were reported for the Navy, USEPA, and MDE target risk levels. Table 1 in **Appendix F** lists the samples that were included in the Site 5 HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.3**.

6.4.1.1 Surface Soil

The risk-based screening and risk-ratio evaluation for surface soil at Site 5 are provided in **Appendix F.3**, **Tables 2.1 through 2.1c**.

Step 1: Twelve constituents were identified as COPCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, aluminum, arsenic, cobalt, iron, manganese, thallium, and vanadium (**Appendix F.3, Table 2.1**).

Step 2: Cumulative cancer risk of 1×10^{-4} ; this value is greater than the Navy risk-ratio screening benchmark of 5×10^{-5} and the MDE target risk level, and is equal to the upper end of the USEPA target risk range. Cumulative target organ HIs range from 0.2 to 1. One target organ HI (associated with hair) exceeds the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5; but does not exceed the MDE and USEPA cumulative target organ target HI of 1. Vanadium is identified as a COPC based on the Navy benchmark value. Constituents contributing to the cumulative cancer risk are identified as COPCs and include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and arsenic (**Appendix F.3, Table 2.1a**).

Step 3: Cumulative cancer risk of 7×10^{-5} ; this value is greater than the Navy risk-ratio screening benchmark of 5×10^{-5} and the MDE target risk level of 1×10^{-5} but is less than the USEPA 1×10^{-4} upper end of target risk range. Constituents contributing to the cumulative cancer risk are identified as COPCs and include: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene and arsenic. However, the maximum detected concentration of arsenic does not exceed the site-specific surface soil BTV (**Appendix F.3**, **Table 2.1c**). Cumulative target organ HIs are 0.1 - 0.2 which, are below the Navy, MDE, and USEPA target HI levels (**Appendix F.3**, **Table 2.1b**). The ProUCL output file for Site 5 surface soil is included in **Appendix F.3**.

No screening criteria were available for carbazole and dimethyl phthalate. Therefore, potential risks could not be evaluated for these constituents.

Of the constituents that were 100 percent nondetected, a few SVOCs exceeded their respective RSL, primarily in one sample. It is unlikely that if these SVOCs are present in surface soil at concentrations below the detection limits they would contribute significantly to site risk. Screening criteria were not available for several constituents.

Exposure to surface soil at Site 5 may result in unacceptable human health risks associated with PAHs and primarily associated with the concentrations detected in two surface soil samples (CBD-S05-SS03-1012 and CBD-S05-SS15-000H).

AX0121191314WDC 6-3

6.4.1.2 Subsurface Soil

The risk-based screening and risk-ratio evaluation for subsurface soil at Site 5 are provided in **Appendix F.3**, **Tables 2.2 through 2.2c**.

Step 1: Six constituents were identified as COPCs: aluminum, arsenic, cobalt, iron, manganese, and thallium.

Step 2: Cumulative cancer risk of 2×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} and the 1×10^{-4} upper end of the USEPA target risk range but exceeds the MDE target risk level of 1×10^{-5} . Based on the MDE target risk level arsenic is a COPC; the contribution from cobalt to the carcinogenic risk (3×10^{-7}) is minimal, and therefore, cobalt was not identified as a COPC based on cumulative carcinogenic risk. The target organ HIs range from 0.4 to 5. Four cumulative target organ HIs (dermal, thyroid, respiratory, and gastrointestinal) exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5, associated with arsenic, cobalt, iron, and thallium. Two target organ HIs (thyroid and respiratory) exceed the MDE and USEPA cumulative target organ target HI of 1 associated with cobalt.

Step 3: Cumulative cancer risk of 1×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , the USEPA target risk level of 1×10^{-4} , and does not exceed the MDE target risk level of 1×10^{-5} . Cumulative target organ HIs (thyroid, respiratory, and gastrointestinal) exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 associated with cobalt and iron. The only constituent contributing to a cumulative target organ HI greater than 1 (thyroid and respiratory) and identified as a COPC based on the USEPA and MDE cumulative target organ target HI is cobalt. Since iron was not identified as a COPC based on the MDE benchmark, iron is not retained as a COPC. The ProUCL output file for Site 5 subsurface soil is included in **Appendix F.3**.

The maximum detected concentrations of cobalt and iron exceed their respective site-specific subsurface soil BTV. This indicates that concentrations in soil in Site 5 subsurface soil are not consistent with concentrations in unimpacted site soils. (**Appendix F.3, Table 2.2c**).

No screening criteria were available for dimethyl phthalate. Therefore, potential risks could not be evaluated for this constituent.

Of the constituents that were 100 percent nondetected, a few VOCs and SVOCs exceeded their respective RSL. It is unlikely that if these VOCs or SVOCs are present in subsurface soil at concentrations less than the detection limits they would contribute significantly to site risk. Screening criteria were not available for several constituents.

Based on the results of the human health screening, exposure to subsurface soil at Site 5 may result in unacceptable human health risks associated with cobalt. The hazard associated with cobalt is associated with the concentration detected in one sample (CBD-S05-SB04-2022) collected from a depth of 20 to 22 feet bgs. It is unlikely human receptors would contact soil at this depth.

6.4.1.3 Groundwater

The risk-based screening and risk-ratio evaluation for groundwater at Site 5 are provided in **Appendix F.3**.

Step 1: Five constituents were identified as COPCs: arsenic, chromium, cobalt, manganese, and thallium (Appendix F.3, Table 2.1).

Step 2: Cumulative cancer risk of 1×10^{-5} ; this value is less than the Navy and USEPA risk-ratio screening benchmark levels of 5×10^{-5} , 1×10^{-4} , respectively. This cumulative risk does not exceed the MDE risk ratio screening benchmark of 1×10^{-5} . Cumulative target organ HIs of 1 exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 associated with arsenic, thallium, chromium, cobalt and iron. This HI value is greater than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but less than the MDE and USEPA cumulative target organ target HI of 1. However, the maximum detected concentrations of arsenic, cobalt and thallium s were less than the BTV (**Appendix F.3, Table 2.3b**). No site-specific COPCs were retained as Site 5 groundwater COPCs.

Step 3 was not performed because fewer than 10 samples were available for groundwater.

6-4 AX0121191314WDC

Of the constituents that were 100 percent nondetected, the detection limits for a few VOCs, SVOC, and pesticides exceeded the RSL. It is unlikely that if these VOCs, SVOCs, or pesticides are present in groundwater at concentrations less than the detection limits they would contribute significantly to site risk. Screening criteria were not available for several constituents.

Exposure to groundwater at Site 5 would not be expected to result in any unacceptable human health risks.

6.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

Of the detected analytes, HMW PAHs were retained as a COPCs (**Appendix G**, **Table 5**) and had an EPC-based HQ of 124. Consequently, HMW PAHs were identified as potentially posing unacceptable risk to ecological receptors at Site 5. While mercury had an EPC-based HQ of 2.7, only two of the seven detections had concentrations that substantially exceeded background; therefore, mercury was not identified as posing an unacceptable risk to ecological receptor populations on a sitewide basis.

All other analytes either were not detected, had EPC-based HQs less than one, were consistent with background, were macronutrients, or had a low frequency of detection. Additionally, five detected analytes lacked screening values. As discussed in Section 3.4.6, these analytes were not identified as COPCs.

Consequently, HMW PAHs were identified as potentially posing unacceptable risk and further evaluation of risk or consideration of remediation is recommended.

6.6 Site Characterization

The potential for waste disposal at Site 5 was characterized through the installation of test pits located across the site based on the results of the DGM survey performed in 2012. Based on the results of the test pitting activities conducted, waste placement is isolated to the area of Testpits 3, 4, and 9 which is in the area of the suspected disposal/burn pit identified in historical documents.

Figure 6-2 shows the analytical results of PAHs in surface soil at Site 5. **Figure 6-3** shows the sum of the high molecular weight (HMW) PAHs in surface soil at Site 5. The HMW PAHs include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene. PAHs were determined to be human health and ecological COPCs in surface soil. PAH concentrations increased by several orders of magnitude within the suspected disposal/burn pit compared with results from the rest of the site. Elevated PAH concentrations also were observed adjacent to the suspected disposal/burn pit. The maximum concentrations of PAHs were detected at CBD-S05-DP03, located in the center of the suspected disposal/burn pit.

6.7 Findings and Recommendations

6.7.1 Findings

SVOCs, pesticides, and metals were detected in surface and subsurface soils at Site 5. In addition, one VOC, SVOCs, and metals were detected in groundwater at Site 5. Based on the HHRS and ERA, the constituents presented in **Table 6-4** may present potentially unacceptable risk and were retained as COPCs for Site 5.

AX0121191314WDC 6-5

Table 6-4. Human Health and Ecological Risk COPCs for Site 5

NA o di o	COPCs							
Media Surface Soil	Human Health	Ecological						
	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene	HMW PAHs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene						
Subsurface Soil	Cobalt	N/A						
Groundwater	None	N/A						

6.7.2 Risk Considerations

6.7.2.1 Human Health

- While cobalt was retained as a COPC for subsurface soil, the following considerations should be made
 regarding further evaluation of cobalt: The hazard associated with cobalt is based on the concentration
 detected in one sample (CBD-S05-SB04-2022) collected from a depth of 20 to 22 feet bgs. It is unlikely human
 receptors would contact soil at this depth, so this single sample does not pose a likely exposure point to
 residential use.
- The non-cancer toxicity value (reference dose [RfD]) used to derive the RSL for cobalt is not a Tier 1 value (from the USEPA Integrated Risk Information System) but is a Tier 2 value. The Tier 2 value is from the Provisional Peer Reviewed Toxicity Values (PPRTVs) database. The PPRTV value was adjusted based on a second review of data in the PPRTV database in 2008 and decreased 2 orders of magnitude. The value is now derived using the highest level of modifying and uncertainty factors (3,000, when previously it had been 10). This value change implies there is very low confidence in the RfD (non-cancer toxicity value used to derive the RSL).

6.7.3 Recommendations

Site 5 is recommended for further evaluation based upon potential unacceptable human health and ecological risks associated with HMW PAHs in surface soil.

6-6 AX0121191314WDC

Table 6-1. Site 5 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID			CBD-S05-DP07	CBD-S05-DP08	CBD-S05-DP09	CBD-S05-DP10	CBD-S05-DP11	CBD-S05-DP12	CRD-S	05-DP13	CBD-S05-DP14	CBD-S05-DP15
Sample ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S05-SS07-000H	CBD-S05-SS08-000H	CBD-S05-SS09-000H	CBD-S05-SS10-000H	CBD-S05-SS11-000H	CBD-S05-DF12 CBD-S05-SS12-000H	CBD-S05-SS13-000H	CBD-S05-SS13P-000H	CBD-S05-SS14-000H	CBD-S05-SS15-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name			0.1100.10						2 11 22 11 2	1		
onomodi ramo												
Semivolatile Organic Compounds (UG/KG)												
2-Methylnaphthalene		24,000	NA	NA	NA	NA	NA	2.4 U	2.3 U	2.4 U	2.1 U	59 J-
Acenaphthene		360,000	NA	NA	NA	NA	NA	15	1.2 U	1.3 U	1.1 U	190 J-
Acenaphthylene			NA	NA	NA	NA	NA	2.7 J	1.6 J	1.3 U	1.1 U	15 J
Anthracene		1,800,000	NA NA	NA NA	NA NA	NA	NA NA	39	5 U	5.2 U	4.6 U	600 J
Benzo(a)anthracene		1,100	NA NA	NA NA	NA NA	NA NA	NA NA	340 330	9.4 J	5.2 U 5.2 U	4.6 U	1,600 1,600
Benzo(a)pyrene Benzo(b)fluoranthene		110 1,100	NA NA	NA NA	NA NA	NA NA	NA NA	450	10 J 21	8 U	4.6 U 7 U	2,300
Benzo(g,h,i)perylene		1,100	NA NA	NA NA	NA NA	NA NA	NA NA	230	8.6 J	8 U	7 U	890
Benzo(k)fluoranthene		11,000	NA NA	NA NA	NA NA	NA NA	NA NA	160	6.5 J	5.2 U	4.6 U	800 J
Chrysene		110,000	NA NA	NA NA	NA	NA	NA NA	320	13	5.2 U	4.6 U	1,700
Dibenz(a,h)anthracene		110	NA	NA	NA	NA	NA	56	7.7 U	8 U	7 U	270 J
Di-n-butylphthalate	200,000	630,000	NA	NA	NA	NA	NA	233 U	161 U	164 U	216 U	127 U
Fluoranthene		240,000	NA	NA	NA	NA	NA	430	15	5.2 U	4.6 U	3,300
Fluorene		240,000	NA	NA	NA	NA	NA	9.9 J	3.1 U	3.2 U	2.8 U	250 J-
Indeno(1,2,3-cd)pyrene		1,100	NA NA	NA	NA	NA	NA	260	10 J	8 U	7 U	1,300
Naphthalene		3,800	NA NA	NA NA	NA NA	NA NA	NA NA	2.4 U	2.3 U	2.4 U	2.1 U	150 J-
Phenanthrene Pyrene		180,000	NA NA	NA NA	NA NA	NA NA	NA NA	150 390	5.2 J 13	8 U 8 U	7 U 7 U	2,600 2,600
rylene		160,000	INA	INA	INA	INA	INA	390	13	8.0	7 0	2,000
Pesticide/Polychlorinated Biphenyls (UG/KG)												
4.4'-DDD	100	190	0.176 UJ	0.121 U	5.15 J-	4.16 J-	0.221 UJ	0.691	0.14 U	0.137 U	0.204 U	0.123 U
4,4'-DDE	100	2,000	0.431 J-	0.121 U	150	153	7.18 J-	0.154 U	1.12 J	2.72 J	0.204 U	0.123 U
4,4'-DDT	100	1,900	0.351 UJ	0.241 U	152	181	0.443 UJ	0.308 U	0.281 UJ	1.47 J	0.409 U	0.246 U
alpha-Chlordane	2.2	1,700	0.176 UJ	0.121 U	0.214 UJ	0.27 J	0.221 UJ	0.154 U	0.14 U	0.137 U	0.204 U	0.123 U
Total Metals (MG/KG) Aluminum		7,700	NA	NA	NA	NA	NA	9,200	8,700	9,000	3,300	4,300
Antimony		3.1	NA NA	NA NA	NA NA	NA NA	NA NA	9,200 0.18 U	0.16 U	0.16 U	0.14 U	0.056 J
Arsenic	6.8	0.68	NA NA	NA NA	NA NA	NA NA	NA NA	3.9	5.2	6	0.14 0	1.3
Barium	110	1,500	NA NA	32	12	13	8.5	15				
Beryllium	2.5	16	NA	NA	NA	NA	NA	0.63 J	0.27 J	0.24 J	0.21 J	0.4 J
Cadmium	32	7.1	NA	NA	NA	NA	NA	0.24 J	0.16 U	0.1 J	0.14 U	0.14 U
Calcium			NA	NA	NA	NA	NA	3,280	577	714	94	48.2
Chromium	10	0.3	NA	NA	NA	NA	NA	21	18	15	4.4	5
Cobalt	13	2.3	NA	NA	NA	NA	NA	3.2	1.3 J	0.95 J	1.4	1.6
Copper	70	310	NA NA	NA NA	NA NA	NA NA	NA NA	6.4	9.9	12	1.7	2.1 3,800
Iron	120	5,500	NA NA	NA NA	NA NA	NA NA	NA NA	18,000	16,000	13,000	4,000	
Lead Magnesium	120	400	NA NA	NA NA	NA NA	NA NA	NA NA	10 1,540	7.1 1,200	8.4 1,020	2.9	3.3 329
Manganese	220	180	NA NA	NA NA	NA NA	NA NA	NA NA	80	20 J	6.2 J	32	51
Mercury	0.05	2.3	NA NA	NA NA	NA NA	NA	NA NA	0.18 U	0.16 U	0.28 J	0.14 U	0.14 U
Nickel	38	150	NA	NA	NA	NA	NA	8.1	3.3	3.2	1.9	3.3
Potassium			NA	NA	NA	NA	NA	902	923	793	180	255
Selenium	0.52	39	NA	NA	NA	NA	NA	0.97	0.98	1.5	0.28 U	0.71
Silver	560	39	NA NA	NA	NA	NA	NA NA	0.15 J	0.13 J	0.35	0.081 J	0.11 J
Sodium Thallium	0.05	0.078	NA NA	NA NA	NA NA	NA NA	NA NA	16.3 J+	12.5 U	12 U	4.7 U	5 U
Vanadium	60	39	NA NA	NA NA	NA NA	NA NA	NA NA	0.18 J 19	0.16 J 15	0.12 <i>J</i>	0.14 U 6	0.077 J 6.5
Zinc	120	2,300	NA NA	NA NA	NA NA	NA NA	NA NA	45	33	26	7.3	11
Notes:				,								
Shading indicates detections Italics indicate exceedance of NRL-CBD SS Eco ESVs												
(1019) Bolding idicates exceedance of RSLs Residential Soil												
(HQ=0.1) 0519												
ESVs are provided for Total LMW PAHs and Total HMW												
PAHs												
NA - Not analyzed												

NA - Not analyzed
J - Analyte present, value may or may not be accurate or J - Analyte present, value may or may not be accurate or precise
J- - Analyte present, value may be biased low, actual value may be higher
J+ - Analyte present, value may be biased high, actual value may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram
UG/KG - Micrograms per kilogram

Table 6-1. Site 5 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	1		CBD-S05-DP16	CBD-S05-SS17	CPD St	05-SS18	CBD-S05-SS19	CBD-S05-SS20	CBD-S05-SS21	CBD-S05-SS22	CBD-S05-SS23
Sample ID	NRL-CBD SS Eco	RSLs Residential Soil		CBD-S05-SS17-000H	CBD-S05-SS18-000H	CBD-S05-SS18P-000H	CBD-S05-SS19-000H	CBD-S05-SS20-000H	CBD-S05-SS21-000H	CBD-S05-SS22-000H	CBD-S05-SS23-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	CBD-S05-SS16-000H 04/05/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18
<u> </u>			04/03/18	04/06/18	04/06/18	04/00/18	04/00/18	04/06/18	04/06/18	04/06/18	04/06/18
Chemical Name											
Semivolatile Organic Compounds (UG/KG)		04.000	0.4.11	0.011	0.5.11	0.011	0.011	0.011	44.11	0.011	2.4.11
2-Methylnaphthalene		24,000 360,000	2.4 U 15	2.9 U 1.5 U	2.5 U 4 J	2.3 U 1.2 U	2.2 U 0.95 J	2.9 U 1.8 J	14 U 37	2.9 U 6.6 J	2.4 U 8.3 J
Acenaphthene Acenaphthylene		360,000	0.83 J	1.5 U	4 J	2.2 J	0.95 J 2 J	2.3 J	14 J	1.8 J	0.3 J 1.7 J
Anthracene		1,800,000	31	1.5 U	3.7 J	3.3 J	3.2 J	9.5 J	100	21	1.7 3
Benzo(a)anthracene		1,100	81	26	14	12	20	92	560	160	89
Benzo(a)pyrene		110	74	18	20	17	26	94	630	200	99
Benzo(b)fluoranthene		1,100	97	50	44	37	43	140	870	280	140
Benzo(g,h,i)perylene			46	17	20	16	22	69	490	150	70
Benzo(k)fluoranthene		11,000	35	16	12 U	10 U	14	45	290	89	50
Chrysene		110,000	77	35	22	19	24	93	550	170	98
Dibenz(a,h)anthracene		110	13	4.8 J	4.6 J	3.5 J	4.9 J	19	130	39	20
Di-n-butylphthalate	200,000	630,000	237 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	129 J	216 U	187 U
Fluoranthene		240,000	150	38	20	19	31	110	790	210	150
Fluorene		240,000	12	12 J	5.1 J	3.3 J	1.7 J	5.1 J	46	15	9.7 J
Indeno(1,2,3-cd)pyrene		1,100	59	22	23	19	26	86	600	170	87
Naphthalene		3,800	4.3 U	2.9 U	2.5 U	2.3 U	2.2 U	2.9 U	21	3.8 U	2.4 U
Phenanthrene			130	13 J	9.9 J	8 J	12	32	390	89	86
Pyrene		180,000	120	29	19	18	27	98	680	190	130
Bestivite (Beharite et al Biolescote (HO/KO)											
Pesticide/Polychlorinated Biphenyls (UG/KG)	400	400	0.244.11	0.464.111	0.450.11	0.475 111	0.454.11	0.470.11	0.400.11	0.470 11	1.10
4,4'-DDD 4,4'-DDE	100	190 2,000	0.244 U 0.244 U	0.464 UJ 0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U 0.172 U	0.192 U 21.1	0.176 U 0.176 U	1.19 6.19
4,4'-DDE 4,4'-DDT	100 100	1,900	0.488 U	0.464 UJ 0.928 UJ	0.158 U 0.316 U	0.175 UJ 0.35 UJ	0.151 U 0.303 U	0.172 U 0.345 U	0.384 U	0.176 U 0.353 U	14.1
alpha-Chlordane	2.2	1,700	0.468 U 0.244 U	0.928 UJ	0.310 U	0.35 UJ	0.303 U 0.151 U	0.343 U 0.172 U	0.364 U 0.192 U	0.333 U 0.176 U	0.616
aipha chichano		1,100	0.211 0	0.101 00	0.100 0	0.110 00	0.101 0	0.112 0	0.102 0	0.110 0	0.010
Total Metals (MG/KG)											
Aluminum		7,700	14,000	8,400	15,000 J	7,000 J	4,300	6,200	7,000	4,300	13,000
Antimony	5	3.1	0.17 U	0.22 J	0.13 J	0.14 J	0.16 U	0.2 U	0.74	0.22 J	0.18 U
Arsenic	6.8	0.68	4.9	5.3	4.3	3.3	1.7	3.5	5.7	2.4	5.7
Barium	110	1,500	28	56	35	28	14	34	76	28	31
Beryllium	2.5	16	0.37 J	0.54 J	0.37 J	0.28 J	0.32 U	0.55 J	0.36 J	0.25 J	0.42 J
Cadmium	32	7.1	0.17 U	0.51 J	0.26 J	0.26 J	0.18 J	0.66	1.2	0.37 J	0.13 J
Calcium			2,310	4,490	1,460	1,520	580	2,640	6,300	2,680	1,020
Chromium	10	0.3	22	24	17	13	9.2	18	17	8.1	22
Cobalt	13	2.3	1.6	3.5	3.1	2.4	1.2	3.4	2.6	1.7	3.3
Copper	70	310 5,500	6.9	8.7	9.2 28,000 J	8.8 13,000 J	5.2 8,600	8.1	180	28 7,300	15 22,000
Iron	120		24,000	16,000	40	00	4.4	13,000	15,000 270	0.5	22,000
Lead Magnesium		400	12 1,010	2,350	40 1,150	910	14 406	14 1,520	1,460	25 846	1,530
Manganese	220	180	30	2,330	140	130	41	100	290	160	70
Mercury	0.05	2.3	0.17 U	0.34 U	0.13 J	0.11 J	0.16 U	0.2 U	0.35 J	0.19 U	0.18 U
Nickel	38	150	4	8.3	26	26	5.7	7.6	11	5.5	9.2
Potassium			791	1,620	708	565	297	917	1,220	625	924
Selenium	0.52	39	0.66 J	1.4	0.7 J	0.57 J	0.32 U	1.2	1	0.56 J	0.61 J
Silver	560	39	0.21 J	0.24 J	1	0.92	0.078 J	0.17 J	0.54	0.19 J	0.69
Sodium			13.1 J+	41.2 J+	19.3 J+	16 U	22.6 J+	14.8 U	24 J+	13.9 U	27.1 J+
Thallium	0.05	0.078	0.11 J	0.17 J	0.17 J	0.12 J	0.16 U	0.18 J	0.13 J	0.19 U	0.14 J
Vanadium	60	39	26	26	23	17	12	18	30	13	380
Zinc	120	2,300	18	69	45	38	29	81	280	59	39
Notes:				<u> </u>	<u> </u>						

Notes:
Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs
(1019)
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519
ESVs are provided for Total LMW PAHs and Total HMW
PAHs
NA - Not analyzed

NA - Not analyzed
J - Analyte present, value may or may not be accurate or

J - Analyte present, value may or may not be accurate or precise
J- - Analyte present, value may be biased low, actual value may be higher
J+ - Analyte present, value may be biased high, actual value may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram
UG/KG - Micrograms per kilogram

Table 6-2. Site 5 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Calculate Seat Public Calculate Seat Public Seat P	Station ID	RSLs Residential Soil	CBD-S05-DP07	CBD-S05-DP08	CBD-S05-DP09	CBD-S05-DP10	CBD-S05-DP11	CBD-S	05-DP12	CBD-S05-DP13
Sample Date - 040518	Sample ID		CBD-S05-SB07-0810	CBD-S05-SB08-0810	CBD-S05-SB09-0810	CBD-S05-SB10-0810	CBD-S05-SB11-0810	CBD-S05-SB12-0810	CBD-S05-SB12P-0810	CBD-S05-SB13-0810
Semiolatile Organic Compounds (UG/KG)	Sample Date	(HQ-0.1) 0519	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Semiolatile Organic Compounds (UG/KG)	<u> </u>									
Semontal printersorm										
Serazofi Nuceriates	Semivolatile Organic Compounds (UG/KG)									
Serozigh Serozigh	Benzo(a)anthracene	1,100	NA	NA	NA	NA	NA	5.6 U	5.8 U	5.3 U
Senzolf-Microamhone	Benzo(b)fluoranthene	1,100	NA	NA		NA	NA			
Chrysene	Benzo(g,h,i)perylene		NA	NA		NA				
Disearge 110										
Fluoranthene 240,000 NA										
Fluoren										
NA								5.6 U		5.3 U
Naphthalene	Fluorene									
Penantirene										
Pesticide/Polychlorinated Biphenyis (UG/KG)		3,800								2.4 U
Aldrin	Phenanthrene		NA	NA	NA	NA	NA	8.6 U	8.9 U	8.1 U
Aldrin										
Total Metals (MG/KG)	,									
Total Metals (MG/KG)	Aldrin									
Aluminum	Endosulfan II	47,000	0.221 U	0.215 U	0.252 UJ	0.234 U	0.136 U	0.272 U	0.26 U	0.243 U
Aluminum	Total Motals (MG/KG)									
Assenic 0.68 NA NA NA NA NA NA NA NA NA SJ 9.7 J 5.8 Barium 1,500 NA		7 700	NΑ	NA	NΑ	NA	NΑ	12 000	13 000	14 000
Barium										
Beryllium										
Calcium - NA NA NA NA NA NA 44.6 115 Chromium 0.3 NA NA NA NA NA NA NA 23 30 26 Cobalt 2.3 NA NA NA NA NA NA 0.6 0.77 1.1 Copper 310 NA NA NA NA NA NA NA 6.5 8.5 6.3 ron 310 NA NA NA NA NA NA NA 6.5 8.5 6.3 ron 400 NA NA NA NA NA NA NA 15,000 39,000										
Chromium 0.3 NA NA NA NA NA NA NA 23 30 26 Cobalt 2.3 NA NA NA NA NA NA NA 0.6 0.77 1.1 Copper 310 NA NA NA NA NA NA NA 0.6 0.77 1.1 Copper 310 NA NA NA NA NA NA NA 0.6 0.77 1.1 10 5,500 NA										
Cobalt 2.3 NA NA NA NA NA NA NA NA 0.6 0.77 1.1 Copper 310 NA										
Copper 310 NA NA NA NA NA NA NA NA 6.5 8.5 6.3 Iron 5,500 NA NA NA NA NA NA NA 15,000 29,000 30,000 29,000 30,000 29,000 30,000 29,000 30,000 20,000 30,000 20,000 30,000										
Solution Solution										
Lead 400 NA	Iron									
Magnesium NA NA NA NA NA NA NA 1,070 1,210 1,600 Manganese 180 NA		-						•	-	
Marganese 180 NA NA NA NA NA NA NA Set 4.4 6 Nickel 150 NA NA NA NA NA NA NA 1.1 1.2 1.7 Potassium NA NA NA NA NA NA NA NA 791 839 1,040 Selenium 39 NA NA NA NA NA NA NA 0.65 0.97 1.1 Sodium 39 NA NA NA NA NA NA NA 0.16 U 0.17 U 0.17 U Sodium NA NA NA NA NA NA 31.1 J+ 31 J+ 14.5 J+ Thallium 0.078 NA NA NA NA NA NA NA NA 0.092 J 0.092 J 0.14 J Vanadium 39 NA NA NA										
Nickel 150 NA NA NA NA NA NA NA NA 1.1 1.2 1.7 Potassium NA		180								
Potassium NA	Nickel	150	NA	NA	NA	NA		1.1	1.2	1.7
Selenium 39 NA NA NA NA NA NA NA NA NA 0.65 0.97 1.1 Silver 39 NA NA NA NA NA NA 0.16 U 0.17 U 0.17 U Sodium NA NA NA NA NA NA NA 31.1 J+ 31 J+ 14.5 J+ Thallium 0.078 NA NA NA NA NA NA NA 0.092 J 0.092 J 0.014 J Vanadium 39 NA NA NA NA NA NA NA 15 J 23 J 24	Potassium									
Silver 39 NA NA NA NA NA NA 0.17 U 0.17 U Sodium NA NA NA NA NA NA NA 31.1 J+ 31 J+ 14.5 J+ Thallium 0.078 NA NA NA NA NA NA 0.092 J 0.092 J 0.014 J Vanadium 39 NA NA NA NA NA NA NA 15 J 23 J 24	Selenium	39							0.97	
Sodium NA NA NA NA NA NA 31.1 J+ 31 J+ 14.5 J+ Thallium 0.078 NA NA NA NA NA NA 0.092 J 0.092 J 0.014 J Vanadium 39 NA NA NA NA NA NA 15 J 23 J 24	Silver		NA	NA		NA				
Thallium 0.078 NA NA NA NA NA NA O.092 J 0.092 J 0.092 J 0.14 J Vanadium 39 NA NA NA NA NA NA 15 J 23 J 24	Sodium		NA	NA		NA			31 J+	
Vanadium 39 NA NA NA NA NA 15 J 23 J 24	Thallium	0.078	NA	NA	NA	NA	NA	0.092 J	0.092 J	
	Vanadium		NA	NA	NA	NA	NA			24
	Zinc		NA	NA		NA	NA			

#REF!

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed

J - Analyte present, value may or may not be accurate or

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be

inaccurate MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 6-2. Site 5 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	BSI a Basidential Sail	CBD-S05-DP14	CBD-S05-DP15	CBD-S05-DP16
Sample ID	RSLs Residential Soil	CBD-S05-SB14-0810	CBD-S05-SB15-0810	CBD-S05-SB16-0810
Sample Date	(HQ=0.1) 0519	04/05/18	04/05/18	04/05/18
Chemical Name				
- Tronnour Humo				
Semivolatile Organic Compounds (UG/KG)				
Benzo(a)anthracene	1,100	4.8 U	2.1 J	5 U
Benzo(b)fluoranthene	1,100	7.3 U	4.5 J	7.7 U
Benzo(g,h,i)perylene		7.3 U	2.8 J	7.7 U
Benzo(k)fluoranthene	11,000	4.8 U	3.6 J	5 U
Chrysene	110,000	4.8 U	3.4 J	5 U
Dibenz(a,h)anthracene	110	7.3 U	3.4 J	7.7 U
Fluoranthene	240,000	4.8 U	4.2 J	5 U
Fluorene	240,000	2.9 U	1.1 J	3.1 U
Indeno(1,2,3-cd)pyrene	1,100	7.3 U	3.7 J	7.7 U
Naphthalene	3,800	2.2 U	0.89 J	2.3 U
Phenanthrene		7.3 U	8.4 J	7.7 U
Pesticide/Polychlorinated Biphenyls (UG/KG)				
Aldrin	39	0.237 U	0.224 U	0.148 U
Endosulfan II	47,000	0.237 U	0.268 J	0.148 U
Total Metals (MG/KG)				
Aluminum	7,700	11,000	15,000	9,100
Arsenic	0.68	6.4	6.3	13
Barium	1,500	49	19	8.3
Beryllium	16	0.37 J	0.44 J	0.25 J
Calcium		237	45.8	302
Chromium	0.3	16	24	18
Cobalt	2.3	1.5	1.6	1.2
Copper	310	3	6.7	5.3
Iron	5,500	12,000	22,000	46,000
Lead	400	8.3	9.1	5.9
Magnesium		2,100	1,920	1,080
Manganese	180	10	14	6.9
Nickel	150	2.8	2.7	1.8
Potassium		1,370	965	661
Selenium	39	1.3	0.99	0.86
Silver	39	0.069 J	0.15 U	0.15 U
Sodium		38.4 J+	43.6 J+	21.3 J+
Thallium	0.078	0.19 J	0.17 J	0.12 J
Vanadium	39	14	17	21
Zinc	2,300	21	17	13

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed
J - Analyte present, value may or may not be accurate or

J+ - Analyte present, value may be biased high, actual value may be lower

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

Table 6-3. Site 5 Analytical Results – Detected Constituents in Groundwater

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	DOL - 7 /	CBD-S05-MW01	CBD-S05-MW02	CBD-S05-MW03
Sample ID	RSLs Tapwater	CBD-S05-GW01-0418	CBD-S05-GW02-0418	CBD-S05-GW03-0418
Sample Date	(HQ=0.1) 0519	04/25/18	04/25/18	04/25/18
Chemical Name			3 3 2 3 3 3	
Chemical Name				
Volatile Organic Compounds (UG/L)				
Carbon disulfide	81	1.04	1 U	1.53
Carbon disdilide	01	1:04	1 0	1.55
Semivolatile Organic Compounds (UG/L)				
Benzo(a)anthracene	0.03	0.012 U	0.009 J	0.0046 J
Chrysene	25	0.012 U	0.0095 J	0.0065 J
Fluoranthene	80	0.0053 J	0.0085 J	0.0051 J
Pesticide/Polychlorinated Biphenyls (UG/L)				
No Detections				
Total Metals (UG/L)	0.000		100	
Aluminum	2,000	26 J+	430	35 J+
Arsenic	0.052	0.33 J	0.77	0.16 J
Barium	380	29	60	36
Beryllium Cadmium	2.5 0.92	0.13 U 0.5	0.15 J 0.79	0.13 U 0.81
Calcium	0.92	155,000	106,000	61,900
Chromium	0.035	0.3 U	1.1	0.52
Cobalt	0.65	1	4.9	6.5
Copper	80	0.13 U	0.82	0.33 J
Iron	1,400	83	480	48
Lead	15	0.13 U	0.42 J	0.13 U
Magnesium		2,730	5,060	7,780
Manganese	43	29	56	44
Nickel	39	4.4	8.8	21
Potassium		1,240	1,420	2,430
Sodium		5,740	6,680	5,730
Thallium	0.02	0.5 U	0.5 U	0.16 J
Vanadium	8.6	0.59	1.5	0.47 J
Zinc	600	3 J+	15	30
Dissolved Metals (UG/L)				
Aluminum, Dissolved	2,000	4.2 J+	38	11 J+
Arsenic, Dissolved	0.052	0.35 J	0.44 J	0.25 J
Barium, Dissolved	380	28	59	44
Cadmium, Dissolved	0.92	0.48 J	0.74	0.4 J
Calcium, Dissolved		149,000	117,000 0.2 J	74,200
Chromium, Dissolved	0.035	0.14 J		0.11 J
Cobalt, Dissolved	0.6	0.95 J	3.6	2
Copper, Dissolved Iron, Dissolved	80 1,400	0.49 U 53	0.28 U 72	1.2 30
Magnesium, Dissolved	1,400	2,600	4,380	5,800
Manganese, Dissolved	43	2,600	4,360 50	5,600
Mercury, Dissolved	0.57	0.13 U	0.13 U	0.09 J
Nickel, Dissolved	39	4.4	7.3	6.6
Potassium, Dissolved		1,180	1,310	2,520
Selenium, Dissolved	10	0.5 U	0.29 J	0.75 J
Sodium, Dissolved		5,550	6,110	5,390
Vanadium, Dissolved	8.6	0.52	0.76	0.34 J
Zinc, Dissolved	600	4.4	8.3	7.5

Notes:

Bolding idicates exceedance of RSLs Tapwater (HQ=0.1) 0519

NA - Not analyzed

- J Analyte present, value may or may not be accurate or
- precise
 J+ Analyte present, value may be biased high, actual value may be lower
 U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate UG/L - Micrograms per liter

Site 5 Landfill No. 3 Sample Locations ESI SS/SB Location for SVOCs, PCBs, Pesticides, and Metals Base-Wide Expanded Site ESI SS Location Only for SVOCs, PCBs, Pesticides, and Metals Inspection Report ESI SS/SB Location for Pesticides Only SI SS/SB Location (for DP01 - DP05) NRL-CBD Notes: SI SS Location (for DP06) Chesapeake Beach, Maryland SS = surface soil ESI Test Pit Location SB = soil boring 40 SI Test Pit Location SVOCs = semivolatile organic compounds Feet PCBs = polychlorinated biphenyls Ch2m: Suspected Disposal and/or Burn Pit ESI = Expanded Site Inspection 1 inch = 40 feetSite Boundary SI = Site Inspection

	3 4 3 1		sapeake_bay\wapFiles\base		PART OF SUREDON A SECOND	SECTION AND VALUE
Station ID	CBD-S05-SS20	Station ID	CBD-S05-SS21	Station ID CBD-S	805-DP05	
Sample ID	CBD-S05-SS20-000H	Sample ID	CBD-S05-SS21-000H	Sample ID CBD-S05	-SS05-1012	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Sample Date	04/06/18	Sample Date	04/06/18		/19/12	
Benzo(a)anthracene (UG/KG)	92	Benzo(a)anthracene (UG/KG)	560	Benzo(a)anthracene (UG/KG)	6.4 J	12 1 1 W 1 1
Benzo(a)pyrene (UG/KG)	94	Benzo(a)pyrene (UG/KG)	630	Benzo(a)pyrene (UG/KG)	250	100 Legis
Benzo(b)fluoranthene (UG/KG) Dibenz(a,h)anthracene (UG/KG)	140	Benzo(b)fluoranthene (UG/KG) Dibenz(a,h)anthracene (UG/KG)	870	Benzo(b)fluoranthene (UG/KG)	12 J	12 / NO. 15 (1)
Indeno(1,2,3-cd)pyrene (UG/KG)	19 86	Indeno(1,2,3-cd)pyrene (UG/KG)	130 600	Dibenz(a,h)anthracene (UG/KG) Indeno(1,2,3-cd)pyrene (UG/KG)	25 4.9 J	发展的
ilidello(1,2,3-cd)pyrelle (03/kg)	00	indeno(1,2,3-cd)pyrene (00/kg)	000	indeno(1,2,3-cd)pyrene (00/kg)	4.9 3	
Station ID	CBD-S05-SS19	A STOLET THE STOLET		() () () () ()	30 JAN 473	10 PA A 1 PA 1 PA
Sample ID	CBD-S05-SS19-000H				一个人的 一个人的	
Sample Date	04/06/18			A PROPERTY OF THE PARTY OF THE	ALL DESCRIPTION OF THE PERSON	120 111
Benzo(a)anthracene (UG/KG)	20			A STATE OF THE STA		
Benzo(a)pyrene (UG/KG)	26		A SECTION AND A		Marketon O Valley	
Benzo(b)fluoranthene (UG/KG)	43	Carl Col	1 3 X 1 X 1 X			STATE OF STREET
Dibenz(a,h)anthracene (UG/KG)	4.9 J					11 11 W 11 11 11
Indeno(1,2,3-cd)pyrene (UG/KG)	26		2、4个人员,从2016年		The second second	是#我是19
	1990 E D			[1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	STATE OF THE STATE	I WE TO A
	ACCOUNT OF THE PARTY OF			1 3 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contract to the second	
	2.51		11000 11	CED C	OF DDM	
Station ID	CBD-S05-DP13		100	CBU-S	05-DP11	第 4
Sample ID	CBD-S05-SS13-000H		MALE STREET	1157 10 1 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Station ID	CBD-S05-SS22
Sample Date	04/05/18	TO 100 100 100 100 100 100 100 100 100 10	11-11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample ID	CBD-S05-SS22-000H
Benzo(a)anthracene (UG/KG)	9.4 J	1000	A CONTRACTOR OF THE PARTY OF TH	TestPit5	Sample Date	04/06/18
Benzo(a)pyrene (UG/KG)	10 J	Washington Co.	1 - 10 57504	- Total State	Benzo(a)anthracene (UG/KG)	160
Benzo(b)fluoranthene (UG/KG)	21	The same of the sa	1 1 1 1 1 1 1 1 1	THE RESERVE	Benzo(a)pyrene (UG/KG)	200
Dibenz(a,h)anthracene (UG/KG)	7.7 U	IN REST	A CONTRACTOR OF THE PARTY OF TH	18 18 18 18 18	Benzo(b)fluoranthene (UG/KG	
Indeno(1,2,3-cd)pyrene (UG/KG)	10 J	10000	1000	Contract to the state of the st	Dibenz(a,h)anthracene (UG/KG	
Station ID	CBD-S05-DP04	A CONTRACTOR OF THE CONTRACTOR		111111111111111111111111111111111111111	Indeno(1,2,3-cd)pyrene (UG/K	
Sample ID	CBD-S05-SS04-1012		A STATE OF THE STA	CBD-S05-DP09		THE PARTY NAMED IN
Sample Date	10/19/12				Para Carlot Andrew	THE PARTY OF THE P
Benzo(a)anthracene (UG/KG)	4.8 J		Site	5		
Benzo(a)pyrene (UG/KG)	18	A THE RESERVE OF THE PARTY OF T	_	一	Station ID	CBD-S05-SO06
Benzo(b)fluoranthene (UG/KG)	6.6 J	NAMES OF THE PARTY	Test Pit 8		Sample ID	CBD-S05-SS06-1012
Dibenz(a,h)anthracene (UG/KG)	3.6 U	10 11	33333		Sample Date	10/19/12
Indeno(1,2,3-cd)pyrene (UG/KG)	3.6 U	The state of the s			Benzo(a)anthracene (UG/KG)	290
Station ID	CBD-S05-DP12		TestPft6	TestPito TestPit4		200
Sample ID	CBD-S05-SS12-000H			TestPit9 TestPit4	Benzo(b)fluoranthene (UG/KG	
Sample Date	04/05/18	AND THE STREET			Dibenz(a,h)anthracene (UG/KG	
Benzo(a)anthracene (UG/KG)	340	GBR	+S05+MW01		Indeno(1,2,3-cd)pyrene (UG/K	
Benzo(a)pyrene (UG/KG)	330	GEE			COST COST COST	N. 10 J. 37 (207 SE)
Benzo(b)fluoranthene (UG/KG)	450	G-AFMA			CBD-S05-DP08	
Dibenz(a,h)anthracene (UG/KG)	56	TestPit1			Station ID	CDD COS DDOG
Indeno(1,2,3-cd)pyrene (UG/KG)	260	THE STATE OF THE S			Sample ID	CBD-S05-DP02 CBD-S05-SS02-1012
Station ID	CBD-S0	05-SS18 Test	PR2 / C	BD-S05-DP10	Sample Date	10/19/12
Sample ID	CBD-S05-SS18-000H	CBD-S05-SS18P-000H	TestPit7		Benzo(a)anthracene (UG/KG)	1.8 U
Sample Date	04/06/18	04/06/18	Destiriti	TestPita	Benzo(a)pyrene (UG/KG)	3.5 U
Benzo(a)anthracene (UG/KG)	14	12			Benzo(b)fluoranthene (UG/KG	
Benzo(a)pyrene (UG/KG)	20	17			Dibenz(a,h)anthracene (UG/KG	3.5 U
Benzo(b)fluoranthene (UG/KG)	44	37		CBD-S05-MW02	Indeno(1,2,3-cd)pyrene (UG/K	3.5 U
Dibenz(a,h)anthracene (UG/KG)	4.6 J	3.5 J	STATE OF THE			ACCOUNT OF THE PARTY.
Indeno(1,2,3-cd)pyrene (UG/KG)	23	19	112 1/11/11		Station ID	CBD-S05-DP14
Station ID	CBD-S05-SS17	(1)			Sample ID	CBD-S05-SS14-000H
Sample ID	CBD-S05-SS17-000H	The second second	18 11/11/19	CBD-S05-DP07'	Sample Date	04/05/18
Sample Date	04/06/18	1 - 1160	1 1 1 1 1 1 1 1 1 1		Benzo(a)anthracene (UG/KG)	4.6 U
Benzo(a)anthracene (UG/KG)	26		A CONTRACTOR OF THE PARTY OF TH	CBD-S05-MW(3)	Benzo(a)pyrene (UG/KG) Benzo(b)fluoranthene (UG/KG	4.6 U
Benzo(a)pyrene (UG/KG)	18	The second second	11184 - 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Dibenz(a,h)anthracene (UG/KG	
Benzo(b)fluoranthene (UG/KG)	50	4 24 7	11/2 / 12-10-12		Indeno(1,2,3-cd)pyrene (UG/K	
Dibenz(a,h)anthracene (UG/KG) Indeno(1,2,3-cd)pyrene (UG/KG)	4.8 J					CBD-S05-DP15
		Station ID	CBD	D-S05-DP03	Station ID Sample ID	CBD-S05-DP15
Station ID		BD-S05-DP16 Sample ID	CBD-S	05-SS03-1012	Sample Date	04/05/18
Sample ID	CBD	-S05-SS16-000H Sample Date		10/18/12	Benzo(a)anthracene (UG/KG)	1,600
Sample Date Benzo(a)anthrac	cono (HG/KC)		acene (UG/KG)	30,000	Benzo(a)pyrene (UG/KG)	1,600
Benzo(a)anthrac Benzo(a)pyrene		Benzo(a)pyrei		3,700	Benzo(b)fluoranthene (UG/KG	
Benzo(b)fluoran		Denzo(b)nuor	anthene (UG/KG)	32,000	Dibenz(a,h)anthracene (UG/KG	
Dibenz(a,h)anth		Dibenz(a,n)an	thracene (UG/KG)	420 J	Indeno(1,2,3-cd)pyrene (UG/K	
Indeno(1,2,3-cd)		59 Indeno(1,2,3-c	d)pyrene (UG/KG)	13,000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AND SHAPE OF A SECOND	The same of the same of	11/1/11/11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	William S. F. St. Hall S. C. S.	Part Control of
A STATE OF THE PARTY AND	The same of the sa	Station	ID	CBD-S05-SS23 Station ID		S05-DP01
	STATE OF THE PARTY	Sample	e ID	CBD-S05-SS23-000H Sample ID		2 CBD-S05-SS01P-1012
Barrier Committee Committe	THE RESIDENCE OF	Sample		04/06/18 Sample Date	10/18/12	10/18/12
	100		a)anthracene (UG/KG)	89 Benzo(a)anthrace		
PART - SPEEK SET OF			a)pyrene (UG/KG)	99 Benzo(a)pyrene (
7. 1 The second of the second	Charles BASS		b)fluoranthene (UG/KG) (a,h)anthracene (UG/KG)	140 Benzo(b)fluorant 20 Dibenz(a,h)anthra		
	100 100	A CONTRACTOR OF THE PARTY OF TH	(1,2,3-cd)pyrene (UG/KG)	87 Indeno(1,2,3-cd)p		
THE RESERVE OF THE PARTY OF THE		liideilo	(.,=,o ou)pyrone (ou/NG)	indeno(1,2,3-td)p	3.0	- 0.4 0
		THE RESERVE THE PARTY NAMED IN				

- ESI Monitoring Well Location
- Imagery: Calvert County, MD 2017
- ESI SS/SB Location for SVOCs, PCBs, Pesticides, and Metals
- ESI SS Location Only for SVOCs, PCBs, Pesticides, and Metals
- ESI SS/SB Location for Pesticides Only

SI SS/SB/GW Location (for DP01 - DP03)

SI SS/SB Location (for DP04 - DP05) Notes: SI SS Location (for DP06) GW - (

ESI Test Pit Location

SI Test Pit Location

Suspected Disposal and/or Burn Pit

Site Boundary

GW = groundwater SS = surface soil SB = soil boring

SVOCs = semivolatile organic compounds ESI = Expanded Site Inspection

SI = Site Inspection

1 inch = 50 feet

COPCs in Surface Soil
Base-Wide Expanded Site
Inspection Report
NRL-CBD
Chesapeake Beach, Maryland

Figure 6-2

Site 5 Landfill No. 3

Human Health Risk

Imagery: Calvert County, MD - 2017

ESI Monitoring Well Location

ESI SS/SB Location for SVOCs, PCBs, Pesticides, and Metals

ESI SS Location Only for SVOCs, PCBs, Pesticides, and Metals

ESI SS/SB Location for Pesticides Only

SI SS/SB Location (for DP01 - DP05)

SI SS Location (for DP06)

ESI Test Pit Location

SI Test Pit Location

Suspected Disposal and/or Burn Pit

Site Boundary

Site 5 Landfill No. 3 **Ecological Risk COPCs in Surface Soil** (Expressed in High Molecular Weight Concentrations)

Base-Wide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Site 7 – Road Oil Application

7.1 Site Description

Site 7, also known as "Road Oil Application," encompasses the historical dirt roads located on the portion of NRL-CBD located west of Bayside Road (Figure 7-1). From 1940 through 1952, waste oils were reportedly spread twice a year on dirt roads located on NRL-CBD west of Maryland State Route 261 for use as dust-control measures during dry periods (NEESA, 1984). The oil used in this application was primarily spent crankcase oil and paint thinner. Other liquid waste products such as engine cleaner, steam cleaning waste, dishwashing soap, and gasoline were also mixed in with the waste oil (NEESA, 1984). It was reported, but not confirmed, that a small volume (less than 10 pints per year) of PCB-contaminated liquids may have been mixed with the waste oils (NEESA, 1984). Approximately one to two 55-gallon drums per year of spent oil was sprayed onto the road surfaces during this process. Today the former dirt roads either no longer exist or they have been improved with asphalt and are used as the current base access roads.

7.2 Investigation Summary

The Site 7 Base-wide ESI field activities, consisting of soil sampling activities, were conducted in April 2018.

7.2.1 Soil Sampling

Eight soil borings were advanced during the Base-wide ESI at Site 7 to further assess whether historical activities at the site contributed to the presence of contamination in soil (**Figure 7-1**). The soil borings were advanced to a depth of 8 feet bgs using the DPT rig. The boring logs for each soil boring are presented in **Appendix B.** No signs of contamination (soil staining or odors) were observed in any of the soil borings. At each boring, surface soil samples were collected from 0 to 0.5 feet bgs and subsurface soil samples were collected from 5 to 8 feet bgs. All eight soil borings were analyzed for PCBs and metals in the surface and subsurface intervals.

7.3 Analytical Results

A summary of the constituents detected in surface and subsurface soil during the Base-wide ESI at Site 7 are presented in **Table 7-1** and **7-2** respectively and discussed as follows. The complete analytical results for both the SI and ESI data are presented in **Appendix E**.

7.3.1 Surface Soil Analytical Results

A total of eight surface soil samples were collected at Site 7 during the 2018 Base-wide ESI field activities. The results of the surface soil sampling are summarized as follows:

- **PCBs** One PCB (Aroclor-1260) was detected in surface soil. Detections were found at four sample locations (CBD-S07-DP20, CBD-S07-DP21, CBD-S07-DP22, and CBD-S07-DP27).
- Metals Twenty-two metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in surface soil. One or more metals detections were found in all sample locations.

7.3.2 Subsurface Soil Analytical Results

A total of eight subsurface soil samples were collected at Site 7 during the April 2018 Base-wide ESI. The results of the subsurface soil sampling are summarized as follows:

PCBs – One PCB (Aroclor-1260) was detected in subsurface soil at one location (CBD-S07-DP20).

AX0121191314WDC 7-1

• **Metals** – Twenty-two metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in subsurface soil. Detections of metals were found in all subsurface soil samples.

7.4 Human Health Risk Screening

The HHRS for Site 7 was conducted in three steps using the risk-ratio technique (Navy, 2000) described in Section 3.4. Results were reported for the Navy, USEPA, and MDE target risk levels. Table 1 in **Appendix F** lists the samples that were included in the Site 7 HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.4**.

7.4.1.1 Surface Soil

The risk-based screening and risk-ratio evaluation for surface soil at Site 7 are provided in **Appendix F.4**, **Tables 2.1** and **2.1a**.

Step 1: Seven constituents were identified as COPCs: Aroclor-1260, arsenic, hexavalent chromium, cobalt, iron, thallium, and vanadium (**Appendix F.4, Table 2.1**).

Step 2: Cumulative cancer risk of 1×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , the USEPA target risk level of 1×10^{-4} , and does not exceed the MDE target risk level of 1×10^{-5} . The target organ HIs range from 0.1 to 0.4 which does not exceed the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 or the MDE or USEPA cumulative target organ target HI of 1. No constituents were identified as COPCs.

Of the constituents that were 100 percent nondetected, none exceeded the RSL. Screening criteria were not available for several constituents.

Exposure to surface soil at Site 7 would not be expected to result in any unacceptable human health risks.

7.4.1.2 Subsurface Soil

The risk-based screening and risk-ratio evaluation for subsurface soil at Site 7 are provided in **Appendix F.4**, **Tables 2.2 through 2.2b**.

Step 1: Seven constituents were identified as COPCs: aluminum, arsenic, hexavalent chromium, cobalt, iron, manganese, and thallium.

Step 2: Cumulative cancer risk of 9×10^{-6} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , the MDE target risk level of 1×10^{-5} , and the USEPA target risk level of 1×10^{-4} . Target organ HIs range from 0.2 to 0.9. The target organ HI of 0.9 (dermal) is greater than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but less than the MDE and USEPA cumulative target organ target HI of 1. The only constituents contributing to a cumulative target organ HI greater than 0.5 and identified as a COPC is arsenic and thallium. No COPCs were identified based on MDE or USEPA target hazard levels.

Step 3: Cumulative cancer risk of 5×10^{-6} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , the MDE target risk level of 1×10^{-5} , and the USEPA target risk level of 1×10^{-4} . The target organ HI is 0.4 (dermal), which is less than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5, and the MDE and USEPA cumulative target organ target HI of 1 (**Appendix F.4, Table 2.2b**). Therefore, no COPCs were identified for subsurface soil. The ProUCL output file for Site 7 subsurface soil is included in **Appendix F.4**.

Of the constituents that were 100 percent nondetected, none exceeded the RSL. Screening criteria were not available for several constituents.

Based on the results of the human health screening, exposure to subsurface soil at Site 7 would not be expected to result in unacceptable human health risks.

7-2 AX0121191314WDC

7.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

No surface soil COPCs were identified for Site 7. All analytes either were not detected, had EPC-based HQs less than one, were consistent with background, were macronutrients, or had a low magnitude of exceedance (**Appendix G**, **Table 6**). Additionally, three detected analytes lacked screening values. As discussed in Section 3.4.6, these analytes were not identified as COPCs. Consequently, no unacceptable risk was identified, and no further ecological investigation or evaluation is recommended for surface soils at Site 7.

7.6 Site Characterization

No human health and ecological COPCs were identified in surface and subsurface soil at Site 7. Aroclor-1260 was detected in surface and subsurface soil; however, detections were sporadic across the site. Aroclor-1260 concentrations in surface soil exhibited higher concentrations and detection frequencies than the subsurface soil samples (where PCBs were not detected with the exception of one location). Metals were detected site-wide in surface and subsurface soil during the Base-wide SI and ESI; however, concentrations were generally of lower magnitude in the subsurface soil compared with the surface soil detections.

7.7 Findings and Recommendations

7.7.1 Findings

PCBs and metals were detected in surface and subsurface soils at Site 7. Based on the HHRS and ERA, no COPCs were identified for surface and subsurface soil, as indicated in **Table 7-** .

Table 7-3. Human Health and Ecological Risk COPCs for Site 7

Media	COPCs				
ivieuia	Human Health	Ecological			
Surface Soil	None	None			
Subsurface Soil	None [.]	N/A			

7.7.2 Recommendations

Site 7 is recommended for no further action because there are no human health and ecological risk impacts to soil.

AX0121191314WDC 7-3

Table 7-1. Site 7 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S07-DP20	CBD-S	07-DP21	CBD-S07-DP22	CBD-S07-DP23	CBD-S07-DP24	CBD-S07-DP25	CBD-S07-DP26	CBD-S07-DP27
Sample ID	ESVs (1019)	(HQ=0.1) 0519	CBD-S07-SS20-000H	CBD-S07-SS21-000H	CBD-S07-SS21P-000H	CBD-S07-SS22-000H	CBD-S07-SS23-000H	CBD-S07-SS24-000H	CBD-S07-SS25-000H	CBD-S07-SS26-000H	CBD-S07-SS27-000H
Sample Date	L3V3 (1019)	(1102-0.1) 0313	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18
Chemical Name											
Pesticide/Polychlorinated Biphenyls (UG/KG)											
Aroclor-1260	160	240	110 J-	490 J	180 J	6.3 J	6.7 U	6 U	6.5 U	6.5 U	260 J
Total Metals (MG/KG)											
Aluminum		7,700	5,400	5,800	6,600	2,800	4,800	3,200	3,000	4,300	5,700
Antimony	5	3.1	0.13 J	0.13 J	0.084 J	0.063 J	0.19 U	0.16 U	0.13 U	0.15 U	0.14 U
Arsenic	6.8	0.68	2.6	2.5	2.9	2	2.8	1.6	2.2	2.6	3.5
Barium	110	1,500	16	27	28	13	14	8.4	12	19	27
Beryllium	2.5	16	0.3 J	0.37 J	0.47 J	0.3 J	0.28 J	0.22 J	0.25 J	0.4 J	0.38 J
Cadmium	32	7.1	0.14 U	0.18 J	0.19 J	0.17 J	0.19 U	0.16 U	0.13 U	0.096 J	0.31
Calcium			341	2,010	1,980	515	361	171,000	89,000	397,000	5,870
Chromium	10	0.3	26	12 J	19 J	6.7	7.1	9.3	5.9	9.2	21
Cobalt	13	2.3	1.4	2.5	2.8	1.6	2.4	1.1	0.93	2.4	2.2
Copper	70	310	4.8	15 J	9.7 J	2.6	3.6	2.6	2.4	2.8	8.3
Iron		5,500	9,100	8,300	8,800	7,400	8,300	5,200	4,400	7,500	13,000
Lead	120	400	82	11	11	4	6.4	2.7	10	7.1	47
Magnesium			494	721 J	1,220 J	476	498	276,000	357,000	626,000	3,020
Manganese	220	180	40	61	48	71	66	27	34	94	73
Nickel	38	150	3.4	8.7	11	2.5	2.8	1.7	2.6	6.4	24
Potassium			308	488	605	379	499	259,000	273,000	431,000	916
Selenium	0.52	39	0.57	0.85	1	0.46 J	0.62 J	0.35 J	0.49 J	0.78	1
Silver	560	39	0.14 J	0.18 U	0.19 U	0.063 J	0.19 U	0.16 U	0.13 U	0.15 U	0.14 U
Sodium			8.8 J+	19.9 J+	18.5 J+	5.9 U	6.5 U	4,310	2,710	4,880	58.4 J+
Thallium	0.05	0.078	0.11 J	0.16 J	0.24 J	0.088 J	0.19 U	0.16 U	0.093 J	0.12 J	0.11 J
Vanadium Zinc	60 120	39 2,300	11 15	13 31	15 34	7.1 16	12 34	6.9 5.8	10 16	28 19	120 220
#REF!	120	2,300	15	31	34	10	34	5.6	10	19	220

Shading indicates detections

Italics indicate exceedance of NRL-CBD SS Eco ESVs
(1019)

Bolding idicates exceedance of RSLs Residential Soil

(HQ=0.1) 0519

NA - Not analyzed

J - Analyte present, value may or may not be accurate or

J - Analyte present, value may or may not be accurate or precise
J - Analyte present, value may be biased low, actual value may be higher
J+ - Analyte present, value may be biased high, actual value may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram

Table 7-2. Site 7 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	RSLs Residential Soil	CBD-S07-DP20	CBD-S07-DP21	CBD-S07-DP22	CBD-S07-DP23	CBD-S07-DP24	CBD-S	607-DP25	CBD-S07-DP26	CBD-S07-DP27
Sample ID	(HQ=0.1) 0519	CBD-S07-SB20-0508	CBD-S07-SB21-0508	CBD-S07-SB22-0508	CBD-S07-SB23-0508	CBD-S07-SB24-0508	CBD-S07-SB25-0508	CBD-S07-SB25P-0508	CBD-S07-SB26-0508	CBD-S07-SB27-0508
Sample Date	(1102-0.1) 0010	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18
Chemical Name										
Pesticide/Polychlorinated Biphenyls (UG/KG)										
Aroclor-1260	240	54	15 U	13 U	7.4 U	7 U	6.3 U	6.5 UJ	6.3 U	12 U
Total Metals (MG/KG)										
Aluminum	7,700	4,800	8,000	5,100	7,100	6,100	5,200	4,500	3,700	9,300
Antimony	3.1	0.068 J	0.19 U	0.16 U	0.14 J	0.14 U	0.13 U	0.15 U	0.14 U	0.088 J
Arsenic	0.68	1.4	4.4	2.1	3.8	2.8	5.5 J	2.3 J	2.9	1.9
Barium	1,500	16	21	11	35 J+	16	28	21	16	51
Beryllium	16	0.24 J	1.3	0.41 J	0.64	0.31 J	0.89	0.42 J	0.39 J	0.83
Cadmium	7.1	0.15 U	0.49	0.16 U	0.18 J	0.14 U	0.18 J	0.15 U	0.13 J	0.12 J
Calcium		417	1,340	674	929	330,000	390,000 J	116,000 J	531,000	847
Chromium	0.3	14	28	18	14	9.7	9.4	12	7.2	14
Cobalt	2.3	1.2	3.6	0.92	3.1	1.6	2	2.1	1.8	4
Copper	310	2.7	7	2.4	25 J	5.9	2.9	3.1	3.3	1.5
Iron	5,500	4,700	23,000	11,000	12,000	8,400	11,000 J	6,900 J	7,400	9,800
Lead	400	4.2	8.5	6.5	21	6.3	3.4 J	5.5 J	8.7	4.6
Magnesium		576	2,110	1,200	946	528,000	641,000	480,000	494,000	1,100
Manganese	180	20	34	12	160	57	74 J	130 J	73	190
Nickel	150	3.1	7.6	2.1	6.3	3.2	6.2 J	4.3 J	3.8	11
Potassium		382	1,240	811	576	399,000	349,000	292,000	315,000	554
Selenium	39	0.89	1.5	0.56 J	1.3	0.72	1.1	0.93	0.7	1.7
Silver	39	0.15 U	0.19 U	0.16 U	0.16 J	0.14 U	0.13 U	0.15 U	0.14 U	0.077 J
Sodium		7.2 U	216	13.8 J+	13.7 J+	6,640	4,830	6,630	4,410	138
Thallium	0.078	0.19 J	0.58	0.13 J	0.18 J	0.09 J	0.13 J	0.1 J	0.1 J	0.21 J
Vanadium	39	9.5 11	21	9.8	17	12	12	9.7	9.3	13
Zinc	2,300	11	120	17	36	13	22	18	18	40

Notes:
Shading indicates detections
Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519
NA - Not analyzed
J - Analyte present, value may or may not be accurate or

precise
J+ - Analyte present, value may be biased high, actual value

may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be

inaccurate
MG/KG - Milligrams per kilogram
UG/KG - Micrograms per kilogram

 ESI SS/SB Location for PCBs and Metals SI SS/SB Location (for DP01 - DP09) SI SB Location (for DP10 - DP19)

Study Area Boundary

Imagery: Calvert County, MD - 2017

Notes: SS = surface soil SB = soil boring PCBs = polychlorinated biphenyls
ESI = Expanded Site Inspection
SI = Site Inspection

Figure 7-1 Site 7 Road Oil Application Sample Locations

Base-Wide Expanded Site Inspection Report NRL-CBD
Chesapeake Beach. Marvland

Site 9 – Photo-processing Waste Discharge

8.1 Site Description

Site 9, also known as "Photo-processing Waste Discharge," is associated with a photography laboratory that was housed inside former Building 43 (**Figure 2-1**). Waste water from the photo-processing laboratory reportedly was disposed of through a drain that discharged to the ground immediately outside the building (NEESA, 1984). Recent discussions with current base personnel indicated that the former photograph laboratory was located in the southeastern corner of Building 43. This operation reportedly occurred from the late 1950s until the early 1960s and from the late 1960s until 1975 (NEESA, 1984). The photograph laboratory was used once or twice during each year of operation, generating 10 to 15 gallons of waste solution (e.g. sodium thiosulfate and hydroquinone) per event (NEESA, 1984). For the purpose of defining a site boundary, a 20-foot boundary around the former building 43 was established, which likely would include the area of the direct discharge. The site boundary around the former Building 43 is 8,486 ft² in size. The building has been demolished and the site is relatively level and covered with grass with an approximate maximum elevation of 128 feet amsl. The road network that surrounds the former building is still intact.

8.2 Investigation Summary

The Site 9 Base-wide ESI field activities, consisting of soil sampling activities, were conducted in April 2018.

8.2.1 Soil Sampling

Six soil borings were advanced during the Base-wide ESI at Site 9 to further assess whether historical activities at the site contributed to the presence of contamination in soil (**Figure 8-1**). The soil borings were advanced to a depth of 10 feet bgs using the DPT. The boring logs for each soil boring are presented in **Appendix B.** No signs of contamination (soil staining or odors) were observed in any of the soil borings. At each boring, surface soil samples were collected from 0 to 0.5 foot bgs and subsurface soil samples were collected from 8 to 10 feet bgs. All six soil borings were analyzed for SVOCs and metals in the surface and subsurface intervals.

8.3 Analytical Results

A summary of the constituents detected in surface and subsurface soil during the Base-wide ESI at Site 9 are presented in **Table 8-1** and **Table 8-2** and discussed as follows. The complete analytical results for both the SI and ESI data are presented in **Appendix E**.

8.3.1 Surface Soil Analytical Results

A total of six surface soil samples were collected at Site 9 during the April 2018 Base-wide ESI. The results of the surface soil sampling are summarized as follows:

- **SVOCs** Thirteen SVOCs (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) were detected in surface soil. Detections were found in surface soil at five locations (CBD-S09-DP05, CBD-S09-DP06, CBD-S09-DP07, CBD-S09-DP08, and CBD-S09-DP10).
- Metals Twenty-three metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in surface soil. Detections of metals were found in all surface soil samples.

AX0121191314WDC 8-1

8.3.2 Subsurface Soil Analytical Results

A total of six subsurface soil samples were collected at Site 9 during the 2018 Base-wide ESI field activities. The results of the subsurface soil sampling are summarized as follows:

- SVOCs One SVOCs (phenanthrene) was detected in subsurface soil at CBD-S09-DP08.
- Metals Twenty-two metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc) were detected in subsurface soil. Detections of metals were found in all subsurface soil samples.

8.4 Human Health Risk Screening

The HHRS for Site 9 was conducted in three steps using the risk-ratio technique (Navy, 2000) described in detail in Section 3.4. Results were reported for the Navy, USEPA, and MDE target risk levels. Table 1 in **Appendix F** lists the samples that were included in the Site 9 HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.5**.

8.4.1.1 Surface Soil

The risk-based screening and risk-ratio evaluation for surface soil at Site 9 are provided in **Appendix F.5**, **Tables 2.1** and **2.1a**.

Step 1: Seven constituents were identified as COPCs: aluminum, arsenic, hexavalent chromium, cobalt, iron, manganese, and thallium.

Step 2: Cumulative cancer risk of 8×10^{-6} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , the MDE target risk level of 1×10^{-5} , and the USEPA target risk level of 1×10^{-4} . The target organ HI range is 0.09 to 0.3; which, is less than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 and the MDE and USEPA cumulative target organ target HI of 1. No constituents were identified as COPCs.

Of the constituents that were 100 percent nondetected, the maximum detection limit of a few SVOCs exceeded their respective RSL. However, it is unlikely that if these SVOCs are present in surface soil at concentrations below the detection limits they would contribute significantly to site risks. Screening criteria were not available for several constituents.

Exposure to surface soil at Site 9 would not be expected to result in any unacceptable human health risks.

8.4.1.2 Subsurface Soil

The risk-based screening and risk-ratio evaluation for subsurface soil at Site 9 are provided in **Appendix F.5**, **Tables 2.2 through 2.2b**.

Step 1: Seven constituents were identified as COPCs: aluminum, arsenic, hexavalent chromium, cobalt, iron, manganese, and thallium.

Step 2: Cumulative cancer risk of 1×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , less than the USEPA target risk level of 1×10^{-4} ; and does not exceed the MDE target risk level of 1×10^{-5} . Cumulative target organ HIs ranged from 0.2 to 2; two target organ HI values (respiratory and thyroid) are greater than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 and the MDE and USEPA cumulative target organ target HI of 1. The constituents contributing to a cumulative target organ HI greater than 0.5 (and 1) and identified as a COPC are hexavalent chromium and cobalt. Arsenic and thallium contribute to a target organ HI greater than the Navy cumulative target organ (dermal) HI risk-ratio screening benchmark of 0.5 but less the MDE and USEPA cumulative target organ target HI of 1.

Step 3: Cumulative cancer risk of 1×10^{-5} ; this value is less than the Navy risk-ratio screening benchmark of 5×10^{-5} , less than the USEPA target risk level of 1×10^{-4} , and does not exceed the MDE target risk level of 1×10^{-5} .

8-2 AX0121191314WDC

Cumulative target organ HIs are 1 (respiratory and thyroid); the target organ HIs exceeds than the Navy cumulative target organ HI risk-ratio screening benchmark of 0.5 but not the MDE and USEPA cumulative target organ target HI of 1. Cobalt contributes to the cumulative target organ HI greater than 0.5; therefore, cobalt is identified as a COPC based on the Navy risk-ratio screening benchmark HI. Hexavalent chromium also contributes to the respiratory target organ , however, the HI from hexavalent chromium alone is less than 0.01, and hexavalent chromium is not considered a COPC. Since cobalt was not identified as a COPC based on the MDE benchmark, cobalt is not retained as a COPC. The ProUCL output file for Site 9 subsurface soil is included in **Appendix F.5**.

The maximum detected concentration of cobalt exceeds its site-specific subsurface soil BTV. This indicates that concentrations in soil in Site 9 subsurface soil are not consistent with concentrations in unimpacted site soils. (Appendix F.5, Table 2.2c).

Of the constituents that were 100 percent nondetected, a few SVOCs had maximum detection limits that slightly exceeded their respective RSL. Because of the low level of exceedances, it is unlikely that if these SVOCs are present in subsurface soil at concentrations less than the detection limits they would contribute significantly to site risks. Screening criteria were not available for several constituents.

Exposure to subsurface soil at Site 9 would not result in unacceptable human health risks based on the MDE benchmark level.

Groundwater

Groundwater samples were not collected during the ESI, however, groundwater samples were collected during the SI and evaluated in the HHRS included in the SI report. The SI identified thallium as a COPC in groundwater. The maximum detected concentrations of thallium in the Site 9 groundwater in SI groundwater samples (0.29 μ g/L in the unfiltered samples and 1 μ g/L in the filtered samples) are below the current BTVs for thallium in both unfiltered and filtered groundwater (2.12 μ g/L for unfiltered groundwater and 1.94 μ g/L for filtered groundwater).

8.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

No surface soil COPCs were identified for Site 9. All analytes either were not detected, had EPC-based HQs less than one, were consistent with background, were macronutrients, or had a low magnitude of exceedance (**Appendix G**, **Table 7**). Additionally, six detected analytes lacked screening values. As discussed in Section 3.4.6, these analytes were not identified as COPCs. Consequently, no unacceptable risk was identified, and no further ecological investigation or evaluation is recommended for surface soils at Site 9.

8.6 Site Characterization

No ecological or human health COPCs were identified in surface and subsurface soil. SVOCs were detected in surface and subsurface soil; however, detections were mostly related to PAHs. SVOC concentrations in surface soil exhibited higher concentrations and detection frequencies than the subsurface soil samples (where SVOCs were not detected except at one location).

AX0121191314WDC 8-3

8.7 Findings and Recommendations

8.7.1 Findings

SVOCs and metals were detected in surface and subsurface soils at Site 9. Based on the HHRS and ERA, the constituents presented in **Table 8-3** may present potentially unacceptable risk and were retained as COPCs for Site 9.

Table 8-3. Human Health and Ecological Risk COPCs for Site 9

Modia	СОР	PCs
Media ——	Human Health	Ecological
Surface Soil	None	None
Subsurface Soil	None	N/A
Groundwater	None	N/A

8.7.2 Recommendations

While the results of the Expanded SI support the recommendation for no further action, during review of this document the Navy acknowledges MDE's comment that sodium thiosulfate and hydroquinone specifically has not been sampled or evaluated at Site 9. Therefore, the Navy concurs with the recommendation to conduct additional investigation as part of the Expanded SI.

8-4 AX0121191314WDC

Table 8-1. Site 9 Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Station ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-S09-DP05		09-DP06	CBD-S09-DP07	CBD-S09-DP08	CBD-S09-DP09	CBD-S09-DP10
Sample ID			CBD-S09-SS05-000H	CBD-S09-SS06-000H	CBD-S09-SS06P-000H	CBD-S09-SS07-000H	CBD-S09-SS08-000H	CBD-S09-SS09-000H	CBD-S09-SS10-000H
Sample Date	ESVs (1019)	(HQ=0.1) 0519	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18
Chemical Name									
Semivolatile Organic Compounds (UG/KG)									
Acenaphthene		360,000	1.4 U	14 U	13 U	11 U	0.6 J	45 U	1.1 U
Acenaphthylene			1.1 J	14 U	13 U	3.6 J	2.6 J	45 U	1.1 U
Anthracene		1,800,000	2 J	56 U	52 U	46 U	2.6 J	180 U	4.6 U
Benzo(a)anthracene		1,100	11 U	56 U	52 U	46 U	11	180 U	4.6 U
Benzo(a)pyrene		110	15 J	32 J	52 U	33 J	16	180 U	1.8 J
Benzo(b)fluoranthene		1,100	27 U	87 U	80 U	70 U	21	280 U	7.1 U
Benzo(g,h,i)perylene			14 J	32 J	80 U	35 J	16	280 U	7.1 U
Chrysene		110,000	16 U	56 U	52 U	46 U	12	180 U	4.6 U
Dibenz(a,h)anthracene		110	8.7 U	87 U	80 U	70 U	3.1 J	280 U	7.1 U
Fluoranthene		240,000	20 U	56 U	52 U	46 U	15	180 U	4.6 U
Indeno(1,2,3-cd)pyrene		1,100	16 J	87 U	80 U	29 J	17	280 U	7.1 U
Phenanthrene			9 J	87 U	80 U	70 U	6.3 J	280 U	7.1 U
Pyrene		180,000	17 J	43 J	80 U	40 J	14	280 U	7.1 U
Total Metals (MG/KG)									
Aluminum		7,700	2,900	8,100	6,200	6,600	6,700	3,700	3,000
Antimony	5	3.1	0.15 J	0.1 J	0.12 J	0.15 U	0.098 J	0.14 U	0.17 U
Arsenic	6.8	0.68	1.1	2.9	2.4	2.1	3	1.2	1
Barium	110	1,500	11	60 J	39 J	25	42	11	8.9
Beryllium	2.5	16	0.17 J	0.5 J	0.41 J	0.22 J	0.45 J	0.27 U	0.35 U
Cadmium	32	7.1	0.14 J	0.34	0.3 J	0.11 J	0.17 J	0.14 U	0.16 J
Calcium			2,130	3,870	2,600	2,470	3,230	7,110	7,340
Chromium	10	0.3	9.7	20	16	13	20	7.8	8.2
Cobalt	13	2.3	1.4	6.1	5.1	1.9	5.7	0.71	0.72
Copper	70	310	8.2	13	11	4.8	16	3.2	3.7
Iron		5,500	3,900	15,000 J	12,000 J	15,000	16,000	5,800	4,900
Lead	120	400	37	20	18	7	17	2.9	7.7
Magnesium			999	2,950	2,200	951	2,900	674	606
Manganese	220	180	39	230	170	65	170	29	21
Mercury	0.05	2.3	0.11 J	0.14 J	0.16 U	0.15 U	0.17 U	0.14 U	0.17 U
Nickel	38	150	6.6	22	19	6.7	23	2.9	2.6
Potassium			419	1,320	1,210	516	1,460	230	309
Selenium	0.52	39	0.97	1.1	0.96	0.49 J	0.98	0.31 J	0.34 J
Silver	560	39	1.3	0.079 J	0.075 J	0.15 U	0.11 J	0.14 U	0.16 J
Sodium			143	49.1 J	28.9 J	23.2 J+	22.4 J+	20.2 J+	17.6 J+
Thallium	0.05	0.078	0.078 J	0.095 J	0.083 J	0.15 U	0.077 J	0.14 U	0.17 U
Vanadium	60	39	9.5	24	18	19	23	11	8.9
Zinc	120	2,300	37	51	48	16	38	6.1	27

Notes:

Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs (1019)
Bolding idicates exceedance of RSLs Residential Soil

(HQ=0.1) 0519
ESVs are provided for Total LMW PAHs and Total HMW

PAHs
NA - Not analyzed
J - Analyte present, value may or may not be accurate or precise
J+ - Analyte present, value may be biased high, actual value may be lower
U - The material was analyzed for, but not detected
UJ - Analyte not detected, quantitation limit may be inaccurate

inaccurate MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram

Table 8-2. Site 9 Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

	i e		demment					
Station ID	RSLs Residential Soil	CBD-S09-DP05	CBD-S09-DP06	CBD-S09-DP07	CBD-S09-DP08	CBD-S09-DP09	CBD-S0	9-DP10
Sample ID	(HQ=0.1) 0519	CBD-S09-SB05-0810	CBD-S09-SB06-0810	CBD-S09-SB07-0810	CBD-S09-SB08-0810	CBD-S09-SB09-0810	CBD-S09-SB10-0810	CBD-S09-SB10P-0810
Sample Date	(1102-0.1) 0313	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18
Chemical Name								
Semivolatile Organic Compounds (UG/KG)								
Phenanthrene		11 U	8.6 U	7.8 U	6 J	8.8 U	9.4 U	8.6 U
Total Metals (MG/KG)								
Aluminum	7,700	5,300	3,900	3,100	15,000	5,500	6,200	6,300
Antimony	3.1	0.17 U	0.17 U	0.097 J	0.17 U	0.2 U	0.19 U	0.18 U
Arsenic	0.68	4.6	3.2	0.93	2	4.4	5.8 J	3.2 J
Barium	1,500	10	9.1	4.9	14	6.5	8.5 J	53 J
Beryllium	16	0.5 J	0.33 J	0.36 U	0.72	0.4 J	0.46 J	0.53 J
Cadmium	7.1	0.21 J	0.3 J	0.18 U	0.14 J	0.15 J	0.19 U	0.18 U
Calcium		1,680	1,090	1,100	1,140	1,460	1,320	1,430
Chromium	0.3	23	21	16	27	23	24	24
Cobalt	2.3	5.7	2.1	0.49	2.7	3.5	3.7	3.3
Copper	310	3.3	3.1	1.7	3.6	3.1	3	2.9
Iron	5,500	18,000	13,000	4,300	10,000	16,000	15,000 J	11,000 J
Lead	400	3.7	3	2	3.6	3.1	4.1 J	9.2 J
Magnesium		2,380	1,650	1,120	2,110	2,180	2,120	2,200
Manganese	180	200	18	2	14	31	40	40
Nickel	150	9.8	5.6	1.1	12	11	5.9	6.1
Potassium		1,300	1,120	606	1,120	1,220	1,140	1,320
Selenium	39	0.4 J	1	0.49 J	1.7	0.44 J	1.4 J	2.3 J
Silver	39	0.17 U	0.17 U	0.18 U	0.17 U	0.16 J	0.19 U	0.18 U
Sodium		92.5	71.3 J+	78.2	120	66.5 J+	69.1 J+	73.9
Thallium	0.078	0.34 J	0.29 J	0.079 J	0.31 J	0.23 J	0.17 J	0.31 J
Vanadium	39	12	8.9	6.6	10	12	13	12
Zinc	2,300	63	53	14	82	100	62	65

Notes:

Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil
(HQ=0.1) 0519

NA - Not analyzed
J - Analyte present, value may or may not be accurate or

precise
J+ - Analyte present, value may be biased high, actual

value may be lower R - Unreliable Result

U - The material was analyzed for, but not detected UJ - Analyte not detected, quantitation limit may be inaccurate

MG/KG - Milligrams per kilogram

UG/KG - Micrograms per kilogram

AOC D – Water Tower

9.1 Site Description

AOC D, known as the water tower, is located on the western portion of NRL-CBD adjacent to Site 8 (**Figure 2-1**). The construction of the water tower dates to 1953 and currently remains onsite. The water tower has a reported capacity of 400,000 gallons for use as part of the potable water supply for the facility. Although there are no documented releases from this area, it is assumed that the ground surface below the water tower may have been impacted by lead due to lead-based paint migrating to the ground during maintenance on tower surface with lead-based paint, and from paint that has weathered over time. Recent documentation obtained from NRL-CBD shows that lead was detected at 148 mg/kg in paint chips obtained from the water tower in 2012. The document states that the last time the water tower was painted was in 1994, suggesting that the lead-based paint has been encapsulated by the more recent paint as lead-based paint use was banned in housing and other building settings in 1978. The condition of the paint surface on the water tower was noted as being in average condition with some localized areas of paint chipping or delaminating (Mumford-Bjorkman Associates, Inc., 2012).

9.2 Investigation Summary

The AOC D Base-wide ESI field activities, consisting of soil sampling and XRF activities, were conducted in April 2018.

9.2.1 Soil Sampling

As noted in Section 3.1.4, a 100-foot by 100-foot area at AOC D was marked-out with wooden stakes where the water tower sits at the center of this area. Twenty-five 20-foot by 20-foot XRF grids were established inside this 100-foot by 100-foot area (**Figure 9-1**). A five-point composite soil sample (at the center and at each of the corners of the XRF grid) was collected for both the surface (0 to 0.5 feet bgs) and subsurface (1.5 to 2 feet bgs) soil intervals. Each composite sample was then analyzed three times using the XRF to account for variability within the sample while deriving an average detected concentration for the sample.

A total of 125 soil borings were advanced during the Base-wide ESI at AOC D to further access whether the lead-based paint on the water tower contributed to the presence of contamination in soil. The soil borings were advanced to a depth of 2 feet bgs using hand auger. No signs of contamination (soil staining or odors) were observed in any of the soil borings. Using a random number generator program to pre-select the XRF grids where soil samples were to be sent to the laboratory for confirmation (discussed in **Appendix J**), 10 soil borings were analyzed for lead in the surface and subsurface intervals.

9.3 Analytical Results

A summary of the lead detected in surface and subsurface soil during the Base-wide ESI at AOC D are presented in **Table 9-1** and **Table 9-2** respectively and discussed as follows. The complete analytical results for both the SI and ESI data are presented in **Appendix E**.

9.3.1 XRF Surface and Subsurface Soil Screening Results

A total of 25 surface and 25 subsurface soil samples were collected at AOC D during the 2018 Base-wide ESI field activities. The XRF screening results are shown in **Figures 9-2 and 9-3** and in **Appendix J**.

- Surface Soil Average lead screening values ranged from 101.6 to 1,172.3 mg/kg in surface soil.
- Subsurface Soil Average lead screening values ranged from 13.2 to 180 mg/kg in subsurface soil.

AX0121191314WDC 9-1

9.3.2 Laboratory Surface and Subsurface Soil Analytical Results

A total of ten predetermined surface and ten predetermined subsurface soil samples were sent to the laboratory and analyzed for lead. The results are summarized as follows.

- Surface Soil Detected lead concentrations ranged from 100 to 2,800 mg/kg in surface soil.
- Subsurface Soil Detected lead concentrations ranged from 7.8 to 160 mg/kg in subsurface soil.

9.3.3 Statistical Analysis of XRF Results

Statistical analysis of XRF screening results was performed to determine if the XRF data and laboratory data were statistically equivalent at a 99% confidence level. EPA test method SW-846 6200 (see **Appendix E**) details the methodology for the regression analysis. Two regression models, linear and parametric (i.e., log-transformed), were evaluated for the analysis. The linear regression model showed that the XRF screening data do not meet the assumption of equal variances. In accordance with EPA method 6200, it states that "if the measured concentrations span more than one order of magnitude, the data should be log-transformed to standardize the variance which is proportional to the magnitude of measurement". The XRF screening results fall within this category and the log-transformed regression model was used in the statistical analysis.

The log-transformed data showed a correlation coefficient (i.e., R-value) of 0.94 (see **Appendix J**). Central tendency tests indicate that the log-transformed data are statistically equivalent at a 99% confidence level. A plot of the log-transformed data for XRF screening concentrations against the laboratory analyzed concentrations showed a 250 parts-per-million (ppm) of lead from XRF would correspond to less than 400 ppm of lead from the laboratory. In other words, an XRF reading of 250 ppm of lead at AOC D corresponds to the analytical concentration of less than 400 ppm of lead at AOC D. A closer look of the correlation resulted in a 300 ppm of lead from XRF reading to less than 400 ppm of lead from the laboratory result at AOC D (see **Appendix J**).

Further evaluation of the XRF to laboratory correlation determined that the remaining 15 surface soil and 15 subsurface soil samples at AOC D did not need to be analyzed by the laboratory because the XRF results were of high confidence.

9.4 Human Health Risk Screening

The HHRS for AOC D was conducted using the risk-ratio technique (Navy, 2000) described in detail in Section 3.4. Table 1 in **Appendix F** lists the samples that were included in the AOC D HHRS. An overview of the various potential receptors and exposure pathways addressed in the HHRS is discussed in Section 3.4.1. The supporting tables for the evaluation are presented in **Appendix F.6**.

9.4.1.1 Surface Soil

The risk-based screening evaluation for surface soil at AOC D is provided in **Appendix F.6**, **Table 2.1**. Lead was the only constituent analyzed for in surface soil samples.

Step 1: Lead was detected at concentrations in surface soil samples greater than the screening level and was identified as a COPC.

As discussed in Section 3.4, exposure to lead in surface soil by a potential future child resident was evaluated using the IEUBK model. The IEUBK model was run using the average lead surface soil concentration (1,306 mg/kg). The output from the IEUBK model is provided in **Appendix F.6, Table 2.1a, Figure Lead.2**, and the RAGS D IEUBK Lead Worksheet identified as **Table Lead.2**. The predicted geometric mean blood lead level for a young child exposed to AOC D surface soil is 11.7 μ g/L with 63 percent of the population potentially experiencing concentrations exceeding 10 μ g/L. This value is greater than the current blood lead goal as described in the 1994 OSWER directive (USEPA, 1994) of no more than 5 percent of children exceeding 10 μ g/dL blood lead. Since the IEUBK model determined that exposure to lead in surface soil by a child resident, would result in a blood lead level above the current blood lead goal, exposure to lead in surface soil by future industrial workers was evaluated using the ALM.

9-2 AX0121191314WDC

The ALM was run using the average lead surface soil concentration (1,306 mg/kg). The output from the ALM is provided in **Appendix F.6, Table 2.1b** and the RAGS D IEUBK Lead Worksheet identified as Table Lead.3. The probabilities that the fetal blood lead levels exceed 10 μ g/dL range from 0.3 to 5.4 percent. The upper end of this range of values slightly exceeds the current blood lead goal as described in the 1994 OSWER directive (USEPA, 1994) of no more than 5 percent of children (fetuses of exposed women) exceeding 10 μ g/dL blood lead.

Exposure to surface soil at AOC D may result in unacceptable human health risks associated with lead.

9.4.1.2 Subsurface Soil

The risk-based screening evaluation for subsurface soil at AOC D is provided in **Appendix F.6**, **Table 2.2**. Lead was the only constituent analyzed for in subsurface soil samples.

Step 1: Lead was detected at concentrations in subsurface soil samples below the screening level and was not identified as a COPC.

Exposure to subsurface soil at AOC D would not be expected to result in unacceptable human health risks associated with lead, based on potential human exposure and risk.

9.5 Ecological Risk Screening

The ERA approach for surface soil is described in detail in Section 3.5. An overview of the various potential receptors and exposure pathways addressed in the ERA is discussed in Section 3.5.2. The supporting tables for the evaluation are presented in **Appendix G**.

Lead was the only analyte evaluated at AOC D. Lead was retained as a COPC based on a maximum-based HQ of 25 and an EPC-based HQ of 15 (**Appendix G, Table 8**). Additionally, all detected concentrations exceeded the 95% UTL for Soil Grouping 3 (Tetra Tech, 2015). Consequently, exposure to surface soil at AOC D may result in unacceptable ecological risk associated with lead and further evaluation of risk or consideration of remediation is recommended.

9.6 Site Characterization

Figure 9-4 shows the analytical results of lead in surface soil at AOC D. Lead was determined to be a human health and ecological COPC in surface soil. Lead concentrations appear to be the highest in grids slightly north and east of the water tower. While areas with higher lead concentrations were mostly localized within the 100-foot by 100-foot area, elevated concentrations in Grid 7 suggest that further sampling may need to be conducted at step-off locations to the north of Grid 7 in order to fully delineate lead in surface soil at the site.

9.7 Findings and Recommendations

9.7.1 Findings

Based on the HHRS and ERA, lead may present potentially unacceptable risk and was retained as a COPC for AOC D, as indicated in **Table 9-3**.

Table 9-3. Human Health and Ecological Risk COPCs for AOC D

Madia	COP	Cs
Media	Human Health	Ecological
Surface Soil	Lead	Lead
Subsurface Soil	none	N/A

AX0121191314WDC 9-3

9.7.2 Recommendations

AOC D is recommended for further evaluation based upon potential unacceptable human health and ecological risks associated with lead in surface soil.

9-4 AX0121191314WDC

Table 9-1. AOC D Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	NRL-CBD SS Eco	RSLs Residential Soil (HQ=0.1) 0519	CBD-AOD-DP05	CBD-AOD-DP07	CBD-AOD-DP10	CBD-A0	OD-DP11	CBD-A	CBD-AOD-DP12	
Sample ID	ESVs (1019)		CBD-AOD-SS05-000H	CBD-AOD-SS07-000H	CBD-AOD-SS10-000H	CBD-AOD-SS11-000H	CBD-AOD-SS11P-000H	CBD-AOD-SS12-000H	CBD-AOD-SS12P-000H	
Sample Date	2073 (1013)		04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	
Chemical Name										
Total Metals (MG/KG)										
Lead	120	400	300	1,300	250	220	170	1,300	1,300	

#REF!

Notes:

Shading indicates detections
Italics indicate exceedance of NRL-CBD

SS Eco ESVs (1019)

Bolding idicates exceedance of RSLs Residential Soil (HQ=0.1) 0519

NA - Not analyzed

MG/KG - Milligrams per kilogram

Table 9-1. AOC D Analytical Results – Detected Constituents in Surface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	NRL-CBD SS Eco	RSLs Residential Soil	CBD-A0	DD-DP13	CBD-AOD-DP18	CBD-AOD-DP19	CBD-AOD-DP21	CBD-AOD-DP25
Sample ID		ESVs (1019) (HQ=0.1) 0519	CBD-AOD-SS13-000H	CBD-AOD-SS13P-000H	CBD-AOD-SS18-000H	CBD-AOD-SS19-000H	CBD-AOD-SS21-000H	CBD-AOD-SS25-000H
Sample Date	2043 (1013)		04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18
Chemical Name								
Total Metals (MG/KG)								
Lead	120	400	2,800	2,800	2,000	370	440	100

Notes:

Shading indicates detections
Italics indicate exceedance of NRL-CBD SS Eco ESVs (1019)

Bolding idicates exceedance of RSLs Residential Soil (HQ=0.1) 0519

NA - Not analyzed

MG/KG - Milligrams per kilogram

Table 9-2. AOC D Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	RSLs Residential Soil	CBD-AOD-DP05	CBD-AOD-DP07	CBD-AOD-DP10	CBD-A	OD-DP11	CBD-A	CBD-AOD-DP12	
Sample ID	(HQ=0.1) 0519	CBD-AOD-SB05-1H02	CBD-AOD-SB07-1H02	CBD-AOD-SB10-1H02	CBD-AOD-SB11-1H02	CBD-AOD-SB11P-1H02	CBD-AOD-SB12-1H02	CBD-AOD-SB12P-1H02	
Sample Date	(1102-0.1) 0013	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	
Chemical Name									
Total Metals (MG/KG)									
Lead	400	100	24	19	77 J	35 J	160 J	41 J	

Notes:
Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil (HQ=0.1) 0519

NA - Not analyzed J - Analyte present, value may or may not be accurate or precise MG/KG - Milligrams per kilogram

Table 9-2. AOC D Analytical Results – Detected Constituents in Subsurface Soil

Base-wide Expanded Site Inspection Report Naval Research Laboratory — Chesapeake Bay Detachment

Station ID	RSLs Residential Soil	CBD-A0	OD-DP13	CBD-AOD-DP18	CBD-AOD-DP19	CBD-AOD-DP21	CBD-AOD-DP25
Sample ID	(HQ=0.1) 0519	CBD-AOD-SB13-1H02	CBD-AOD-SB13P-1H02	CBD-AOD-SB18-1H02	CBD-AOD-SB19-1H02	CBD-AOD-SB21-1H02	CBD-AOD-SB25-1H02
Sample Date	(1102-0.1) 0013	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18
Chemical Name							
Total Metals (MG/KG)							
Lead	400	42	41	140	7.8	63	130
#REF!		•		·	·		

Notes: Shading indicates detections

Bolding idicates exceedance of RSLs Residential Soil (HQ=0.1) 0519

NA - Not analyzed J - Analyte present, value may or may not be accurate or precise MG/KG - Milligrams per kilogram

XRF Location and Subsequent ESI SS/SB Location for Lead

SI SS Location

XRF Area (100 ft x 100 ft) - each grid is 20 feet x 20 feet

AOC Boundary

Figure 9-1
AOC D Water Tower
Sample Locations
Base-Wide Expanded Site
Inspection Report
NRL-CBD
Chesapeake Beach, Maryland

ch2m:

XRF Location and Subsequent ESI SS Location for Lead

SI SS Location

XRF Area (100 ft x 100 ft) - each grid is 20 feet x 20 feet

Figure 9-2 AOC D Water Tower XRF and Laboratory Results for Surface Soil

Base-Wide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Ch2m:

XRF Location and Subsequent ESI SB Location for Lead

SI SS Location

XRF Area (100 ft x 100 ft) - each grid is 20 feet x 20 feet

Figure 9-3 AOC D Water Tower XRF and Laboratory Results for Subsurface Soil

Base-Wide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

Ch2m:

XRF Location and Subsequent ESI SS/SB Location for Lead

SI SS Location

XRF Area (100 ft x 100 ft) - each grid is 20 feet x 20 feet

Figure 9-4 AOC D Water Tower Human Health and Ecological Risk COPC in Surface Soil

> Base-Wide Expanded Site Inspection Report NRL-CBD Chesapeake Beach, Maryland

> > Ch2m:

Summary and Recommendations

The primary objective of the Base-wide ESI was to assess whether previous historical activities have resulted in a site-related release that poses a potential human health or ecological risk associated with the six sites that were included in this investigation. This objective was achieved by collecting additional soil and groundwater data during the Base-wide ESI field investigation. The combined dataset from the Base-wide SI and ESI were evaluated with respect to human health and ecological risk. The secondary objective of the ESI was to delineate waste at Sites 3, 4, and 5. This objective was achieved by excavating test pits at Sites 3, 4, and 5 based on the results of DGM surveying conducted in 2012. The results and recommendations for the investigation areas are summarized in **Table 10-1**.

Table 10-1. Investigation Results Summary

Investigation Area	Recommendation
Site 3 – Landfill No. 1	Further evaluation of surface soil
Site 4 – Landfill No. 2	Further evaluation of surface soil
Site 5 – Landfill No. 3	Further evaluation of surface soil
Site 7 – Road Oil Application	No further action
Site 9 – Photo-processing Waste	Further evaluation for hydroquinone in soil and groundwater
AOC D – Water Tower	Further evaluation of surface soil

AX0121191314WDC 10-1

References

CH2M. 2016. Final Base-wide Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment Chesapeake Beach, Maryland. June.

CH2M. 2017a. Final Groundwater Background Study Results, Naval Research Laboratory – Chesapeake Bay Detachment, Chesapeake Beach, Maryland. December.

CH2M. 2017b. Evaluation of Per- and Polyfluoroalkyl Substances in Groundwater Naval Research Laboratory – Chesapeake Bay Detachment Chesapeake Beach, Maryland. March.

Chief of Naval Operations (CNO). 1999. Navy Policy for Conducting Ecological Risk Assessments. Memorandum from Chief of Naval Operations to Commander, Naval Facilities Engineering Command. Ser N453E/9U595355.

Department of the Navy (Navy). 2000. *Overview of Screening, Risk Ratio, and Toxicological Evaluation*. Procedures for Northern Division Human Health Risk Assessments. May.

Maryland Department of the Environment (MDE). 2008. Cleanup Standards for Soil and Groundwater.

Mumford-Bjorkman Associates, Inc. 2012. ROV Evaluation, NAVFAC Elevated Tank (CBD Tank), Chesapeake Beach, Maryland. March.

National Academy Press. 2001. *Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc.* Food and Nutrition Board, Institute of Medicine, National Academy Press, Washington, D.C.

Naval Energy and Environmental Support Activity (NEESA). 1984. *Initial Assessment Study of Naval Research Laboratory, Washington D.C.* March.

Naval Facilities Engineering Command (NAVFAC). 2001. Navy Guidance for Conducting Ecological Risk Assessments. http://web.ead.anl.gov/ecorisk/. February.

Tetra Tech. 2015. Soil Background Study Report for Naval Research Laboratory – Chesapeake Bay Detachment, Chesapeake Beach, Maryland. March.

United States Environmental Protection Agency (USEPA). 1992. *Draft Guidance on the Selection of Analytical Metals Results from Monitoring Well Samples for Use in the Quantitative Assessment of Risk*.

USEPA. 1993. Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analysis. April.

USEPA. 1994. Region III Modifications to National Functional Guidelines for Organic Data Review Multi-Media, Multi-Concentration. September.

USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. EPA/540/R-97/006.

USEPA. 2010. Integrated Exposure Uptake Biokinetic Model for Lead in Children, Windows version (IEUBK win v1.1 build 11). http://epa.gov/superfund/lead/products.htm#user

USEPA. 2014. Determining Groundwater Exposure Point Concentrations. OSWER Directive 9283.1-42. February.

USEPA. 2015. ProUCL, Version 5.1 User's Guide. Prepared by Lockheed Martin Environmental Services. October.

USEPA. 2016. ProUCL, Version 5.1. Prepared by Lockheed Martin Environmental Services. October.

USEPA. 2017a. Adult Lead Methodology Calculation Spreadsheet. June 14.

AX0121191314WDC 11-1

USEPA. 2017b. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters and the Integrated Exposure Uptake Biokinetic Model's Default Maternal Blood Lead concentrations at Birth Variable. OLEM Directive 9285.6-56. May.

USEPA. 2017c. Recommendations for the Default Age Range in the IEUBK Model. OLEM Directive 9200.2-177. November.

USEPA. 2017d. National Functional Guidelines for Organic Superfund Methods Data Review. January.

USEPA. 2017e. National Functional Guidelines for Inorganic Superfund Methods Data Review. January

USEPA. 2018. 2018 Edition of the Drinking Water Standards and Health Advisories. Office of Water. EPA-822-F-18-001.

USFWS. 2018. Federally Listed Endangered and Threatened Species List - Maryland. Chesapeake Bay Field Office. January 24. https://www.fws.gov/chesapeakebay/EndSppWeb/LISTS/MD%20speciesList.pdf

USEPA. 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites. November.

11-2 AX0121191314WDC

Appendix A Test Pit Logs

						PROJEC	T NUM	BER		692409	СН				TEST PIT			Test	Pit	3			SHEET	Г_О)F
	N	14			P _{SM}								TE	EST F	PIT LC)G									
PROJE ELEVA			l Res	earch		nesapeake NTRACTO		n Detac JSA	hment	LOCATI	ON: Site	3						L	_OG	GER :	S. Dı	ronfie	eld		
			UIPM			Backhoe										DATE	EXC	CAVAT	EC4	/2/18					
WATER DESCRI		ÆL:			APPRO)	K. DIMEN	S: Leng	th: 10)'	Width:	6'	Max. [OMMENT	_	th: 10'											
		ИE, US				COLOR, MO SOIL STRU				ATIVE DENS		DIFFU	JLCL		CAVATION, F ITERED, GRA										
											TEST PIT D	IMENSIO	NS (I	=T)											
			ı		1				ı		1 .			I				1		I					
_	_																								
											0.0	- 10.0' -	Silt	y Sand to	o Sandy Silt	: (SP -	<u>SM)</u> ,	tan to	light	brown,	moist	to dry	y, medi	um	
							density to loose, fine to medium sand.																		
-	_	W							E		No	waste e	nco	untered.	No visible s	tainin	g .								
_			10'								End	d of Test	t Pit	at 10 fee	t bgs.										
															101										
-												_			10'				_						
_	_											$ \setminus $							$/ \parallel$						
					6'																				
																		- 1/							
_											10'	+													
											10	+						-							
-												<u> </u>	ackslash					+		No wast	e enc	ounte	ered		
													+					+							
_	_												\perp					$/\!\!\perp$							
																		/							
	_																/								
_	_																								

PROJECT NUMBER
692409CH
TEST PIT NUMBER
Site 3 Test Pit 4
SHEET __OF __

C	M 2	7	T	SM											TE	EST	ГР	IT L	-00	G									
LEVA	CT: Nava				CON	TRAC	ΓOR :			ent LO	CAT	ION :	Site	3									OGGE		S. C	Pronfie	eld		
	ATION EC							a a.4 la .	101	10	، ما داء ،	6'		Max	Dant	L .	10'			DATE EX	XCA'	VATE	EC 4/2	/18					
ESCRIF	R LEVEL :			APP	RUX.	DIME	NS: Lei	ngth:	10	VV	idth:	6	CC	MMEN	Dept	n:	10'												
	OIL NAME, US										E DEN	SITY, O		DIFF	ULCU					INNING G									
			ONS	ISTEN	CY, SC	OIL STRI	JCTURE	=, MINE	RALOG	Υ.		TEST	PIT DII				JUNI	ERED,	GRADA	ATIONAL	CON	TACTS	5, IES	IS, INS	STRUM	IEN I S	, WAII	ER SEEI	PAGE
		l .]		i		ī	Ι.	Ī			1								ĺ		l	1		1	ĺ		Ī
					W																								
_	_				V V																						1		
																												-	
_	_																	Sandy	Silt (SP - SM	<u>1),</u> ta	ın, mo	oist, m	nediur	n der	sity to	o loos	е,	
	_												tine	o me	dium	sand												-	
_	_												No v	<i>r</i> aste	enco	untere	ed. N	o visit	le sta	aining.									
_		End of Test Pit at 10 feet bgs.																											
_		10'											End	of Le	st Pit	at 10	teet	bgs.											
																	10'												
_																	10					 							
_	_												\perp									\vdash							_
_	_							_													1	/							
_				6'	Е																								
_	_											10'	\																
														\								N	o was	te en	count	ered			
_	_																												
														\vdash						-++									
_	_													$-$ \															
_	_																			-/-									_
	_														\														_
																													_
_																													
_	_																												
_																													
_	_																												_
_																													
_																													
_																													_

PROJECT NUMBER TEST PIT NUMBER

692409CH

Site 3 Test Pit 5

SHEET _OF_

				SM	1											TI	ΞS	T PI	Τl	-00	3											
	CT: Na	aval Res	searc							ment	LOC	ATION	N :	Site 3	3								l	LOG	GER	: ;	S. Dı	ronfie	ld			
ELEVA			AL NIT				CTOR :	JS	Α												ATE E	·VO/	^\	·FD.	4/2/1							
	ATION R LEVEL						inoe ENS: Le	enath:	10'		Widt	h· !	5'		Max	Dept	h.	10'		וט	11E E	XCA	AVAI	ED:	4/3/	٥						
DESCRIF		-		7 (1 1 1	1071.	Diivi	L110. L0	Jiiguii.	10		Widt	、			MMEN																	
SO	IL NAME,						MOISTU RUCTUF				ATIVE D	ENSIT	Y, OF	₹				N EXCA														
												Т	EST F	PIT DI	MENS	IONS (FT)															
		1		1 .			. 1		1		Ι.	. [1				1				. 1		. 1	· .			
					١٨/					+																						
_	_				W					+																						_
_																																
_	_			0.0 - 10.0' - <u>Silty Sand to Sandy Silt (SP - SM)</u> , light yellowish brown to tan, dry to moist, medium density to loose, fine to medium sand.																	_											
_																																
-	No waste encountered. No visible staining. End of Test Pit at 10 feet bgs.																															
_																																
_	_	10'				End or rest Pit at 10 feet bgs.																	_									
																			Τ.	10'												
_	_									+-									+	+					7							
_																\setminus																
_	_															\perp																_
					Е		5'																		/							
																\neg									/	Nov	Nact	e ence	ounte	orod		
-										+-						$-$ \									/	INO V	vasie	ence	Junte	ieu		
_															10'									-/								
_	_																							\perp								_
																												i		.		
																	\top							T								
_	_									+-							\rightarrow															
_																	-						$-\!$									
	_																\						/_									_
_	_																															
_																																
_	_																															
_																																_
_	_																															
_																																
_	_																															

ch2m:

PROJECT NUMBER	TEST PIT NUMBER		
692409CH	Site 4 Test Pit 6	SHEET _	_ OF _

C		4	7	/	SM										TE	ES	ΤP	PIT LO	G								
ROJE	CT :	Nava	Rese	earcl	n Lab, C	hesa	peake	Beach I	Detachm	ent L	OCATI	ON :	Site	4						ı	_OGGE	R:	S. Dr	onfield			
LEVA	TION	:			CC	NTF	RACTO	R: J	SA																		
			UIPM		USED :				4.01			01					0.51		DATE EX	CAVAT	EC 4/3/	18					
VATE		'EL:			APPRO	X. D	IMENS	: Length	n: 10'	V	/idth:	6'			Dept	th:	9.5'										
ESCRIF														MMEN													
SC	IL NAN	ME, US							ONTENT, INERALO		E DENS				DEBRIS	SENC		CAVATION, R FERED, GRA									
												TEST F	PIT DIN	/IENSI	ONS (I	FT)											
					ı												ı			l ı		ı	ı			$\perp \!\!\! \perp$	1
					V	,																					
			ľ														1					1					
_							1-4-11:-											SC), brown	n, moist, n	nedium	density	, some	silt,	fine to			
_	Metallic medium sand, no debris. Debris 3.0 - 9.5' - Silty Sand (SM), yellowish brown to tan, moist, med plasticity, trace clay,														_												
	- Silty Sand (SM), yellowish brown to tan, moist, med plasticity, trace clay, fine to medium sand. Corroded metal debris encountered beginning at 6.5' bgs,																										
	including fiberglass, cans, bottles, wires, and other associated litter persisting to the																										
_	_																	mixed with			Sociale	eu iillei	pers	isting t	o trie		
																		8.5' bgs re			ading f	our tim	es o	/er			
			10'		Metallio		Debris						back					0.0 bg0 .0	g.o.og o		aag						
_			10		Debris		— is									at 9	.5 fee	et' bgs.									
	End of Test Pit at 9.5 feet' bgs.																										
						Deb	orie															7					
_							7113	1							\						\perp					+	
_	_														\	V	ires				\perp						_
					Е	:	6'																				
						•									$\overline{}$				Debris		_/_					+	
_	_												9.5'		\				Deblis		_/_						
	_															\					/						
																					7						
_																+					+-					+	
																\bot	Met	allic debris		glass	/						
														W		\		beginnin	g at 6.5'	- 1/		Е					
																\neg	1			<i></i>							
																	¥ .	Wires fou	ind at 8.5'	-						+	
_	_																										_
_																											
_																											
-																											
_																											
_	L																										
_																											

PROJECT NUMBER	TEST PIT NUMBER	
692409CH	Site 4 Test Pit 7	SHEET _OF

CVIZV	V _{SM}							TE	ES ⁻	ГР	IT L	_OG								
PROJECT : Naval Researd		peake Bea TRACTOR			LOCATIC	ON:	Site 4							LOGGEF	R: S. Dı	onfield	I			
EXCAVATION EQUIPMENT		Backhoe										DAT	E EXCAVA	TED: 4/3/1	8					
WATER LEVEL :	APPROX.	DIMENS:	Length:	10'	Width:	6'		Max. Depth	1:	10'										
DESCRIPTION SOIL NAME, USCS GROUNDS COI	JP SYMBOL, C NSISTENCY, S					-)R		S ENC						N, COLLAPS S, INSTRUM					
<u> </u>	<u> </u>	ı	1	1	1	I		ILINOIONO (I	' ' <i>)</i> 	1		1	1	ı	1	1				
																		\rightarrow	\rightarrow	
	W							4.01					L.,	<u> </u>		<u> </u>				_
								4.0' - <u>Clay</u> o medium	_					, med dens	sity, fine to	mediu	ım sa	nd,		
										-	-							-		
								10.0' - <u>Sill</u> um sand,			<u>VI),</u> IIg	nt yellow	brown to	tan, moist,	med dens	ity, fin	e to	-	_	_
							No w	aste enco	untor	od N	o vicit	olo etaini	ng					-	_	
							- INO W	aste enco	unten	cu. IN	O VISIL	ne stairii	ng.					-		
10'							End o	of Test Pit	at 10) feet	bgs.							\rightarrow		
																		\dashv	_	
-							+ +			10'								\rightarrow	_	
														\perp / \mid						
								\backslash						+/-						
	E	6'						\perp											_	
							10'							/						
								-					 	/						
													+	No	waste end	ounte	red	_	_	
								-+					+					\rightarrow	_	
-								-										_	_	
								-					//						_	
								\												
																				_
																				_
																				_
																				_

Ch2/	V _{sm}
PROJECT: Naval Rese	arch Lab, (
ELEVATION:	С
EXCAVATION EQUIPME	NT USED
\//ATED E\/E ·	\ DDD(

PROJECT NUMBER 692409CH	TEST PIT NUMBER Site 4 Test Pit 8	SHEETOF

			Т	EST PIT LO	G								
PROJECT: Naval Research Lab,			N: Site 4		LOGGEF	R: S. Dronfield							
ELEVATION: C EXCAVATION EQUIPMENT USED	ONTRACTOR:	JSA			DATE EXCAVATEC 4/3/1	0							
	OX. DIMENS: Leng	gth: 10' Width:	6' Max. De		DATE EXCAVATEL 4/3/1	0							
DESCRIPTION	57. BIIILI 10. Lon	y 10 Wildin	COMMENTS	pu 10									
SOIL NAME, USCS GROUP SYMBOI CONSISTENCY	., COLOR, MOISTURE, /, SOIL STRUCTURE,					N, COLLAPSE OF WALLS, SAND S, INSTRUMENTS, WATER SEEF							
	TEST PIT DIMENSIONS (FT)												
	1 , 1												
	W												
1- 1	V V		0.0 - 5.0' - Cl	evey Sand (SC) brown	moist, medium density,	fine to medium sand							
				sticity clay, trace silt.	, moist, mediam acrisity,	inc to mediam sana,							
				, c.a.,,			_						
			<u>5</u> .0 - 10.0' - <u>S</u>	ilty Sand (SM), light yel	llowish brown, moist, med	d density, fine to medium							
			sand, trace c	ay.									
							_						
			No waste end	ountered. No visible sta	aining.								
						-	_						
10'			End of Test F	it at 10 feet bgs.			_						
				10'									
				10			_						
	F CI												
	E 6'												
							_						
			10'										
					/ No	waste encountered							
			\										

PROJECT NUMBER	TEST PIT NUMBER		
692409CH	Site 4 Test Pit 9	SHEET	OF

		YV	SM							T	ES ⁻	ГР	TI	LOG	ત્રે									
PROJECT : Nav ELEVATION :	al Resear		chesapea CONTR			chment SA	LOCATIO	ON:	Site 4								LOGGE	ER:	S. Dro	onfield				
EXCAVATION EQU	JIPMENT			ckhoe	. J.	5A								D.A	ATE EX	CAVAT	ED: 4/3	3/18						
WATER LEVEL :			ROX. DIN		Length:	: 10'	Width:	6'	ı	Max. Depth	ո:	10'												
DESCRIPTION									CO	MENTS														
SOIL NAME, U						ONTENT, R NERALOGY		SITY, OI	R	DIFFULCU DEBRI							CONDITI							
								TEST F	PIT DIM	ENSIONS (FT)													
1				ı	1 .					I	ı		ı		1			Ī	1 .				1	
			W																					
									0.0 - 1	0.0' - <u>Silty</u>	Sand	with s	ome C	Cobbles	(SM), br	own to	yellowis	h brown	n, moist	, medi	um	\vdash		
									densit	y, fine to m	edium	n sand	l, trace									а _		
	piece of rebar in top 0.0 - 2.0'.																							
	No waste encountered. No visible staining.																							
										: Task Dik s	. 10 f-	-4	_											
	401								Ena o	Test Pit a	т то те	et bgs	5.											
	10'																							
												10'												_
																	7							
																	-+							
			Е	61						\top							+				_			
				6'						+							+							
										-							\vdash							
									10'	_\						$\perp \perp /$								
										\								No was	te enco	untere	ed			_
																+/-								
										-++						$+\!$								
										-														
																/								
																					_			

PROJECT NUMBER
692409CH
TEST PIT NUMBER
Site 4 Test Pit 10
SHEET _ OF _

	NI4	4 /[SM									T	ES	T F	PIT	LO	G									
PROJE ELEVA	CT : Nava	al Res	earch L	_ab, Che	esape	eake B	each De	etachm	ent LO	CATIO	N: Sit	e 4									LOG	GER :	S. D	ronfie	eld		
	ATION EC	UIPM	IENT U					•										DATE	E EXC	AVAT	ΓED:	4/3/18					
	R LEVEL :		Α	PPROX	. DIM	IENS: l	_ength:	10'	Wid	dth:	6'		x. Dep	oth:	10'												
DESCRI	PTION										(СОММІ	ENTS														
SC	DIL NAME, US			MBOL, C ENCY, S									DEBI	RIS EN											/ALLS, SAN WATER SE		
			•					•			TEST PIT	DIMEN	NSIONS	(FT)											•		
																				+							
_	_			W																							_
_																											
															<u>nd (S</u>	<u>M)</u> , lig	ght bro	wnis	sh yello	w, m	oist,	medium	densit	y, fine	to		
											me	eaium	sand.														
											No	wast	e enc	ounter	red. N	lo visil	ble sta	ainin	g.								
-	_										_																
_											En	d of T	est P	t at 10	0 feet	bgs.											
_		10'																									_
_																											
_															10'												
																					7						
												+									+						
-												+									-						_
_				E		6'						$\perp \!\!\! \perp$															
_	_												\														_
											10)'	\														
													\							\mathcal{I}		No wa	iste end	counte	ered		
_													$\top \setminus$							$/\bot$							
													+							+							_
_	_											-	+						-/								
_													'	\					/_								
_	_													<u> </u>					/_								_
_																											
_																											
-																											
_													_														
-	_																										
_																											

	PROJECT NUMBER	TEST PIT NUMBER	
	692409CH	Site 5 Test Pit 7	SHEET _OF
CIATIAAA.			

		y V	J _{SM}								TI	ES ⁻	TΡ	TI	LO	G								
PROJECT	: Naval Rese	arch La	ab, Chesa	apeake	Beach D	Detachn	nent	LOCATIO	ON:	Site 5	5							LOGGEF	R: S. D	ronfield	t			
ELEVATIO				ITRACT		JSA																		
	ION EQUIPMEN			Backh											[DATE	EXCAVA	TED: 4/4/	8					
WATER L		А	PPROX.	DIMEN	IS: Le	ngth:	10'	Width:	6'		Max. Deptl	า:	10'											
DESCRIPTI	ON									CC	MMENTS													
SOIL	NAME, USCS GF		YMBOL, C TENCY, S						SITY,	OR								L, CONDITIO ACTS, TEST						
									TES1	PIT DI	MENSIONS (FT)												
			1	1 ,		1	1 .	1 .		1	۱ ،]	ı]	1		1	. 1	. 1	, 1	1 ,	. 1	1	
			W																					
- -			VV							0.0	O O' Clay	(O) (S)	and (SC) (strong	brow	n moist	modium	longity fir	o to m		<u></u>	\rightarrow	
	_																					"		
											ling beginr	•	-	_	ic irag	illeli	.s, loani	ricai suri	ice. More	Clay W	1011			
						1					509	g u		3 5.								r	\rightarrow	
	_									9.0 -	10.0' - <u>Sil</u>	ty Sai	nd (S	<u>M)</u> , lig	ght bro	wn to	tan, mo	oist, mediu	m density	, fine to	o med	dium	\longrightarrow	
											l, some cla			-					,					
																						Γ	T	
										−No v	aste enco	unter	ed. N	lo visi	ble sta	aining	J.						\rightarrow	
- -	10'																							
	_																							
															10'									
)					
	_										-+							 	4			\vdash		
											\							/						_
			Е		6'																			
	_										121							+					\rightarrow	
- -											10' \							+-			<u> </u>	\vdash		
	_											\												_
																			No was	te enc	ounte	ered		_
												\												
	_											\neg						+/+						
- =												-						+/						
	_											\												_
																		<i>J</i>						_
			ı										•				·	_						
	_																							
																								_
<u> </u>	_																				encountered			
- -																								
	_																							
7																								

ch2m:

PROJECT NUMBER	TEST PIT NUMBER	
692409CH	Site 5 Test Pit 8	SHEETOF

			ľ	SM											T	ΞS	T F	PIT	LO	G											
PROJE ELEVA	CT : TION	Naval Res	earcl	h Lab, C	hesa _l	oeake I ACTO	Beach R :	Deta	chmen	t LOC	CATIO	N:	Site	5									LO	GGE	R:	S. [Oronfie	eld			
	ATIO	N EQUIPN			Ва	ckhoe			10'	Wid	l+h·	6'		Max.	Don	th:	10'			DATE	EXC	CAVA	TEC	24/4/	18						
DESCRIP		EL:		APPRO	A. DI	IVIEINS.	. Leng	uri.	10	VVIC	iui.	0		MMEN		un.	10														-
		ME, USCS GF		SYMBOL, ISTENCY,						LATIVE			R	DIFI	FULCI DEBRI	S EN												WALLS WATE			
		•									T	EST	PIT DIN	/ENSI	ONS (FT)		•										<u> </u>			-
																				+											-
_	_			٧	/																										
													0.0 -	10 0'	' - Cla	avev	Sano	L(SC)	stron	a hra	own r	noist	me	dium	dens	sitv f	ine to	mediu	m		
_	_																											sand			_
_													clay	begin	nning	at 4'	bgs '	with m	ottling	١.											
													No 14	ıaste	enco	unte	red 1	do vie	ible st	ainin	a										
_													110 1	14316	01100	an ite	iou. I	10 413	St	un iii i(a.								-	$\overline{}$	
													End	of Te	st Pit	at 1	0 fee	t bgs											-	_	
_	_	10'											1		l	l	1	I		1		1			l	ı	ı	1 1	-		
_																															
_	_																	10'													
															\										1						
_				Е	:	6'																									
					-	0																								_	
_	_														-									-						\rightarrow	
														10'		ackslash								_						\rightarrow	
_	_															_							\perp		No	was	te end	ounte	ed		
_																							\perp								
_	_															\															_
																1							I								
																	\setminus														
	_																														一
_																															
_	_																														
_																															
_	_																														
_																															
_																															
_																															
-																															

PROJECT NUMBER
692409CH
TEST PIT NUMBER
Site 5 Test Pit 9
SHEET _ OF _

				SM													T	ES	ST	PΙ	ΤL	-0	G												
LEVA	TION :			С	NC	ΓRAC	TOF			achme	ent	LOC	ATIC	N:	Site	5							DAT		O A V			ER :	S	S. Dr	onfie	ld			
VATEF		N EQUIPN		APPRO				Leng	th:	10'		Widt	th:	6'		Max.	Den	th:	10	,		L	JAI	E EX	CAV	AIE	L 4/4	/18							
ESCRIF				74114	,,			Long		10		· · · · ·			CC	MMEN				'									_						
SO	IL NAM	E, USCS GI		SYMBOL ISTENCY								TIVE [DENSI	ΓY, Ο	R	DIFI	FULCU DEBRI	JLT\ S EN	Y IN E NCOU	XCAV NTER	ATIO	N, RL GRAD	INNI OITA	ig gf Nal (RAVEL CONT	., CON	NDITIO	ON, CO	OLL ISTF	APSE RUME	OF V	VALLS WATI	S, SANI ER SEE	D HEA EPAGI	νΕ, Ξ
														ΓEST	PIT DII	/ENSI	ONS (FT)																	
	1		,		1	1		ĺ		L			I		I		Ì		1		ı		ı			Ī		Ī	1	ı	I	l	, [ı	
				V	٧																														
																														-					
	_															9.0' - I, med																	m		
_	_															nents											Jul	uoo.	00		iiotai		-		
	_																																}		
_	_															10.0' ity, fii																	ed		
																degr																			
		10'																							·	ĺ				•					_
															End	of Te	st Pit	at	10 fe	et bo	gs.														
																						10'													
_	_																Τ		+			10						+	+						
	_							◆	_	– Tra	ce d	egra	ded g	ray			ackslash											\vdash	+						
_	_												etal s				\perp										\perp	<u> </u>	\perp						
	_			ı	Ξ		6'									10'	\									•	$\downarrow \downarrow$								
																	\											Т	race	e scr	ap n	nater	ial & v	vire	
																	1										7								
																		\top											+						
_	_																	+	+								_		+						
																		$\vdash \setminus$	+					Т.,	ace	/			\perp						
_	_															W			igwedge						rade	\coprod		E	:						
																								_	d	/									_
	_																									/						į i			_
		1	•										•		•											•	•		_						
																													—						
_																																			
_	_																																		
	_																																		
_																																			
																													—						
_	_																																		
	_																																		

Appendix B Soil Boring and Monitoring Well Construction Logs

692409CH.SI.DR

Boring Number:

CBD-S03-DP06

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

WATER	LEVELS:				START : 1510	0 END : 1525	LOGGER : J Clark
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (43")	0	SM	moist	10 YR 4/6	0-11" topsoil 11-23" silty sand (SM), dark yellowish brown (10 YR 4/6), moist, medium dense, fine to medium sand	1520 Surface soil sample collecte 0-0.5'
_		0	CL	moist	10 YR 4/6	23-36" silty clay (CL), dark yellowish brown (10 YR 4/6), moist, firm, fine to medium sand	
-		0	SM	moist	10 YR 5/8	36-43" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, fine to medium sand	
5	5 - 10' (36")	0	SM	moist	10 YR 6/8	0-36" same as above except color change to brownish yellow (10 YR 6/8)	1525 Subsurface soil sample collected 8-10'
-		0					
10						End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP07

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

WATER	LEVELS:				START : 1450	0 END : 1505	LOGGER : J Clark
DEPTH B	ELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS	PID(ppm) USCS		Moisture Content	Code	SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (42")	0	CL	moist	10 YR 4/4	0-11" topsoil 11-25" silty clay (CL), dark yellowish brown (10 YR 4/4), moist, hard,	1500 Surface soil sample collecte 0-0.5'
-		0	SM	moist	10 YR 6/3	some fine to medium sand 25-42" silty sand (SM), pale brown (10 YR 6/3), moist, medium dense, some fine to medium sand	
-		0					
5	5 - 10' (36")	0	SM	moist	10 YR 6/3	0-36" same as above except dense at bottom	1505 Subsurface soil sample collected 8-10'
_	(22)	0					
_							
10						End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP08

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

WATER LEVELS :	START : 1430	END : 1445	LOGGER : J Clark

WATER	LEVELS:				START: 143	U END: 1445	LOGGER : J Clark
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
-	0 - 5' (36")	0	SM	moist	10 YR 5/8	0-7" topsoil 7-36" silty sand (SM), yellowish brown (10 YR 5/8) to brownish yellow (10 YR 6/8), moist, medium dense, some fine sand	1440 Surface soil sample collected 0-0.5'
_		0			10 YR 6/8		
5 - -	5 - 10' (30")	0 0 0	SM	moist	10 YR 5/8	0-30" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense to dense, some fine to medium sand	1445 Subsurface soil sample collected 8-10'
- 10	-					End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP09

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

WATER	LEVELS:				START : 1330	O END : 1400	LOGGER: J Clark
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (36")	0	SM	moist	10 YR 4/3	0-5" topsoil 5-21" silty sand with gravel (SM), brown (10 YR 4/3), moist, medium dense, fine to medium sand, some subrounded gravel	1355 Surface soil sample collecte 0-0.5'
-	-	0	SM	moist		21-36" same as above except color change to light yellowish brown (10 YR 6/4)	
- 5	- - 5 - 10'	0	SM	moist	10 YR 6/4	0-53" same as above	1400 Subsurface soil sample
-	(59")	0	SP	wet	10 YR 7/4	53-59" medium sand (SP), very pale brown (10 YR 7/4), wet, medium dense, some fine sand	•
_	-	0					
-	=	0				End of Boring at 10 ft bgs	
10		I					

692409CH.SI.DR

Boring Number:

CBD-S03-DP10

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: FND : 1425 LOGGER : LClark START · 1405

WAIER	LEVELS:				START: 140	5 END : 1425	LOGGER : J Clark
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
-	0 - 5' (57")	0	SC	moist	10 YR 5/4	0-12" topsoil 12-22" clayey sand (SC), yellowish brown (10 YR 5/4), moist, dense,	1420 Surface soil sample collecte 0-0.5'
-	-	0	CL	moist	10 YR 5/4	some fine to medium sand, some clay 22-45" silty clay (CL), yellowish brown (10 YR 5/4), moist, firm, some fine to medium sand	
-	-	0	ML	moist	10 YR 5/4	45-57" sandy silt (ML), yellowish brown (10 YR 5/4), moist, firm, some fine to medium sand	
5	-	0					
-	5 - 10' (43")	0	ML SM	moist moist	10 YR 5/4 10 YR 5/8 10 YR 7/1	0-8" same as above 8-23" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, some clay lenses colored light grey (10 YR 7/1)	1425 Subsurface soil sample collected 8-10'
-	-	0	CL SM	moist moist	10 YR 7/4 10 YR 5/8	23-36" clay with fine sand (CL), very pale brown (10 YR 7/4), moist, firm, some fine sand	
-	-	0	JIVI	moist	10 11 3/6	36-43" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense	
10						End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP11

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration **ELEVATION**:

WATER	LEVELS:				START : 1530	0 END : 1610	LOGGER : J Clark	
DEPTH B	ELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
- - -	0 - 5' (41")	0 0 0	CL SM	moist moist	10 YR 3/6 10 YR 4/6 10 YR 6/8	0-5" topsoil 5-19" silty clay (CL), dark yellowish brown (10 YR 3/6), moist, firm 19-41" silty sand (SM), dark yellowish brown (10 YR 4/6) to brownish yellow (10 YR 6/8), moist, medium dense, fine to medium sand	1600 Surface soil sample collected 1605 (duplicate) 0-0.5'	
5	5 - 10' (40")	0 0 0	SM	moist	10 YR 6/8 10 YR 6/4	0-40" same as above except color change to light yellowish brown (10 YR 6/4) at 24" End of Boring at 10 ft bgs	1610 Subsurface soil sample collected 8-10'	
10						End of Boring at 10 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S03-DP12

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 1455 FND: 1530 LOGGER : J Clark

WATER LEVELS:			START: 145	END: 1530	LOGGER : J Clark
DEPTH BELOW SURFACE ((FT)			SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT) REC/BLOWS	PID(ppm) USCS CODE	Moisture Content	Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
0 - 5' _ (48") _ _ _	0 SM 0 0	moist	10 YR 3/4	0-8" topsoil 8-48" silty sand (SM), dark yellowish brown (10 YR 3/4) to yellowish brown (10 YR 5/8) at 38", moist, medium dense to dense at bottom, fine to medium sand	1525 Surface soil sample collected (MS/MSD) 0-0.5'
5 5 - 10' (40")	0 SM 0 0	moist		0-40" same as above except color change to brownish yellow (10 YR 6/8) and medium dense	1530 Subsurface soil sample collected 8-10'
10				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP13

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

WATER	LEVELS:				START : 161	5 END : 1635	LOGGER : J Clark
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS PID(ppm) USCS			Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (36")	0	ML	moist	10 YR 3/6	0-12" topsoil 12-21" sandy silt (ML), dark yellowish brown (10 YR 3/6), moist, firm, fine to medium sand	1625 Surface soil sample collecte 0-0.5'
-		0	CL SM	moist moist	10 YR 4/6 10 YR 6/6	21-29" silty clay (CL), dark yellowish brown (10 YR 4/6), moist, firm 29-36" silty sand (SM), brownish yellow (10 YR 6/6), moist, medium dense, fine to medium sand	
5 <u> </u>	5 - 10' (36")	0	SM	moist	10 YR 5/8	0-36" same as above except color change to yellowish brown (10 YR 5/8)	1630 Subsurface soil sample collected 8-10'
-		0				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S03-DP14

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

WATER	LEVELS:				START : 141	5 END : 1445	LOGGER : J Clark
DEPTH B	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
- - -	0 - 5' (47")	0 0 0	SM	moist	10 YR 5/8	0-12" topsoil 12-47" silty sand (SM), yellowish brown (10 YR 5/8), moist, dense to medium dense at bottom, fine to medium sand	1445 Surface soil sample collecte 0-0.5'
5	5 - 10' (46")	0 0 0	SM	moist	10 YR 5/8 10 YR 7/4	0-46" same as above except a mixture of very pale brown (10 YR 7/4) along with yellowish brown (10 YR 5/8) End of Boring at 10 ft bgs	1450 Subsurface soil sample collected (MS/MSD) 8-10'

692409CH.SI.DR

Boring Number:

CBD-S03-DP15

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

WATER	LEVELS:				START : 1635	5 END : 1715	LOGGER : J Clark	
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY		
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
-	0 - 5' (34")	0 0	SM	moist	10 YR 5/8	0-4" topsoil 4-34": silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, fine to medium sand	1700 Surface soil sample collected 0-0.5'	
5 	5 10		CM CM		10 VD 5/0	0.25%	1705 Cultarufana nail nagarla	
-	5 - 10' (35")	0 0	SM	moist	10 YR 5/8	0-35" same as above	1705 Subsurface soil sample collected 1710 (duplicate) 8-10'	
- - 10						End of Boring at 10 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S04-DP07

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

VATER LEVELS: START : 4/5/18 END : 4/5/18 LOGGER : S Dronfield

WATER	LEVELS :				LOGGER : S Dronfield		
DEPTH E	ELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	
	0 - 5'	0				MINERALOGY. 0-5" topsoil	Surface soil sample collected 0-
-	(48")	0	CL	moist	10 YR 7/6	5-33" sandy clay (CL), yellow (10 YR 7/6), moist, dense, some fine to medium sand, medium plasticity	0.5'
-		0	SC	moist	10 YR 5/6	33-48" clayey sand (SC), yellow brown (10 YR 5/6), moist, medium density, fine to medium sand	
_		0					
5	5 - 10' (35")	0 0	SP	moist	10 YR 5/6	0-35" poorly-graded sand (SP), yellow brown (10 YR 5/6), moist, medium density, fine to medium sand, some silt	Subsurface soil sample collected 10'
-						End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S04-DP08

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration **ELEVATION**:

DRILLING METHOD AND EQUIPMENT USED: DPT

START : 4/5/18 FND · 4/5/18 LOGGER : S Dronfield

WATER	LEVELS :				LOGGER : S Dronfield			
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT) REC/BLOWS	INTERVAL (FT) REC/BLOWS PID(ppm) Mois Cone				SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
-	0 - 5' (51")	0	CL	moist	10 YR 5/6	0-12" topsoil 12-27" sandy clay (CL), yellowish brown (10 YR 5/6), moist, medium density, fine to medium sand	Surface soil sample collected 0- 0.5'	
-		0	SP	moist	10 YR 5/6	27-51" poorly graded sand (SP), yellowish brown (10 YR 5/6), moist, medium dense to loose, fine to medium sand, trace silt		
_	-	0						
5		0	SP	:-4	10 VD 7/4	0.40 see see see shows were relative (40 VD 7/4)	Cubaufaa aailaa aalla aalla abad	
-	5 - 10' (42")	0	52	moist	10 YR 7/4	0-42" same as above, very pale brown (10 YR 7/4)	Subsurface soil sample collected to 10'	
-	-	0						
_	-	0				End of Paring at 10 ft has		
10		0				End of Boring at 10 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S04-DP09

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration **ELEVATION**:

WATER	LEVELS:			START : 1615 END : 1635			LOGGER : J Clark	
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
- - -	0 - 5' (50")	0 0 0	SM	moist	10 YR 5/8	0-10" topsoil 10-50" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, fine to medium sand	1630 Surface soil sample collected 0-0.5'	
5	5 - 10' (38")	0 0 0	SM	moist	10 YR 5/8	0-38" same as above, quartz lense at 13"	1635 Subsurface soil sample collected 8-10'	
-	-	0				End of Boring at 10 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S04-DP10

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

0

0

WATER	LEVELS:				START : 1545	5 END : 1610	LOGGER : J Clark
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS PID(ppm) USCS CODE		Moisture Content	Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
- - -	0 - 5' (28")	0 0	SM	moist	10 YR 2/2	0-8" topsoil 8-28" silty sand with gravel (SM), very dark brown (10 YR 2/2), moist, medium dense, fine to medium sand, some subangular gravel	1605 Surface soil sample collecte 0-0.5'
5	5 - 10' (38")	0	SM	moist		0-38" silty sand (SM), brownish yellow (10 YR 6/8), moist, loose, fine to medium sand	1610 Subsurface soil sample collected 8-10'

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S04-DP11

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD
DRILLING CONTRACTOR: Geologic Exploration

ELEVAI	ION:					DRILLING CONTRACTOR: Geologic Exploration				
DRILLIN	IG METHOD A	ND EQUIP	PMENT U	ISED: DPT						
WATER	LEVELS:				START : 4/5/	18 END : 4/5/18	LOGGER : S Dronfield			
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS			
	INTERVAL (FT))								
	REC/BLOWS	PID(ppm)	USCS	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY				
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.				
	0 - 5'	0				0-12" topsoil	1135 Surface soil sample collecte			
-	(41")	0	CL	moist	10 YR 4/3	12-24" sandy clay (CL), brown (10 YR 4/3), moist, medium dense, low plasticity	0-0.5'			
_	-	0	SM	moist	10 YR 5/6	24-41" silty sand (SM), yellow brown (10 YR 5/6), moist, medium dense, fine to medium sand				
=	-	0								
5	-									
<u> </u>	5 - 10' (43")	0	SM	moist	10 YR 5/6	0-43" same as above	1140 Subsurface soil sample collected 8-10'			
_		0								
_	1	0								

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S04-DP12

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START : 4/5/18 END : 4/5/18 LOGGER : S Dronfield

WATER LEVELS	:			START: 4/5/	18 END: 4/5/18	LOGGER : S Dronfield
DEPTH BELOW SU	JRFACE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
INTERVA REC/BLC		USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_ (57' _ _ _ _		CL	moist	10 YR 7/6	0-7" topsoil 7-57" sandy clay (CL), yellow (10 YR 7/6), moist, dense, some fine to medium sand, low plasticity	1110 Surface soil sample collecte 0-0.5'
5 _ 5 - 1 _ (41' _ _		CL SP	moist moist	10 YR 7/6 10 YR 5/6	0-7" same as above 7-41" poorly graded sand (SP), yellow brown (10 YR 5/6), moist, loose, some silt, fine to medium sand	1115 Subsurface soil sample collected 1120 (duplicate) 8-10'
-					End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S04-DP13

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 4/5/18 FND: 4/5/18 LOGGER : S Dronfield

				START: 4/5/	18 END: 4/5/18	LOGGER : S Drontield
ELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT) REC/BLOWS		USCS CODE	Moisture Content			
0 - 5' (56")	0 0 0 0	CL	moist	10 YR 5/6	0-8" topsoil 8-56" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to medium sand, medium plasticity	1050 Surface soil sample collected 1055 (duplicate) 0-0.5'
5 - 10' (43")	0 0 0 0	CL SP	moist moist	10 YR 5/6	5-43" poorly graded sand (SP), yellow brown (10 YR 5/6), moist,	1100 Subsurface soil sample collected 8-10'
	INTERVAL (FT) REC/BLOWS 0 - 5' (56")	0 - 5' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INTERVAL (FT) REC/BLOWS PID(ppm) USCS CODE 0 - 5'	NTERVAL (FT)	NTERVAL (FT)	Noisture Noisture Content Code Cod

5 - 10'

(48")

PROJECT NUMBER

692409CH.SI.DR

Boring Number:

CBD-S04-DP14

Subsurface soil sample collected 8-

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

10 YR 5/6

DRILLING METHOD AND EQUIPMENT USED: DPT

0

0

0

0

SP

dry

WATER LEVELS: START: 4/5/18 END: 4/5/18 LOGGER : S Dronfield OTHER COMMENTS DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION INTERVAL (FT) REC/BLOWS PID(ppm) Moisture Munsell SOIL NAME, COLOR USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0-10" topsoil Surface soil sample collected 0-0 - 5' 0 (49") CL moist 10 YR 5/6 10-32" sandy clay (CL), yellowish brown (10 YR 5/6), moist, firm, 0.5' 0 some fine to medium sand, medium plasticity SP 10 YR 5/6 dry 32-49" poorly graded sand (SP), yellowish brown (10 YR 5/6), dry, 0 loose, some silt, fine to medium sand, trace white gravel 0 0 5_

0-48" same as above

End of Boring at 10 ft bgs

5 - 10'

(34")

PROJECT NUMBER

692409CH.SI.DR

Boring Number:

CBD-S04-DP15

Subsurface soil sample collected 8-

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

10 YR 5/6

DRILLING METHOD AND EQUIPMENT USED: DPT

0

0

0

SP

moist

WATER	LEVELS:				START: 4/5/1	18 END : 4/5/18	LOGGER : S Dronfield
DEPTH E	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (33")	0 0	SP	moist	10 YR 5/6	0-8" topsoil 8-33" poorly graded sand (SP), yellowish brown (10 YR 5/6), moist, loose, fine to medium sand, trace silt	Surface soil sample collected 0- 0.5'

0-34" same as above

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S04-DP16

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

VATER LEVELS: START : 4/5/18 END : 4/5/18 LOGGER : S Dronfield

WATER	LEVELS:				START: 4/5/	LOGGER : S Dronfield	
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
-	0 - 5' (18")	0	SM	moist	10 YR 3/3	0-9" topsoil 9-18" silty sand (SM), dark brown (10 YR 3/3), moist, medium density, fine to medium sand, trace gravels, becoming tan at bottom	Surface soil sample collected 0- 0.5'
5 - - -	5 - 10' (12")	0	SM GW SM	moist very moist moist	10 YR 2/1	0-1" same as above 1-6" silty gravel (GW), black (10 YR 2/1), very moist, loose, some fine sand, glass and other waste material fragments 6-12" same as 0-1", loose	Subsurface soil sample collected 10'
-	-					End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S05-DP07

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVA7	TON:				DRILLING CONTRACTOR: Geologic Exploration				
DRILLIN	IG METHOD A	ND EQUI	PMENT L	ISED: DPT					
WATER	LEVELS:				START : 4/5/	118 END : 4/5/18	LOGGER : S Dronfield		
DEPTH E	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS		
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY			
			CODE	Comoni	3000	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.			
-	0 - 5' (56")	0	CL	moist	10 YR 5/6	0-13" topsoil 13-56" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to medium sand, medium plasticity	1415 Surface soil sample collecte 0-0.5'		
-		0 0							
5 - - -	5 - 10' (56")	0 0 0	CL	moist	10 YR 5/6	0-56" same as above, low plasticity, more sand at the bottom	1420 Subsurface soil sample collected 8-10'		
-									

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S05-DP08

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration **ELEVATION**:

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: FND · 4/5/18 LOGGER : S Dronfield START · 4/5/18

WATER LEVELS :			START: 4/5/	LOGGER : S Dronfield	
DEPTH BELOW SURFACE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT) REC/BLOWS PID(pp	USCS CODE	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
- (31") 0 - (31") 0 - 0	CL	moist	10 YR 5/6	0-14" topsoil (some sand) 14-31" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, some fine to medium sand, medium plasticity	1430 Surface soil sample collected 0-0.5'
5 5 - 10'	CL	moist	10 YR 5/6	0-56" same as above, low plasticity, more sand and silt at the bottom	1432 Subsurface soil sample collected 8-10'
- 0				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S05-DP09

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:**

DRILLING METHOD AND EQUIPMENT USED: DPT

START: 4/5/18 END: 4/5/18 LOGGER : S Dronfield WATER LEVELS: DEPTH BELOW SURFACE (ET) SOIL DESCRIPTION OTHER COMMENTS

DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS			
		INTERVAL (FT)							
	REC/BLOWS	PID(ppm)	USCS	Moisture	Munsell Code	SOIL NAME, COLOR			
			CODE	Content	Code	RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,			
			OODL			MINERALOGY.			
	0 - 5'	0				0-5" topsoil	1457 Surface soil sample collected		
	_ (33")		CL	moist	10 YR 5/6	5-33" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to	0-0.5'		
		0				medium sand, medium plasticity			
	_	0							
	_								
	_								
5_	_								
	5 - 10'	0	CL	moist	10 YR 5/6	0-26" same as above	1500 Subsurface soil sample		
	_ (26")	0					collected 8-10'		
	_								
		0							
	_								
						End of Boring at 10 ft bgs			
						End of boiling at 10 it bys			
10			ĺ						

692409CH.SI.DR

Boring Number:

CBD-S05-DP10

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 4/5/18 FND: 4/5/18 LOGGER : S Dronfield

WATER LEVELS:				START: 4/5/	18 END: 4/5/18	LOGGER : S Drontield	
DEPTH BELOW SUR	ACE (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
INTERVAL REC/BLOW	` ' <u> </u>	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
0 - 5' (43") - -	0 0 0	CL	moist	10 YR 5/6	0-6" topsoil 6-43" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to medium sand, medium plasticity	1517 Surface soil sample collecte 0-0.5'	
5 5 - 10' _ (16") _ _ _	0	GW	moist moist	10 YR 2/1 10 YR 5/6	0-6" gravel (GW), black (10 YR 2/1), moist, loose, fine to medium sand, fine to medium subangular gravel, glass, other waste material 6-16" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to medium sand, medium plasticity End of Boring at 10 ft bgs	1520 Subsurface soil sample collected 8-10'	

692409CH.SI.DR

Boring Number:

CBD-S05-DP11

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD

ELEVATION:
DRILLING METHOD AND EQUIPMENT USED: DPT

RILLING METHOD A	ND EQUIPMEN	II USED: DPI			
VATER LEVELS :			START : 4/5/	18 END : 4/5/18	LOGGER : S Dronfield
EPTH BELOW SURFAC	CE (FT)			SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT REC/BLOWS	PID(ppm) US0	Moisture CS Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY	
	COI	DE		OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
0 - 5' (50")	0 0	_ moist	10 YR 5/6	0-11" topsoil 11-50" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, fine to medium sand, medium plasticity, lithe fragments	1508 Surface soil sample collect 0-0.5'
_	0				
5	0 0	maint	10 VD E/6	0 E7" come co chouse more cond	1E10 Cubaurface cail comple
5 - 10' (57")	0 0	_ moist	10 YR 5/6	0-57" same as above, more sand	1510 Subsurface soil sample collected 8-10'
-	0				
10	0			End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S05-DP12

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

WATER LEVELS :					START: 4/5/	LOGGER : S Dronfield	
DEPTH B	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS PID(ppm) USCS		Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY		
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (50")	0	CL	moist	10 YR 5/6	0-4" topsoil, concrete sublayer about 2" thick at 12-14" 14-50" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, medium plasticity	1527 Surface soil sample collected 0-0.5'
_		0					
_		0					
5		0					
_	5 - 10' (57")	0	CL	moist	10 YR 5/6	0-57" same as above	1530 Subsurface soil sample collected 1530 (duplicate) 8-10'
_		0					
_		0					
-		0				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S05-DP13

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START : 4/5/18 END : 4/5/18 LOGGER : J Clark

WATER LE	EVELS :				START: 4/5/	LOGGER : J Clark	
DEPTH BEL	.OW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
			Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
-	0 - 5' (53")	0 0 0 0	CL	moist	10 YR 5/6	0-9" topsoil 9-53" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, some fine to medium sand, low plasticity	1445 Surface soil sample collected 1447 (duplicate) 0-0.5'
5 - - - -	5 - 10' (58")	0 0 0 0 0	CL	moist	10 YR 5/6	0-58" same as above, more sand at the bottom End of Boring at 10 ft bgs	1450 Subsurface soil sample collected 8-10'

692409CH.SI.DR

Boring Number:

CBD-S05-DP14

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 4/5/18 END: 4/5/18 LOGGER: S Drontie	LOGGER : S Dronfield		01/111. 7/3/10	WATER LEVELS:
---	----------------------	--	----------------	---------------

WATER LEVELS.			START . 4/3/	16 END : 4/3/16	LOGGER . 3 DIGILIER
DEPTH BELOW SURFAC	E (FT)			SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT) REC/BLOWS	PID(ppm) USCS CODE		Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
0 - 5' _ (29") _ _ _	0 CL 0	moist	10 YR 5/6	0-10" topsoil 10-29" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, some fine to medium sand, low plasticity	1438 Surface soil sample collecte 0-0.5'
5 5 - 10' (57") - -	0 CL 0 0 0 0	moist	10 YR 5/6	0-57" same as above, more sand at the bottom End of Boring at 10 ft bgs	1440 Subsurface soil sample collected 8-10'

692409CH.SI.DR

Boring Number:

CBD-S05-DP15

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 4/5/18 END: 4/5/18 LOGGER : S Dronfield

***	LLVLLO.				31AN1.4/3/	10 LND: 4/3/10	LOGGEN . 3 DIGITIER
DEPTH I	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
- - -	0 - 5' (38")	0 0 0	CL	moist	10 YR 5/6	0-8" topsoil 8-38" sandy clay (CL), yellow brown (10 YR 5/6), moist, firm, some fine to medium sand, low plasticity	1545 Surface soil sample collecte (MS/MSD) 0-0.5'
5 - - -	5 - 10' (57")	0 0 0 0 0	CL	moist	10 YR 5/6	0-57" same as above, more sand at the bottom, trace gravel throughout recovery interval	1550 Subsurface soil sample collected 8-10'
10		0				End of Boring at 10 ft bgs	

5 - 10'

(58")

PROJECT NUMBER

692409CH.SI.DR

Boring Number:

CBD-S05-DP16

1400 Subsurface soil sample

collected 8-10'

SOIL BORING LOG

0-58" same as above, except brownish yellow (10 YR 6/8) and

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD

ELEVATION :

10 YR 6/8

DRILLING METHOD AND EQUIPMENT USED: DPT

0

0

0 0

0

CL

moist

WATER	LEVELS:				START : 4/5/	18 END : 4/5/18	LOGGER : J Clark
DEPTH B	ELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY	
			CODE	Contone	Couc	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
-	0 - 5' (48")	0	CL	moist		0-8" topsoil 8-48" sandy clay (CL), yellow brown (10 YR 5/8), moist, firm, no plasticity	1355 Surface soil sample collected 0-0.5'
_		0					
_		0					

medium plasticity

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S07-DP20

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration ELEVATION:

DRILLING METHOD AND EQUIPMENT USED: DPT

START : 0830 END : 0900 LOGGER : LClark

WATER	LEVELS:				START: 083	0 END: 0900	LOGGER : J Clark
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
- - -	0 - 5' (46")	0 0 0	SM	moist	10 YR 5/6 10 YR 4/3 10 YR 5/6	0-12" topsoil 12-46" silty sand (SM), yellowish brown (10 YR 5/6), moist, medium dense, fine to medium sand, color change at 24-30" to brown (10 YR 4/3)	0855 Surface soil sample collected 0-0.5'
5	5 - 8' (36")	0 0 0	SM	moist	10 YR 5/6 10 YR 7/4 10 YR 5/6	0-36" same as above except color change at 6-12" to very pale brown (10 YR 7/4) and some clay at bottom	0900 Subsurface soil sample collected 5-8'
- 10						End of Boring at 8 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S07-DP21

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration ELEVATION:

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: END : 0935 LOGGER : LClark START : 0905

WATER LEVELS :				START: 090	5 END: 0935	LOGGER : J Clark
DEPTH BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
INTERVAL (FT REC/BLOWS	PID(ppm) U	JSCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_ (38")	0 :	SM	moist	10 YR 4/6	0-12" topsoil 12-31" silty sand with gravel and some cobbles (SM), dark yellowish brown (10 YR 4/6), moist, dense, fine to medium sand, subangular	0925 Surface soil sample collecte 0930 (duplicate) 0-0.5'
- - -	0 0	SC	moist	10 YR 4/6	gravel, some subangular cobbles 31-38" clayey sand (SC), dark yellowish brown (10 YR 4/6), moist, dense, fine to medium sand	
5	_	SC CL	moist moist	10 YR 4/6 10 YR 5/1	0-2" same as above 2-58" sandy clay (CL), gray (10 YR 5/1), moist, firm, some fine to medium sand, extra recovery due to sloughing	0935 Subsurface soil sample collected 5-8'
- - 10	0 0				End of Boring at 8 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S07-DP22

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

, , ,	. •					2 2	
DRILLIN	IG METHOD A	ND EQUI	PMENT L	JSED: DPT			
WATER	LEVELS:				START: 0940	0 END : 1010	LOGGER : J Clark
DEPTH E	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT)			1			
	REC/BLOWS	PID(ppm)		Moisture		SOIL NAME, COLOR	
			USCS	Content	Code	RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
	0 - 5'	0				0-12" topsoil	1005 Surface soil sample collecte
_	(36")		SP	moist	10 YR 6/8		0-0.5'
		0				at 26", medium dense, medium sand	
_		0					
_	_			wet			
-	-						
5							
_	5 - 8'	0	SP	wet	10 YR 6/8	0-21" same as above	1010 Subsurface soil sample
_	(30")		CL	wet		21-30" sandy clay (CL), brownish yellow (10 YR 6/8), wet, soft, fine to	collected 5-8'
		0				medium sand	
1	1	I					

End of Boring at 8 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S07-DP23

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER	LEVELS:				START : 101	LOGGER : J Clark	
DEPTH E	ELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	
- - -	0 - 5' (27")	0 0	SP	moist		MINERALOGY. 0-4" topsoil 4-27" medium sand with some subrounded gravel (SP), brownish yellow (10 YR 6/8), moist, dense, fine to medium sand, subrounded gravel	1025 Surface soil sample collecte 0-0.5'
5	5 - 8' (37")	0 0 0	SP	moist	10 YR 6/8	0-37" same as above, medium dense at bottom	1030 Subsurface soil sample collected (MS/MSD) 5-8'
10						End of Boring at 8 ft bgs	

692409CH.SI.DR

Boring Number:

LOCATION: Chesapeake Beach, MD

CBD-S07-DP24

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : DRILLING CONTRACTOR: Geologic Exploration

	IOIN .					Drieding Contractor. Geologic Exploration	
DRILLIN	IG METHOD A	ND EQUI	PMENT L	ISED: DPT			
WATER	LEVELS:				START : 104	5 END : 1110	LOGGER : J Clark
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT)						
	REC/BLOWS	PID(ppm)		Moisture	Munsell	SOIL NAME, COLOR	
			USCS	Content	Code	RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
	0 - 5'	0				0-12" topsoil	1105 Surface soil sample collecte
-	(48")	0	CL	moist	10 YR 5/8	12-40" sandy clay (CL), yellowish brown (10 YR 5/8), moist, firm,	0-0.5'
		U	SM	moist	10 YR 5/8	some fine to medium sand 40-48" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium	
_		0	J		10 111 0/0	dense, fine to medium sand	
_		0					
_							
5							
	5 - 8'	0	SM	moist	10 YR 5/8	0-24" same as above	1110 Subsurface soil sample
-	(24")	0					collected 5-8'
		U					
_							
_							1
	1	1	1				

End of Boring at 8 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S07-DP25

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS :					START: 111	5 END : 1140	LOGGER : J Clark				
DEPTH B	ELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS				
	INTERVAL (FT REC/BLOWS	PID(ppm)		PID(ppm)		PID(ppm)		Moisture		SOIL NAME, COLOR	
		USCS Con	Content	Code	RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.						
- - -	0 - 5' (36")	0 0 0	SM	moist	10 YR 5/8	0-14" topsoil 14-36" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, fine to medium sand	1125 Surface soil sample collected 0-0.5'				
5	5 - 8' (35")	0 0 0	SM SM	moist moist		0-8" same as above, some orginial material at bottom 8-35" same as above except color change to brownish yellow (10 YR 6/6)	1130 Subsurface soil sample collected 1135 (duplicate) 5-8'				
-						End of Boring at 8 ft bgs					

692409CH.SI.DR

Boring Number:

CBD-S07-DP26

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

FIGURE : LOI at NINE-COD			DDILLING CONTRACTOR OF THE CON			
ELEVATION :				DRILLING CONTRACTOR: Geologic Exploration		
DRILLING METHOD AND EQ	JIPMENT L	JSED: DPT				
WATER LEVELS :			START: 114	5 END : 1200	LOGGER : J Clark	
DEPTH BELOW SURFACE (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
INTERVAL (FT) REC/BLOWS PID(pp	` '		Munsell	SOIL NAME, COLOR		
	USCS	Moisture Content	Code	RELATIVE DENSITY		
	CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
0 - 5' 0				0-7" topsoil	1155 Surface soil sample collecte	
_ (31") 0	SM	moist	10 YR 5/8	7-31" silty sand (SM), yellowish brown (10 YR 5/8), moist, medium dense, fine to medium sand	0-0.5'	
- 0						
-						
5						
5 - 8' 0 _ (33")	SM	moist	10 YR 5/8	0-33" same as above	1200 Subsurface soil sample collected 5-8'	
_ 0						
-				End of Boring at 8 ft bgs		
_						

692409CH.SI.DR

Boring Number:

CBD-S07-DP27

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER	LEVELS:				START : 1345	5 END : 1410	LOGGER : J Clark	
DEPTH E	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT) REC/BLOWS PID(ppm) USCS		·			SOIL NAME, COLOR RELATIVE DENSITY		
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
-	0 - 5' (32")	0 0	SM	moist	10 YR 6/6	0-8" topsoil	1405 Surface soil sample collecte 0-0.5'	
5 - -	5 - 8' (34")	0	SM CL	moist wet		0-20" same as above 20"-34" sandy clay (CL), brownish yellow (10 YR 6/8), wet, firm to soft	1410 Subsurface soil sample collected (MS/MSD) 5-8'	
-		0				End of Boring at 8 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S09-DP05

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS :			START : 1115		5 END : 1150	LOGGER : J Clark	
DEPTH B	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	INTERVAL (FT) REC/BLOWS PID(ppm) USCS				SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
_	0 - 5' (27")	0	SM	moist		0-0" asphalt and asphalt subbase 0-27": silty sand (SM), light yellowish brown (10 YR 6/4), moist, medium dense, fine to medium sand	1145 Surface soil sample collected (MS/MSD) 0-0.5'
_		0					
5 <u> </u>	5 - 10'	0	CL	moist	10 YR 6/4	0-57" sandy clay (CL), light yellowish brown (10 YR 6/4) to yellowish	
-	(57")	0				brown (10 YR 5/8), moist, firm to hard at bottom	collected 8-10'
_		0			10 YR 5/8		
- 10		0				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S09-DP06

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD

DRILLING CONTRACTOR: Geologic Exploration

0

	1011.					Britzelina Contribution Cit. acclogic Exploration	
DRILLIN	IG METHOD A	ND EQUI	PMENT L	JSED: DPT			
WATER LEVELS :					START: 081	5 END : 0915	LOGGER : J Clark
DEPTH B	BELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
-	0 - 5' (23")	0	SM	moist	10 YR 7/8	0-8" topsoil and decomposed concrete 8-23": silty sand (SM), yellow (10 YR 7/8), moist, medium dense, fine to medium sand	0855 Surface soil sample collecte 0900 (duplicate) 0-0.5'
5 	5 - 10' (52")	0	CI	wet	10 YR 7/8	0-52" sandy clay (CL), yellow (10 YR 7/8), wet, firm	0905 Subsurface soil sample collected 8-10'

End of Boring at 10 ft bgs

692409CH.SI.DR

Boring Number:

CBD-S09-DP07

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD

ELEVATION:

10 YR 5/8

wet

0

0

	IG METHOD A	ND EQUI	PMENIC	JSED: DPI							
WATER LEVELS :					START : 0910	END : 0935	LOGGER : J Clark				
DEPTH B	BELOW SURFAC	CE (FT)				SOIL DESCRIPTION	OTHER COMMENTS				
	INTERVAL (FT REC/BLOWS	· · ·		/S PID(ppm)		PID(ppm)		Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.					
-	0 - 5' (40")	0	SM	moist	10 YR 5/8	0-7" topsoil 7-40": silty sand (SM), yellowish brown (10 YR 5/8) to yellowish brown (10 YR 5/4) at 24", moist, medium dense, fine to medium sand	0930 Surface soil sample collecte 0-0.5'				
_		0			10 YR 5/4						
_ 5											
 ı	5 - 10' (52")	0	SM CL	moist moist		0-15" same as above 15-52" sandy clay (CL), mix of light gray (10 YR 7/2) and brownish	0935 Subsurface soil sample collected (MS/MSD) 8-10'				

End of Boring at 10 ft bgs

yellow (10 YR 5/8), moist, firm, wet at bottom

692409CH.SI.DR

Boring Number:

CBD-S09-DP08

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

FINOSECT . LOT AL WINE-COD		LOCATION: Chesapeake Beach, MD			
ELEVATION:		DRILLING CONTRACTOR: Geologic Exploration			
DRILLING METHOD AND EQUIPMENT U	SED: DPT				
WATER LEVELS :	START : 094	0 END: 1005	LOGGER : J Clark		
DEPTH BELOW SURFACE (FT)		SOIL DESCRIPTION	OTHER COMMENTS		
INTERVAL (FT)					
REC/BLOWS PID(ppm) USCS	Moisture Munsell Content Code	SOIL NAME, COLOR RELATIVE DENSITY			
CODE		OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.			
_ 0 - 5' 0 SM 0	moist 10 YR 6/8	0-12" topsoil 12-24": silty sand (SM), brownish yellow (10 YR 6/8), moist, dense, fine to medium sand	1000 Surface soil sample collecte 0-0.5'		
5 5 - 10'	moist 10 YR 6/8 moist 10 YR 6/8	0-9" same as above except loose 9-50" sandy clay (CL), brownish yellow (10 YR 6/8), moist, firm	1005 Subsurface soil sample collected 8-10'		
10		End of Boring at 10 ft bgs			

692409CH.SI.DR

Boring Number:

CBD-S09-DP09

SOIL BORING LOG

LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration PROJECT : ESI at NRL-CBD

ELEVATION :

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS :			START : 1010		0 END: 1035	LOGGER : J Clark	
DEPTH E	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content		SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	
			CODE			MINERALOGY.	
_	0 - 5' (33")	0	SM	moist	10 YR 6/4	0-10" topsoil 10-33": silty sand (SM), light yellowish brown (10 YR 6/4), moist, dense, fine to medium sand	1030 Surface soil sample collected 0-0.5'
-	-	0					
5	- 5 - 10'	0	SM	moist	10 YR 6/4	0-5" same as above, some organic matter at bottom	1035 Subsurface soil sample
-	(57")	0	CL	moist		5-57" sandy clay (CL), light yellowish brown (10 YR 6/4), moist, firm, streaks of yellowish brown (10 YR 5/8)	collected 8-10'
-	-	0			10 YR 5/8		
=	-	0				End of Boring at 10 ft bgs	

692409CH.SI.DR

Boring Number:

CBD-S09-DP10

SOIL BORING LOG

PROJECT : ESI at NRL-CBD LOCATION : Chesapeake Beach, MD

ELEVATION: DRILLING CONTRACTOR: Geologic Exploration

DRILLING METHOD AND EQUIPMENT USED: DPT

WATER LEVELS: START: 1040 END: 1115 LOGGER: J Clark

WATER LEVELS :			START : 1040 END : 1115			LOGGER : J Clark	
DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS	
INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Code	RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,		
0 - 5' (25")	0 0	SM	moist	10 YR 6/4	7-25": silty sand (SM), light yellowish brown (10 YR 6/4), moist,	1105 Surface soil sample collected 0-0.5'	
5 - 10' (52")	0 0 0 0	SM CL	moist moist	10 YR 6/4	15-52" sandy clay (CL), light yellowish brown (10 YR 6/4), moist, firm to hard at bottom	1110 Subsurface soil sample collected 1115 (duplicate) 8-10'	
	INTERVAL (FT) REC/BLOWS 0 - 5' (25")	INTERVAL (FT) REC/BLOWS PID(ppm) 0 - 5'	INTERVAL (FT) REC/BLOWS PID(ppm) USCS CODE 0 - 5'	NTERVAL (FT)	NTERVAL (FT)	INTERVAL (FT) REC/BLOWS PID(ppm) USCS CODE ON CONSISTENCY, SOIL STRUCTURE, MINERALOGY. 0-7" topsoil 7-25": silty sand (SM), light yellowish brown (10 YR 6/4), moist, medium dense, fine to medium sand USCS CODE USCS C	

692409CH.SI.DR

Boring Number:

CBD-S03-MW03

SOIL BORING LOG

PROJECT : ESI at NRL-CBD ELEVATION : LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration

	G METHOD AI	ND EQUI	IPMENT U	SED: DPT a		0 FND : 1200	LOCOED : LOCale
WATER LEVELS : DEPTH BELOW SURFACE (FT)				START: 100		LOGGER : J Clark OTHER COMMENTS	
	INTERVAL (FT)					SOIL DESCRIPTION	OTHER COMMENTS
		PID(ppm))	Moisture	Munsell	SOIL NAME, COLOR	
		(11)	USCS	Content	Code	RELATIVE DENSITY	
			CODE			OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	
	0 - 5'					0-1" topsoil	
_	(34")	0	SM	moist	10 YR 7/8	1-34" silty sand (SM), yellow (10 YR 7/8), moist, medium dense, some	
		0				fine to medium sand	
_							
-		0					
_							
5	5 - 10'		SM	moist	10 YR 7/8	0-41" same as above except trace clay at bottom	
_	(41")	0				,	
		0					
_							
_		0					
_		0					
10							
10	10 - 15'		SM	moist	10 YR 7/8	0-22" same as above	
_	(29")	0	CL	moist		22-29" sandy clay (CL), very pale brown (10 YR 7/4) with brown	
		0				mottling, moist, firm, low plasticity, fine to medium sand	
_		U					
_							
15	15 - 20'	0	CL	moist	10 YR 7/4	0-10" same as above	
_	(18")	U	CL	moist		10-18" sandy clay (CL), greyish green (gley 1 4/2), moist, firm, low	
		0				plasticity, fine sand	
_							
_							
_							
20	20 - 25'	0	CL	very moist	gley 1 4/2	0-38" same as above except 0-6" very moist, medium plasticity before	
_	(38")	U	OL.	very moist		becoming moist with low plasticity	
		0					
_		0					
_				moist			
		0					
_							
25	25 - 30'	0	CL	wet	gley 1 4/2	0-57" same as above, wet from 0-18", medium plasticity from 0-18",	25' is top of water table
_	(57")			WCL		saturated	Lo to top of water table
		0					
-		0		moist			
_							
		0					
_		0					
20	30 - 35'	0	CL	wet	gley 1 4/2	0-57" same as above, wet from 0-20", medium plasticity from 0-20",	
30		U	CL	weı		saturated	
30	(57")		1				
30 <u> </u>	(57")	0					
30	(57")			moist			
30 <u> </u>	(57")	0		moist			

ROJECT NUMBER			
	692409CH.SI.DR	Boring Number:	CBD-S03-MW03

	MZ		м	SOIL BORING LOG						
ELEVAT			PMENT U	JSED: DPT a	LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration SED: DPT and HSA					
WATER	LEVELS:				START: 100	0 END : 1200	LOGGER : J Clark			
DEPTH E	DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS			
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.				
35		0				End of Boring at 35 ft bgs Well Screened from 24 ft bgs to 34 ft bgs				

692409CH.SI.DR

Boring Number:

CBD-S04-MW02

SOIL BORING LOG

PROJECT: ESI at NRL-CBD LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT and HSA WATER LEVELS: START: 1355 END: 1525 LOGGER: J Clark DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION OTHER COMMENTS INTERVAL (FT) REC/BLOWS PID(ppm) SOIL NAME, COLOR Moisture Munsell USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0 - 5' Hand Augered (Topsoil) (N/A)5_ 5 - 10' 10 YR 6/8 0-9" silty sand (SM), brownish yellow (10 YR 6/8), moist, medium SM moist (9") 0 dense, fine to medium sand 10 10 YR 6/8 10 - 15' SM moist 0-21" same as above except gravelly landfill debris from 4"-6" 0 (21") 0 15_ 10 YR 6/8 15 - 20' 0 SM moist 0-34" same as above except wet at 7" top of water table at 16 ft bgs (34") 0 0 20 10 YR 6/8 20 - 25' 0 SM moist 0-15" same as above except more clay (37") moist gley 1 4/2 15-37" sandy clay (CL), greyish green (gley 1 4/2), moist, firm, some 0 fine sand, low plasticity 0 0 25 25 - 30' 0 wet 0-44" slough, wet CL (57") wet gley 1 4/2 44-57" same as above 0 0 0 0 30 30 - 35' 0 moist to wet 0-26" slough, moist to wet (57") CL wet gley 1 4/2 26-57" same as above except medium plasticity and soft, some brown 0 0

0

PROJECT NUMBER			
6924	09CH.SI.DR	Boring Number:	CBD-S04-MW02

	NIZ/		м		SOIL BORING LOG						
ELEVAT			DMENT	ICED : DDT -	LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration ED: DPT and HSA						
	LEVELS:	IND EQUI	PIVIENT	JOED. DPIA	START : 135	55 END : 1525	LOGGER : J Clark				
DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS					
	INTERVAL (FT REC/BLOWS) PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.					
35 - - -		0				End of Boring at 35 ft bgs Well Screened from 15 ft bgs to 25 ft bgs					
40											

692409CH.SI.DR

Boring Number:

CBD-S04-MW03

SOIL BORING LOG

PROJECT: ESI at NRL-CBD LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT and HSA WATER LEVELS START: 1540 END: LOGGER: J Clark DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION OTHER COMMENTS INTERVAL (FT) REC/BLOWS PID(ppm) SOIL NAME, COLOR Moisture Munsell USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0 - 5' Hand Augered (Topsoil) (N/A)5_ 5 - 10' 10 YR 6/8 0-30" silty sand (SM), brownish yellow (10 YR 6/8), moist, medium SM moist (30") 0 dense, some fine to medium sand 0 0 10 10 YR 6/8 10 - 15' SM moist 0-27" same as above 0 (27") 0 0 15_ 10 YR 6/8 15 - 20' 0 SM moist 0-38" same as above (38") 0 0 0 20 10 YR 6/8 20 - 25' 0 SM moist 0-4" same as above (4") 25 25 - 30' 10 YR 6/8 0 SM moist to wet 0-32" same as above, except saturated at 16" and loose water table at 26.5 ft bgs SC (57") wet gley 1 4/2 32-57" clayey sand with silt (SC), grayish brown (gley 1 4/2), wet at 0 top to moist, firm, low plasticity, some fine sand 0 moist 0 0 30 30 - 35' 0 moist to wet 0-22" slough (57") CL wet gley 1 4/2 22-57" same as above except grading to sandy clay at bottom 0 0 0

PROJECT NUMBER		
692409CH.SI.DR	Boring Number:	CBD-S04-MW03

	MZ1		м	SOIL BORING LOG							
ELEVAT DRILLIN	IG METHOD AN		PMENT L	JSED: DPT a	LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration D: DPT and HSA						
WATER	LEVELS :				START : 1540	END:	LOGGER : J Clark				
DEPTH E	BELOW SURFACE INTERVAL (FT) REC/BLOWS	E (FT)	USCS CODE	Moisture Content		SOIL DESCRIPTION SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	OTHER COMMENTS				
35		0				End of Boring at 35 ft bgs Well Screened from 25 ft bgs to 35 ft bgs					

692409CH.SI.DR

Boring Number:

CBD-S05-MW01

SOIL BORING LOG

PROJECT: ESI at NRL-CBD LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT and HSA WATER LEVELS START: 0815 END: 1000 LOGGER: J Clark DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION OTHER COMMENTS INTERVAL (FT) REC/BLOWS PID(ppm) SOIL NAME, COLOR Moisture Munsell USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0 - 5' Hand Augered (Topsoil) (N/A)5_ 5 - 10' No Recovery (0") 10 10 YR 6/8 10 - 15' CL moist 0-17" sandy clay (CL), brownish yellow (10 YR 6/8), moist, firm, (46")0 medium plasticity, fine sand, some water at top 10 YR 6/8 SM moist 17-46" silty sand (SM), brownish yellow (10 YR 6/8), moist, medium 0 dense, some fine to medium sand 0 0 15 _ 10 YR 6/8 0-43" same as 0-17" for (10-15) 15 - 20' 0 CI moist 43-57" same as 17-46" for (10-15) (57") SM moist 10 YR 6/8 0 0 0 0 20 20 - 25' 0 0-18" same as 0-17" for (10-15) SP 10 YR 5/8 (57") moist 18-57" sand (SP), yellowish brom (10 YR 5/8), moist, medium dense, 0 some fine to medium sand 0 0 0 25 25 - 30' 0-19" slough 0 10 YR 5/8 SP (50") moist 19-50" same as above 0 0 0 0 30 30 - 35' 0 0-7" slough top of water table at 31 ft bgs 10 YR 5/8 (57") SM wet 7-57" silty sand (SM), yellowish brown (10 YR 5/8), wet, low denisty, 0 some fine to medium sand 0 0

692409CH.SI.DR

Boring Number:

CBD-S05-MW01

SOIL BORING LOG

ELEVAT					LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration			
	G METHOD A LEVELS :	ND EQUI	PMENTU	ISED: DPI a	START: 081	15 END : 1000	LOGGER : J Clark	
DEPTH B	ELOW SURFAC	E (FT)				SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		
35 _ _	35 - 40' (57")	0 0 0	SC	wet	gley 1 4/2	0-7" slough 7-57" clayey sand (SC), greenish grey (gley 1 4/2), saturated, low density, some fine to medium sand, some clay		
_		0				End of Boring at 40 ft bgs Well Screened from 30 ft bgs to 40 ft bgs		

692409CH.SI.DR

Boring Number:

CBD-S05-MW02

SOIL BORING LOG

PROJECT: ESI at NRL-CBD LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT and HSA WATER LEVELS: START: 1350 END: 1450 LOGGER: J Clark DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION OTHER COMMENTS INTERVAL (FT) REC/BLOWS PID(ppm) SOIL NAME, COLOR Moisture Munsell USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0 - 5' Hand Augered (Topsoil) (N/A)5_ 5 - 10' No Recovery (0") 10 0-10" sandy clay (CL), brownish yellow (10 YR 6/8), moist, firm, some 10 YR 6/8 10 - 15' CL moist 0 (10") fine to medium sand, low plasticity 15_ 10 YR 6/8 0-9" same as above except burned material at bottom 15 - 20' 0 CI moist (32")SM moist 10 YR 6/8 9-32" silty sand (SM), brownish yellow (10 YR 6/8), moist, medium 0 dense, some fine to medium sand 0 20 0-9" slough 20 - 25' 0 10 YR 6/8 (41") SM moist 9-41" same as above 0 0 0 25 25 - 30' 0 0-7" slough top of water table at 26 ft bgs 10 YR 6/8 (52")SM wet 7-52" same as above except wet 0 0 0 0 30 10 YR 6/8 30 - 35' 0 SM wet 0-17" same as above (57") SC wet gley 1 4/2 17-57" clayey sand (SC), greenish grey (gley 1 4/2), wet, low density, 0 some fine to medium sand 0 0

692409CH.SI.DR

Boring Number:

CBD-S05-MW02

SOIL BORING LOG

				SOIL BORING LOG						
ELEVAT			DMENT	IOED - DDT -	LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration					
	LEVELS :	IND EQUI	PIMENT	ISED: DPT a	START : 135	50 END : 1450	LOGGER : J Clark			
DEPTH BELOW SURFACE (FT)					SOIL DESCRIPTION	OTHER COMMENTS				
	INTERVAL (FT REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.				
35 <u> </u>	35 - 40' (57")	0 0	SC	wet	gley 1 4/2	0-57" same as above except soft at 30", wet at top, moist at bottom				
- -		0		moist		End of Boring at 40 ft bgs Well Screened from 25 ft bgs to 35 ft bgs				

692409CH.SI.DR

Boring Number:

CBD-S05-MW03

SOIL BORING LOG

PROJECT: ESI at NRL-CBD LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration **ELEVATION:** DRILLING METHOD AND EQUIPMENT USED: DPT and HSA WATER LEVELS: START: 1000 END: 1150 LOGGER: J Clark DEPTH BELOW SURFACE (FT) SOIL DESCRIPTION OTHER COMMENTS INTERVAL (FT) REC/BLOWS PID(ppm) SOIL NAME, COLOR Moisture Munsell USCS RELATIVE DENSITY Content Code OR CONSISTENCY, SOIL STRUCTURE, CODE MINERALOGY. 0 - 5' Hand Augered (Topsoil) (N/A)5_ 5 - 10' 0 10 YR 7/8 0-40" sandy clay (CL), yellow (10 YR 7/8), moist, firm, low plasticity, CL moist (40") some fine to medium sand 0 0 0 10 10 YR 7/8 10 - 15' CL moist 0-15" same as above 0 (50") SMmoist 10 YR 6/8 15-50" silty sand (SM), brownish yellow (10 YR 6/8), moist, medium dense, some fine to medium sand 0 0 0 15_ 0 15 - 20' 0 0-15" slough 10 YR 6/8 (48") SM moist 15-48" same as above 0 0 0 20 20 - 25' 0 0-5" slough 10 YR 6/8 (43")SM moist 5-43" same as above 0 0 0 25 25 - 30' 10 YR 7/4 0-55" same as above except very pale brown (10 YR 7/4) and wet at top of water table at 28 ft bgs 0 SM wet (55") 28" 0 0 0 0 30 0-57" clayey sand (SC), greenish grey (gley 1 4/2), wet, low density, 30 - 35' 0 SC wet gley 1 4/2 (57") some fine to medium sand 0 0 0

|--|

692409CH.SI.DR

Boring Number:

CBD-S05-MW03

SOIL BODING LOG

ELEVAT	CT : ESI at NRI ION : G METHOD A		PMENT II	SED: DPT a	and HSA	LOCATION: Chesapeake Beach, MD DRILLING CONTRACTOR: Geologic Exploration		
	LEVELS:	EQUI		<u> </u>	START : 100	00 END : 1150	LOGGER : J Clark	
DEPTH BELOW SURFACE (FT)						SOIL DESCRIPTION	OTHER COMMENTS	
	INTERVAL (FT) REC/BLOWS	PID(ppm)	USCS CODE	Moisture Content	Munsell Code	SOIL NAME, COLOR RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,		
		0			<u> </u>	MINERALOGY.		
35 _	35 - 40' (41")	0	SC	wet	gley 1 4/2	0-57" same as above except some shells		
_		0						
- 40		0				End of Boring at 40 ft bgs Well Screened from 25 ft bgs to 35 ft bgs		

CBD-SO3-MW03

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 3

DRILLING CONTRACTOR : Geologic Explorations DRILLING METHOD AND EQUIPMENT USHSA/DPT

WATER LEVELS : START: 4/9/2018 LOGGER: J. Clark

1- Ground elevation at well

2- Top of casing elevation

a) concrete pad dimensions

3- Wellhead protection cover type 3' x 4" Steel stick-up surface casing with locking cover

4- Dia./type of well casing

2.0-inch Schedule 40 PVC

5- Type/slot size of screen

10 ft screen, 0.1 slotted

6- Type screen filter a) Quantity used

#1 Silica Sand

5 bags

7- Type of seal a) Quantity used

Bentonite pellets 1 bag

Bentonite Grout

a) Grout mix used

Surge and purge

Development time

Estimated purge volume

30 gallons total purged

Comments

CBD-SO4-MW02

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 4

DRILLING CONTRACTOR: Geologic Explorations

DRILLING METHOD AND EQUIPMENT US HSA/DPT
WATER LEVELS: START: 4/9/2018 LOGGER: J. Clark

CBD-SO4-MW03

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 4

DRILLING CONTRACTOR: Geologic Explorations

DRILLING METHOD AND EQUIPMENT US HSA/DPT

WATER LEVELS: START: 4/9/2018 LOGGER: J. Clark

CBD-SO5-MW01

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 4

DRILLING CONTRACTOR: Geologic Explorations

DRILLING METHOD AND EQUIPMENT US HSA/DPT

WATER LEVELS: START: 4/10/2018 LOGGER: J. Clark

CBD-SO5-MW02

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 4

DRILLING CONTRACTOR: Geologic Explorations

DRILLING METHOD AND EQUIPMENT US HSA/DPT

WATER LEVELS: START: 4/10/2018 LOGGER: J. Clark

CBD-SO5-MW03

SHEET 1

OF 1

WELL COMPLETION DIAGRAM

PROJECT: NRL CBD ESI LOCATION: Site 4

DRILLING CONTRACTOR: Geologic Explorations
DRILLING METHOD AND EQUIPMENT USAS/DPT

WATER LEVELS: START: 4/10/2018 LOGGER: J. Clark

Appendix C Monitoring Well Development Logs and Groundwater Purge Logs

Low Flow Groundwater Purging and Sampling Datasheet

Date:	4/12/2	018	Start Time:	1020	Finish Time:	1105	Well ID:	503	-MW03
Field Team:					_			5 te	
Weather/Ten						Initial DTV			
Well Condition					PID	(Well Casing):		PID (8Z)	:
Pump Type (rge Method:			
Portable Pun	np Depth:				_ F	Purge Rate ¹ :			
(stripes)	(4° 0 5 % 1 5	TWO CARE		d Paramet	ers (collect in 3	3 minute intervals) 学级的人	A No. of	A PART AND BALL
Time	DTW ²	Purge Vol. (mL)	(°C)	рН	Sp. Cond. (µS/cm)	Turbidity (NTU)	(mg/L)	ORP (mV)	Note color, odor, sheen, particulate, etc.
1035		Begin Pu	ımping Weli	0000	PER RE	是特别的		PARKET.	
1030			17,04	5.41	0.145	71000	0.80	132	
1035			16.67	5.33	0.171	71000	1.07	148	
1040	T x		16.75	5.54	0.137	>(000	3.77	148	
1045			16.93	5.61	0.153	> 1000	9.37	143	
1050			16.83	5.56	0.168	21000	11.25	157	
105%	well	purged	dry						
1055		1	16.79	5.42	0.175	2000	11.45	134	
1057	well ou	rod d	ry		11/2			. /	
1102	120	D'	17.47	5.46	0.148	>1000	11.74	166	
Well	Develo	21		05	0 0		1,1	104	Mylly
- voeli	perett	Tech	W7 111	1	 				MAIN
					 				
		-	-		 	 			
				-	-	-			
		_		-					
		_							
					-				
		-		-					
Otabilization	1.700-0-001-0-1-0-1	25.7339 S2509 S265	1905/01/12 ANN ATTEN	murm ucraria		440 APPL 1	200 F # 10F 10F 11F 11.	STATE STREET	at a mind and a contract data of
Stabilization Criteria ³				± 0.1 units	± 3%	≤ 10 NTU or ± 10 %	± 0.3 mg/L	± 10 mV	
target purge rate	is 0.1 - 0.5 L/mir	n (0.03 - 0.13 gal	/min)	² DTW: depth to	o water measure	d from top of casi	ng; total drawdo	wn should not e	exceed 0.33 ft
stabilization achi	ieved once field p	arameters stabili	ze for 3 successiv						
Sample ID:								mple Time	
Field Filtered	18.5			_			Sampling V		
Analyses:	8260B, 8260	BSIM, 300, 3	14, 350.1, 376	.2, 504.1, 162	25C, 180.1, 68	360, 2540C, 2	510B, 2320B,	6010B, 602	20, 7470A, 8015B,
(Circle)		, 8141A, 8151	IA, 8270C, 82	70CSIM, 8290	0, 8315A, 832	1A, 9040B, 90	040C, 9050, 9	060, 3500F	e-D, RSK-175
QC SAMPLE	(circle):	FD	MS/MSD	EQ Blank	Split				
QC ID :							imple Time:		
QC analysis		n sample an	alysis? (Y/	N) If	yes, specify:	-			
Decon:	(Y/N)					ID Meter ID:			
Alconox:	(Y/N)	DI Rinse:	(Y/N)			Indicator ID:			
Total Purge \	Volume (GAL	<u>-):</u>		_	WQ Meter 1	ype and ID:			
Comments:)A;						
							-		

Low Flow Groundwater Purging and Sampling Datasheet Start Time: 1110 Finish Time: 1145 Well ID: 504 - MWOZ
Site: 5: 42 4 Date: Site: 5; te 4 Field Team: Initial DTW (ft btoc): 19-851 Weather/Temp: PID (Well Casing): PID (BZ): Well Condition: Pump Type (if applicable): Purge Method: Purge Rate1: Portable Pump Depth: Field Parameters (collect in 3 minute intervals) Purge Vol. Sp. Cond. Turbidity Note color, odor, sheen, Temp DTW² pH (µS/cm) (NTU) (mg/L) (mV) particulate, etc. Time (mL) (°C) 1115 Begin Pumping Well 5.76 1120 16.27 0.096 21000 14.75 1175 well 1130 well charge 11.35 waiting 18.50 5.98 >1000 1140 0.100 11.50 17-5 16.04 1142 11 0.090 11.42 184 199 1144 Developed Stabilization ≤ 10 NTU or ± 0.1 units ± 3% ± 0.3 mg/L ± 10 mV Criteria³ ± 10 % target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) ²DTW: depth to water measured from top of casing; total drawdown should not exceed 0.33 ft 3 stabilization achieved once field parameters stabilize for 3 successive readings Sample Time: Field Filtered? (Y/N) If yes, for which analysis: Sampling Water Level: Analyses: 8260B, 8260BSIM, 300, 314, 350.1, 376.2, 504.1, 1625C, 180.1, 6860, 2540C, 2510B, 2320B, 6010B, 6020, 7470A, 8015B, (Circle) 8081A, 8082, 8141A, 8151A, 8270C, 8270CSIM, 8290, 8315A, 8321A, 9040B, 9040C, 9050, 9060, 3500Fe-D, RSK-175 QC SAMPLE (circle): MS/MSD FD EQ Blank Split QC ID: QC Sample Time: QC analysis different from sample analysis? (Y/N) If yes, specify: PID Meter ID: Decon: (Y/N)DI Rinse: (Y/N) WL Indicator ID: Alconox: (Y/N)Total Purge Volume (GAL): WQ Meter Type and ID:

Comments:

Low Flow Groundwater Purging and Sampling Datasheet Start Time: 1255 Finish Time: 1352 Well ID: 504-11003 Date: Field Team: Weather/Temp: Initial DTW (ft btoc): PID (Well Casing): Well Condition: Pump Type (if applicable): Purge Method: Purge Rate1: Portable Pump Depth: Field Parameters (collect in 3 minute intervals) Sp. Cond. Lurbidity Note color, odor, sheen, Purge Vol. Temp DTW² (mg/L) Time pΗ (µS/cm) (mV) particulate, etc. (mL) (°C) (NTU) 1300 Begin Pumping Well 216 19.86 6.58 0.328 1305 11.95 1310 well For 5 m to u Pave 14.40 19.72 7.00 156 1315 1317 6.85 0.257 1000 4.03 145 18.50 1325 6.237 368 151 10.15 1327 331 L PO1 1337 6.87 10.28 17.73 0.716 313 1330 Stabilization ≤ 10 NTU or ± 0.1 units ± 3% ± 0.3 mg/L ± 10 mV ±10% target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) ²DTW: depth to water measured from top of casing; total drawdown should not exceed 0.33 ft 3 stabilization achieved once field parameters stabilize for 3 successive readings Sample Time: Sampling Water Level: Field Filtered? (Y/N) If yes, for which analysis: Analyses: 8260B, 8260BSIM, 300, 314, 350.1, 376.2, 504.1, 1625C, 180.1, 6860, 2540C, 2510B, 2320B, 6010B, 6020, 7470A, 8015B, (Circle) 8081A, 8082, 8141A, 8151A, 8270C, 8270CSIM, 8290, 8315A, 8321A, 9040B, 9040C, 9050, 9060, 3500Fe-D, RSK-175 QC SAMPLE (circle): FD MS/MSD EQ Blank Split QC ID: QC Sample Time: QC analysis different from sample analysis? (Y/N) If yes, specify: Decon: (Y/N)PID Meter ID: DI Rinse: (Y/N) Alconox: (Y/N)WL Indicator ID: Total Purge Volume (GAL): WQ Meter Type and ID:

Comments:

Low Flow Groundwater Purging and Sampling Datasheet

Date:	4/12/2	018	Start Time:	1340	Finish Time:	1407	Well ID:	505	-MNO1.
Field Team:					_		Site:	Site	5
Weather/Ten			The same		- 515	Initial DTV	V (ft btoc):	34.49	
Well Condition						(Well Casing):		PID (BZ):	
Pump Type (Portable Pun						rge Method: Purge Rate ¹ :			W .
water water	rekoksukta	13-42-46-H/M	Fiel	d Paramet		minute intervals	Paradan sa	BASTAN SEX	
ODINES.	Paris Nation	Purge Vol.	Temp	1500.00	Sp. Cond.	Turbidity	DO.	ORP	Note color, odor, sheen,
Time	DTW ²	(mL)	(°C)	pH	(µS/cm)	(NTU)	(mg/L)	(mV)	particulate, etc.
1342		Begin Pu	mping Well						
1343			17.51	7,08	0.680	561	12.26	162	
1350	well p	riyed d	y				9		1 1 1 1 1 1
1355		J	17.61	7.85	0.589	634	5.07	213	
1356	well ,	yed do	Y						
1405	1	1 /	16.74	7.94	0.697	110	11.49	234	
1406	Well	Purged	Pry						
14/07	Well	Pevelop	acl						(lear)
		1							
						150			
								9	
	-								
						-			
Stabilization	分数表示	SHOW STATE	D: 1/11 7/2	漢明學學和	42-13 Charles	≤ 10 NTU or	受に対抗を変	· 经产品的产品	0.50000-250000
Criteria 3		140.00	\$20 E	± 0.1 units	± 3%	± 10 %	± 0.3 mg/L	± 10 mV	透视 电导压
	e is 0.1 - 0.5 L/mir lieved once field p				o water measure	d from top of casi	ing; total drawdo	en should not ex	ceed 0.33 ft
Sample ID:	,						Sar	mple Time:	
	17(Y/N)	If ves, for wh	nich analysis:				Sampling V		The second secon
Analyses:					SC. 180.1. 68	360. 2540C. 2), 7470A, 8015B,
(Circle)			A, 8270C, 82						
QC SAMPLE	CONTRACT OF THE PARTY OF THE PA	FD	MS/MSD	EQ Blank	The state of the s		100, 0000, 0	000,000010	D, NOR TO
QC ID:	,					QC Sa	ample Time:		
QC analysis	different from	n sample and	alysis? (Y/	N) If	yes, specify:				
Decon:	(Y/N)	N.		10		ID Meter ID:	1 8		
Alconox:	(Y/N)	DI Rinse:	(Y/N)		WL	Indicator ID:			
	Volume (GAI				WQ Meter 1	Type and ID:			
Comments:	,		16.	-	a 155711	••			
_ =			7						

Low Flow Groundwater Purging and Sampling Datasheet Start Time: 1410 Finish Time: 1474 Well ID: 505-MW07 2018 Site: 5,7e 5 Field Team: Initial DTW (ft btoc): 29. 10 Weather/Temp: PID (BZ): Well Condition: PID (Well Casing): Pump Type (if applicable): Purge Method: Purge Rate1: Portable Pump Depth: Field Parameters (collect in 3 minute intervals) Note color, odor, sheen, Purge Vol. DO Temp Sp. Cond. Turbidity. DTW² Time (mL) (°C) pH (µS/cm) (NTU) (mg/L) (MV) particulate, etc. Begin Pumping Well 1415 16.81 238 1420 7.88 0.473 1.480 16.0 16.05 7.46 12.15 203 0.453 60.7 947 8.03 16.82 186 leveloped well Stabilization ≤ 10 NTU or ± 0.1 units ± 3% ± 0.3 mg/L ± 10 mV ± 10 % Criteria³ target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) ²DTW: depth to water measured from top of casing; total drawdown should not exceed 0.33 ft stabilization achieved once field parameters stabilize for 3 successive readings Sample Time: Sample ID: Field Filtered? (Y/N) If yes, for which analysis: Sampling Water Level: Analyses: 8260B, 8260BSIM, 300, 314, 350.1, 376.2, 504.1, 1625C, 180.1, 6860, 2540C, 2510B, 2320B, 6010B, 6020, 7470A, 8015B, (Circle) 8081A, 8082, 8141A, 8151A, 8270C, 8270CSIM, 8290, 8315A, 8321A, 9040B, 9040C, 9050, 9060, 3500Fe-D, RSK-175 QC SAMPLE (circle): FD MS/MSD EQ Blank QC ID: QC Sample Time: QC analysis different from sample analysis? (Y/N) If yes, specify: Decon: (Y/N)PID Meter ID: (Y/N)DI Rinse: (Y/N) WL Indicator ID: Alconox:

WQ Meter Type and ID:

Total Purge Volume (GAL):

Comments:

Low Flow Groundwater Purging and Sampling Datasheet Start Time: 1430 Finish Time: 1446 Well ID: SOS-MWO3 Site: Site S Field Team: Initial DTW (ft btoc): 27.591 Weather/Temp: PID (Well Casing): Well Condition: Pump Type (if applicable): Purge Method: Purge Rate1: Portable Pump Depth: Field Parameters (collect in 3 minute intervals) Purge Vol. Temp Sp. Cond. Turbidity DO Note color, odor, sheen, DTW² pH (µS/cm) (mg/L) (mV) particulate, etc. Time (mL) (°C) (NTU) 1434 Begin Pumping Well 16.22 8.37 1.343 3.28 153 15,67 8.14 11.62 166 0.330 187 1440 17.10 8.00 0-351 12.57 164 92.0 clear Developed Stabilization ≤ 10 NTU or ± 3% ± 0.1 units ± 0.3 mg/L ± 10 mV ± 10 % target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) ²DTW: depth to water measured from top of casing, total drawdown should not exceed 0.33 ft ³ stabilization achieved once field parameters stabilize for 3 successive readings Sample Time: Field Filtered? (Y/N) If yes, for which analysis: Sampling Water Level: Analyses: 8260B, 8260BSIM, 300, 314, 350.1, 376.2, 504.1, 1625C, 180.1, 6860, 2540C, 2510B, 2320B, 6010B, 6020, 7470A, 8015B, (Circle) 8081A, 8082, 8141A, 8151A, 8270C, 8270CSIM, 8290, 8315A, 8321A, 9040B, 9040C, 9050, 9060, 3500Fe-D, RSK-175 QC SAMPLE (circle): FD MS/MSD EQ Blank QC Sample Time: QC analysis different from sample analysis? (Y/N) If yes, specify: Decon: (Y/N)PID Meter ID: DI Rinse: (Y/N) WL Indicator ID: Alconox: (Y/N)

WQ Meter Type and ID:

Total Purge Volume (GAL):

Comments:

Groundwater Purging Logs

0	CH2MHILL PROJECT NUMBER WELL NUMBER SHEET 1 OF 1									
			Edward .		GR	TAWDNUC	ER SAMP	LING DATA	A SHEET	
PROJECT:	NKL	CBU							DATE: 4	25/18
LOCATION: PUMP TYPE (Sittle one):	23 PERISTAI	TIC	SUBMERSIBLE		WEATHER:		Territor and the	7	. 1
	MPLING METHO	20000000000000000000000000000000000000	=	LOW-FLOW	5 -	VOLUMETRIC		FIELD TEAM:	Drouf	eldl
	EPTH OF WELL		(FT STOC)			7.545.111.0		ST/	ART TIME: \$4	
INITIAL DE	PTH OF WATER	16.95	(FT BTOC)		4" DIA	METER = 0.653	AL/FT		ND TIME:	
W	ATER COLUMN		(FT)		WATER QUA	LITY INSTRUMEN	T MANUFACTU	IRER & MODEL:		7
INSIDE DIAM	ETER OF WELL:		(IN)			WATER Q	JALITY INSTRU	MENT SERIAL #		
	WELL VOLUME		(GAL)			TURBIDITY METE			the same	
		D								
TOTAL P	URGE VOLUME:	10	(GAL)	_			ER LEVEL INDIC	ATOR SERIAL #		
	L Constituti			gr - 75 cm - 1000 - 1	ATER QUALITY I	PARAMETERS		all 6 pt 1 services	and more	
Time	Depth to Water	DO	ρН	Specific Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative Volume Purged
End The	ft	mg/L	SU	mS/cm	mV	•c		ทาบ	mL/min	gal gal
Stability Criterion:	< 0.5 ft	±0.10 mg/L or 10% of	+/-0.150	±3%	± 10 mV	+/-1:0°C	-	± 10%	100-500 mL/min	
850	16.97	8.24	4.70	040	260	14.46		937	C200,1	
\$55	17.43	8.09	4.77	0,136	286	4.48		542	1	
900	17.5%	7.26	4.74	0.125	307	14.41		146		
905	17.60	7.08	4.75	0.03	310	14.43		109		
910		6.91	4.74	0,120	314	446		84,0		
915		6.64	4.75	0.117	217	14.45		56.7		
920		656	4.71	0.16	319	4.67		47.8		
925		641	4.72	0.114	321	14.48		410		
930		645	4.71	0114	353	447		35		
935		6.36	4.69	0.14	356	1447		24.0		
940		646	4.70	0.112	227	14.46	· · · · · ·	193		
945		6,33	4,68	0113	320	14.45	*	155		
990		0.26	4,0%	0.112	222	147		10/-		
955		6,27	4.19	012	224	14,43		9.8		
1000		6.25	4.68	0.1/2	235	14.40		9.4		
1005	U	6.25	4.68	0.112	335	14,41		4.8		Way
1010				-		3-GW0	1-04			20 - 9 4.1
					1,700	J 000 -	- 01	0		
								Y		
		-								
3										
		753								
					SAMPLE INFOR	MATION		-9) 45 5 22		
	C	ilution:			Sodium Persi	ulfate Reading:				
NOTES:										
						220				

0	CH2	MHIL	L	PROJECT NUMI	409. F	T.FS	WELL NUMB	ER -503-M	WOZ SHEET	1 OF 1
	Media				GR	TAWDNUC	ER SAMP	LING DATA	A SHEET	
	10 L-CBI			5I					DATE: UH/S	25/18
	NRL, CB			Beach	mo	WEATHER		foresco	est	
JMP TYPE (MPLING METHO	PERISTAL D. (circle coo):	.nc	SUBMERSIBLE LOW-FLOW	\leftarrow	OTHER:		FIELD TEAM:	urbo	
	DEPTH OF WELL:	777-1070	/FT RTOC)	LOW-FLOW		VOLUMETRIC				
	PTH OF WATER:	The state of the s	₩(A)		4" DI4	METER = 0.653 (AL/ET		RTTIME: 08	10
	ATER COLUMN:		(FT)						ND TIME:	THONE
	ETER OF WELL:	2	(IN)		WATER GOA			MENT SERIAL #:		BUN / LUND
	WELL VOLUME:		(GAL)			TURBIDITY METE			7-070	
								METER SERIAL #:	T	
TOTAL P	URGE VOLUME:	3.6	(GAL)			WA7	ER LEVEL INDIC	CATOR SERIAL #:	(-1030%	i Heron
				W	TER QUALITY I		THE TAKE			S. or Herbre
	Depth to	DO	рН	Specific	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative
Time	Water ft	mg/L	SU	Conductivity mS/cm	mV	*C		NTU	mL/min	Volume Purged
Stability	<0.5 ft	± 0.10 mg/L	+/- 0:1 SU	± 3%	± 10 mV	+/- 1.0 °C		±10%	100-500 mL/min	gal
Criterion:		or 10% of	(.08 Test 10 T	U.Z. water 1 T	8		1 × 3			
3030	22.63	2.52	6.78	0.348	165	13.40	86.0	>1000	15012LIMIN	0.1
835	22.95	1.05	10.95	0.342	158	13-52	0.90	21000	125inUmn	0.20
2846	23.18	0.78	1 00	0.341	151	13.33	0.30	>1000	100 milyu	0r36
2045	23.71	0.89	6609	0.332	151	13.72	0.28	21000	11	0140
250	24.35	0.96	Q.7Ce	0.335	154	1407	030	721	11	0.50
0055	21/42	0.76	10.71	0.339	1560	13.904	0.20	403	1.0	0.60
7900	25.01	0141	6.65	0.341	155	13.94	0.20	601	1'	0.70
0905	25,60	0.42	10.67	0.346	1460	14:13	6.20	658	10	0.80
3910	26.01	0.00	6.72	6,350	110	14.08	0.70	W74	ıt	0.90
2915	26:20	0.00	6.77	0.348	91	14.11	0.30	753	E!	1.00
1420	26145	000	6.67	0.346	50	14.09	0,20	735	11	1110
1925	26.90	0.00	7.01	0.344	_39	14.01	0,20	695	- U	1,20
0427	- (nel	, DW	reel	dry a	F 3.	7! 11)1	1.let	12001	rechou	20
th	encoll	ent-s	ama	215.0						3 /
			1							
etvin	ed tol	owing	we	L 15	13/18	@ G	BO 1	o coll	ect.	
		-			70					
									7	
7********					*					
							81			
Depth 1	XIXXX III X		(1-311		SAMPLE INCOM	MATTON CO	1 - 5	an En ana	N ALIDA	
	and the state of t	B of The State of							3140-6	
	D	ilution			Sodium Persi	ulfate Reading				
D		. 0	71 11.					Z(1) Total	, Let w	
- T 1	Imm Sol	- nt di	7. 11)	0110.1	0001 200	u al	17/6)	1000	10-11	040

0	CH2	MHIL	1	PROJECT NUM 69240	BER 19. FI, 1	FS	WELL NUMBE	MWO	3 SHEET	1 OF 1
-					GR	OUNDWAT			4000 000	
PROJECT:	5.I at ,	NIZL-C(317						DATE: 4/7	5/19
	hespeal					WEATHER:	class			
PUMP TYPE (PERISTAL	-	SUBMERSIBLE	≥	OTHER:		FIELD TEAM:	J. Clark,	S. Honfiel
	MPLING METHO DEPTH OF WELL			LOW-FLOW	<u> </u>	VOLUMETRIC		and the last of th		3
0.0000000000000000000000000000000000000	PTH OF WATER		(FT BTOC)		4* DI	AMETER = 0.653 G	ΔI /FT	5TA	RTTIME 04	35
	ATER COLUMN	ALCOHOL: TO				ALITY INSTRUMEN	and the same of th			
	ETER OF WELL		(IN)					MENT SERIAL #		
92	WELL VOLUME		(GAL)			TURBIDITY METE			-	
		7					TURBIDITY N	METER SERIAL #		
TOTAL P	URGE VOLUME		(GAL)			WAT	ER LEVEL INDIC	CATOR SERIAL #:		
(SERVICE)		Paulot Lib		W	ATER QUALITY	PARAMETERS				
Time	Depth to Water	DO	pН	Specific	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative
Title	ft	mg/L	SU	Conductivity mS/cm	mV	°C		NTU	mL/min	Volume Purged gal
Stability Criterion:	<0.5 ft	±0.10 mg/L or 10% of	+/- 0.1 SU	± 3%	± 10 mV	+/- 1.0 °C	<u> </u>	± 10%	100-500 mL/min	Market Call Strategic Stra
840	21.95	0.87	越,456	0.139	188	16.08		986	(00	
845	21.69	1.20	4-84	0.138	191	15.90	-	623	100	
850	21.74	0.05	4-74	0.136	200	16.04		428	100	
855	21.85	0.00	4.71	0-136	203	16-19		306	100	
900	21.92	0-00	4.74	0.136	205	16.29	_	139	100	
905	21.95	0.00	4.73	0-136	205	16.30	1,02	81.3	100	
910	21.96	0.00	4.79	0-136	265	16.28	,	53.1	100	
915	21.97	0.00	4.70	0.136	208	16.28	-	46.0	100	
920	21.97	6.00	4.65	0.136	204	14.38		36.0	100	
915	22-13	0.00	4.69	0.137	204	16.39		30.3	100	
930	22-15	0.00	4.62	0.136	207	16.37		23.0	100	
935	122-17	0.00	4-64	0.136	206	16.47		15.5	100	
440	22-11	0.00	4.69	6.136	203	16.33		10.0	100	
945	27.12	6-00	4-60	0.137	207	16.50		10.0	100	
150	22-10	0.00	4.65	0-137	264	16.46		9.6	100	1/1
955	Sample	coller.	Cod		03					591
										1
27.24										
								100		
				2						
MILEDINE	STATE OF THE PARTY				SAMPLE INFO	RMATION			WALLSAN.	
	c	Dilution.			Sodium Pers	ulfate Reading				
		one of the same of								

NOTES:

© CH2MHILL				PROJECT NUME		OUNDWAT	Annual Control of the	204-M	The second secon	1 OF 1
22015	NIZZ	7.00			GKI	TAWDNUC	ER SAMP	LING DAT	The same of	
PROJECT: LOCATION:	Site	<u> </u>	-	To the second		WEATHER:			DATE: 3/	3118
PUMP TYPE (c		PERISTAL	TIC C	SUBMERSIBLE	5	OTHER:		FIELD TEAM:	0 0	
	MPLING METHO		2	LOW-FLOW	5	VOLUMETRIC		FIELD EXIVI.	Dione:	20
The state of the s	EPTH OF WELL:	607	(FT BTOC)				11	ST		5
INITIAL DE	PTH OF WATER:	18.55	(FT BTOC)		4" D!/	METER = 0.653 G	AL/FT	7	ND TIME	
W.	ATER COLUMN:		(FT)		WATER QUA	LITY INSTRUMEN	T MANUFACTL			
	ETER OF WELL:		(iN)					MENT SERIAL #		32-
,	WELL VOLUME:		(GAL)			TURBIDITY METE	R MANUFACTU	RER & MODEL:		
ĺ		0					TURBIDITY N	NETER SERIAL #		
TOTAL PL	URGE VOLUME:	_5	(GAL)			WATI		ATOR SERIAL #		•
		81.072.89		W	ATER QUALITY	PARAMETERS	diamont.	100		
Depth to DO pH Specific ORP Temp Salicing Turbidity Slave Page Cummulative										
Time	Water ft	mg/L	SU	Conductivity mS/cm	mV	*C	Seminty	- Anthern - Anth	9000 VIII 00 43 VIII 300 M	Volume Purged
Stability	<0.5 ft	±0.10 mg/L	+/- 0.1 SU	±3%	± 10 mV	+/- 1.0 °C		10%	mL/min 100-500 mL/min	gal RWW <u>A</u>
Criterion:	19,30	or 10% of	116	000	000	All the second of	10.00 S	110%	THE RESIDENCE	
1200	170	317	7787	0.066	250	17.83	>11	00.0	C200	
1200		3.53	7.6/	0.062	787	17.15		694		
1910		3,11	4.00	(1,05%	293	7.19		558		
1312		3,40	4.61	0.054	298	17.17		517		
1330	U	3.01	4.18	0.05	298	17.58		434		
225	21.10	1.37	4.77	0.657	288	19,00		427		
1230	121.15	5.35	4.75	0.050	285	8.67		291		
735	0121	7.42	4.68	0.057	291	1994		386		Zarl
1240	Collec	t Sam	ne C	20-504	-62061-	6518H		1300		J
		1 1000	C	317-504	-(-4h)-	0518-1	45/5N	**		
104-17				3.7 30-	0-001	9310	10/21/			
						202			 	
		·mi.					_			
100										
								-		
							64 888	8		
	140	08-077								
									2 20 11 11 11 11 11 11 11 11 11 11 11 11 11	
								_		
105	ngos a f	100000	Thirty and		SAMPLE INFOR	MATION			Dentile History	
	C	ilution.				ulfate Reading:				
NOTES:										
		-			T-					

	CH2	WIHILI		PROJECT NUMB	19. FI.	S	WELL NUMBE		oa sheet	1 OF 1
-		(ILL	-		The second second	UNDWATE	×	79.04	-	
PROJECT: ,N	RL-CBD	Eroand	ed SI						DATE: 05/	03/18
LOCATION:	NKL-CBI	>~ '					40+~90			
PUMP TYPE (ci	rcle one): IPLING METHO	PERISTAL	TIC S	SUBMERSIBLE LOW-FLOW	~ —	OTHER: VOLUMETRIC		FIELD TEAM:	arbo	
	PTH OF WELL	The state of the s	(ET BTOC)	TOM-LOW		VOLUMETRIC			RT TIME 05/01	10: 1300
	TH OF WATER				4" DIA	METER = 0.653 G	AL/FT	1		375
	TER COLUMN			,	WATER QUAL	ITY INSTRUMENT	MANUFACTU	RER & MODEL	Horibau.	52
	TER OF WELL		(IN)			WATER QU	ALITY INSTRUI	MENT SERIAL #:	# 2423	0
V	VELL VOLUME	1.38	(GAL)		1	TURBIDITY METER				
TOTAL PL	RGE VOLUME	7.50	(541)			IA/ATC		METER SERIAL #:		
TOTAL PU	INGE VOLUME	<u> </u>	(GAL)				K LEVEL HADIC	ATOR SERIAL #	<u>C-10</u>	
111811711	Depth to			Specific	ATER QUALITY P					Cummulative
Time	Water	DO	рH	Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Volume Purged
Stability	ft	mg/L ± 0.10 mg/L	SU	mS/cm	mV_	°C		NTU	mt/min	gal
Criterion:	< 0.5 ft	or 10% of	+/-0.15U	±3%	± 10 mV	+/- 1.0 °C		± 10%	100-500 mL/min	-
1520	20.20	0.87		0.090	378	22.33	0	229	/ouni/min	0.30
1325	11	0.39	591	0.091	382	22,33	0	151	н	0.30
1330	11	1.05	5 77	0-091	389	24.91	0	127	f t	0.40
1335	11	0.91	5-60	1.090	382	25.31	Ø	127	u	0.50
1340	1/	0.78	5.95	0.081	380	25,01	Ø	126	le.	0.00
1345	1.	0.09	5.92	0.082	397	24.83	Ø	125	1/	0.70
1350	11	0.69	5.95	0.081	388	24.87	0	90.7	ř.	0.80
1355	11	0.80	5.95	0.001	392	24.98	0	98.5	17	0.90
1400		0.01	5.94	0.080	395	25.09	Ø	61.3	11	1.0
1405	[1	0.75	5.95	0.079	398	25.12	2	58.7		1.16
1410	li I	0.69	5.97	0.078	401	25.17	Ø	35.4	11	1.30
17/5	1,	0.73	5.98	0.081	407	25.80	0	18.5		
14.20	- 11			0.002			Ø	20.2	11	1.50
1425	- (01/	0.74	-	0.000	408	25.95	Ø	19.9		7/30
1435	-			04/-GW			100			
1735	- CO114	ect or	LP-	(D) 50	4- Omc	2P-05	10			
								i -		
		-								
38 H 8 1		ry hill sent	May 136		SAMPLE INFOR	RMATION				
										19/8-4-10
		Dilution:		-	Sodium Pers	ulfate Reading				•
NOTES:	H PIN	mp at	27	1 .						
Caller	et our	ent o	U+ 14	30						1 11 11 11 11 11 11 11 11 11 11 11 11 1
Cilli	ect T	Supa	+ 14	35'						

CH2IVIHILL PROJECT NUMBER							WELL NUMB			
	CH2	MHIL	L.		CD	0111101111		MWO ?		1 OF 1
				A	· GR	OUNDWAT	ER SAMP	LING DAT	A SHEET	
PROJECT:									DATE: 5	13/18
LOCATION: PUMP TYPE (c	leele enn't	PERISTAI	710	FI (DA 4EDCIDI C	_	WEATHER:				
	MPLING METHO			SUBMERSIBLE LOW-FLOW	eq -	OTHER: VOLUMETRIC		FIELD TEAM	S. Dron	afield
	EPTH OF WELL:		(FT BTOC)	CONV-PEDAN		VULUNIETRIC	8 55			
	PTH OF WATER:	CONTRACTOR OF THE PARTY OF THE			4" DIA	AMETER = 0.653 G	AL/ET		ART TIME: 13	
	ATER COLUMN:					-			ND TIME:	
1	ETER OF WELL:		(IN)		WATER QUA	WATER OF	I MANUFACII	URER & MUUEL.		
1	WELL VOLUME:		(GAL)							
	***************************************		-(0.0)			TURBIDITY METER				
TOTAL PI	URGE VOLUME:	4	(GAL)			WAT		CATOR SERIAL #	:	
Haran San			. (- (-)			25 25	EN EL PEL MADI	CATON SENIAL W	·	
E	Depth to	THE RELEASE		Specific	ATER QUALITY	PARAMETERS				
Time	Water	DO	pН	Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative Volume Purged
	ft	mg/L	SU	mS/cm	mV	*c		NTU	ml/min	gal
Stability Criterion:	< 0.5 ft	±0.10 mg/L or 10% of	+/- 0.1 SU	±3%	± 10 mV	+/- 1.0 °C		±10%	100-500 mL/min	
1255	25,10	675	671	0.31	134	19.69		660	とつむ	
1000	2.710	A 25	643	0.3(1	139	20.49	500	-000	~~~	
146		0.04	644	8210	1-5	20.71		1110		
1/1/5			644	63-9	100	19:00		1469		
1410		0.00	6,70	0.507	123	20,27		337		
1417		0.00	6191	0.509	120	20,02		248		ya.
420		0,00	632	0,2%	127	20,5%		124		
1425		Ø, m	6.17	0, 242	150	21.65		曲,4	1,2	
1430		0.00	6.10	0.234	160	70.85		25.8		
1435	1	0,00	606	0.330	64	20.77		1247		
440	l V	0.00	0.04	0,218	168	20.68		23 9	1 4	(1.61
1445	Collette	Sample	CRO		5W03-	2515		1 2	1	7541
7 12	COLUCT -	SWANTE	COV	70 1 - 1	3000					
1000000								 	ļ	
		_	-		45					
					- Maria					
			37							
						i i				
		N. C. C.								
-										
					3 3					
is .										
	<u> </u>									
4 - 10				S. BORGERON.	SAMPLE INFO	RMATION	Dall S		IN ROLLING	
	r	Nitution			Codium Da	ulfata Dondin				
	L	Dilution:		<u> </u>	Jouium Pers	ulfate Reading				8
NOTES:										
	-			***						

9	CH2	MHIL	L	PROJECT NUMI	09. FI		Control of the last of the las	-S05-mu		1 OF 1
PROJECT: A	191 CON	T	100-		GK	OUNDWAT	ER SAMP	LING DATA		
LOCATION:	NRL-CBD NRL-CB		ded ST	Beach, MI	\	WEATHER	anico	-1	DATE: U4/	25/18
PUMP TYPE (c		PERISTAL		SUBMERSIBLE	5	OTHER:	· COUPACO	FIELD TEAM:		
PURGING/SAN	APLING METHO	D (circle one):		LOW-FLOW	5	VOLUMETRIC	1000		Curbo	
TOTAL D	EPTH OF WELL:	44.05	(FT BTOC)						ART TIME: 110	0
INITIAL DE	PTH OF WATER:	34.35	(FT BTOC)		4" DIA	METER = 0.653 (SAL/FT		ND TIME: 124	
· W	ATER COLUMN:	9.70	(FT)		WATER QUA	LITY INSTRUMEN	T MANUFACTI	JRER & MODEL:	Horibali	52
	ETER OF WELL:		(IN)					IMENT SERIAL #		
39	WELL VOLUME:	1.50	(GAL)			TURBIDITY METE	R MANUFACTI	JRER & MODEL:		
		77-						METER SERIAL #		
TOTAL PI	JRGE VOLUME:	d. +5	(GAL)		2000	WAT	ER LEVEL INDI	CATOR SERIAL #	C-103804 -	Heven
				W	ATER QUALITY	PARAMETERS				
Time	Depth to Water	DO	pН	Specific Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative
1002	ft	mg/L	รุบ	m5/cm	m۷	*C		NTU	mL/min	Volume Purged gal
Stability Criterion:	< 0.5 ft	±0.10 mg/L or 10% of	+/-0.1 SU	±3%	± 10 mV	+/- 1.0 °C	4 4	± 10%	100-500 mL/min	All the second second second
1130	311 75	1.77	71/-	1 710	119					
1135	34.93	0.12	7-160	0.718	The same of the sa	13.53	0.3	191	100 mL/my	0.2
		178	0	0.730	112	13.73	0.3	179		0.30
1140	34.63	T.	(0.04	0.723	110	13.75	0.4	140	11	0.40
1145	34.93	0	(0.80	0.725	11	13.70	04	102	11	0.50
1150	34.83	Ø,	6.77	0.719	113	13.77	0.3	90.5	fr	060
1155	34183	9	(0.82	0,410	114	14.05	0.3	67.5	17	070
1200	34.63	Ø	672	0.708	121	14,22	6:3	47.9	10	0.60
1205	34.83	_Ø	6.74	0.700	125	14.12	0.3	24.6	11	0.90
1210	3403	6	6.75	1.693	126	14.34	0.3	22.3	1/	1,0
1215	34.83	0	6.82	0.689	125	14.48.	0.3	22.5	V	1.20
1220-	6/1	ect 10	BD-	505-0	wor -	6412	١			
							 		AC.	
			(Zel)			100				
					-					
			-							
-			-							
					<u> </u>					
					-202					
							2			
						_				
_										
	107									
SAMPLE INFORMATION CBD-505-GC001-0418										
_		ilution:	70	Section 1		ulfate Reading:				
NOTES: 1	mp se	tat 4:	2!	Sa	mple	rolli	chel	@ 10	20	
	•								17000	

				PROJECT NUME	BER	21 2	WELL NUMBE	WOZ	SHEET	1 01 1
_	CH2	MHIL	-		GPC	DUNDWATE				1 OF 1
2001547					GAC	TIAVVAII	IN SMIVIE	LING DATA	Name of Management of the last	25/18
PROJECT: LOCATION:						WEATHER:	-		DATE: 47	27/10
PUMP TYPE (cl	rcle one):	PERISTAL	TIC $<$	SUBMERSIBLE	5	OTHER:		FIELD TEAM:		
	PLING METHO	D (circle one):		LOW-FLOW	>	VOLUMETRIC				
		39,45						STA	RT TIME:	35
INITIAL DEP	TH OF WATER:	29.43	(FT BTOC)			METER = 0.653 G		E	NO TIME:	
t .					WATER QUAL					
,	WELL VOLUME:		(GAL)		j	TURBIDITY METER				
TOTAL DA	JRGE VOLUME:	5	(CA1)			14/47				
TOTALPO	JRGE VULUIME:		(GAL)				EN LEVEL INUIC	CATOR SERIAL #:		
	Depth to	10001-061		Specific	ATER QUALITY P	ARAMETERS				Cummulative
Time	Water	DO	рH	Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Volume Purged
Factoria:	ft	mg/L ±0.10 mg/L	SU	mS/cm	mV	*C	-	NTU	mL/min	gai
Stability Criterion:	< 0.5 ft	or 10% of	+/-0.1 SU	±3%	±10 mV	+/- 1.0 °C	-	±10%	100-500 mL/min	
1140	2920	5,65	6.83	U:357	203	14.69		214	1200	
1145		52k	6-78	0.275	199	14:73		151	1	
1150		520	\$.75	0.371	187	14.82		133		
1155		513	6-4	0.301	187	4.96		106		
1200		1185	6.71	0.257	185	15:21	***	43.3		
1205	7	465	6.65	6253	185	5.23		29.7		
1510		460	665	0.350	149	15,40		6.8		
1215		4,44	6265	0.351	189	1551		13.3		
1220		4.37	6.65	0351	190	155		8.1		
1225		4.32	669	N 2419	100	1571		5.X		
1730	1/	4,30	65	02/49	190	15:50		55	\ /	500
1226	Collect			-505-M	•	- 041%		2.7		-35.
(L-7-1	CO NICO	-12000	0,1-)0	20 1-42	2(5,4002	0 1.0		 		
		_						 		
								-		
	-		-			_				
					SAMPLE INFOR	MATION				
		- Contract			SANT LE INPUT	urarii Git		A September 1		
		Dilution:		-	Sodium Pers	ulfate Reading				

0				69240			WELL NUMBE	R MWO3	, ,	
2	CH2	MHIL	_	6727		TAWDNUC	_			1 OF 1
DOOLECT:	77 1	. 1.71 -	130		GRO	JUNDVVATI	EN SAIVIF	LING DATA		-111
	SI at					WEATHER:	Cloud		DATE: 4/2	2/18
PUMP TYPE (c	ircle one):	PERISTAL		SUBMERSIBLE	>	OTHER:		FIELD TEAM:	ILlarke	, S. Druste
	MPLING METHO	D (circle one):	<	LOW-FLOW	5	VOLUMETRIC		E. Lur	から	
TOTAL D	EPTH OF WELL	39.53	(FT BTOC)						RTTIME: 1/2	0
INITIAL DE	PTH OF WATER:	27.47	(FT BTOC)		4" DIA	METER = 0.653 G	AL/FT	Er	ZI SMIT ON	45
w	ATER COLUMN:	436	(FT)		WATER QUA	LITY INSTRUMENT	T MANUFACTU	RER & MODEL		
INSIDE DIAM	ETER OF WELL:		(IN)			WATER QL	JALITY INSTRUI	MENT SERIAL #		
	WELL VOLUME:		(GAL)			TURBIDITY METER	R MANUFACTU	RER & MODEL:		
		117	_				TURBIDITY N	METER SERIAL #:		
TOTAL P	URGE VOLUME:	4.7	(GAL)			WATE	ER LEVEL INDIC	ATOR SERIAL #:		
				W	ATER QUALITY	PARAMETERS				
Time	Depth to Water	DO	рH	Specific Conductivity	ORP	Temp	Salinity	Turbidity	Flow Rate	Cummulative Volume Purged
title	ft	mg/L	SU	m5/cm	mV	*c		NTU	mL/min	gal
Stability	< 0.5 ft	± 0.10 mg/L or 10% of	+/- 0.1 SU	±3%	±10 mV	+/- 1.0 °C		± 10%	100-500 mL/min	
Criterion:	28.04	5.65	7.07	0.280	142	14.65		147	100	2
1120	28.26	5.60	647	0.279	156	14.75		167	100	
1135	28.41	525	6.92	0.277	165	14.89	_	61 4	100	- V
1140	74.54	811	6.88	0.275	101	14.93	_	37.2	100	
1145	28.69	5,07	6.86	0.7.77	140	14.90	_	23.1	100	
	11.1	11114	-	0-268	16/2	14.96		192	100	-
1150	28.91	4.7	6.78	- 1	100	15.10		17 2		
1155	29.21	Uilob	6,69	0.169	100			9.3	100	
(100	79.47	4.49	6.60	0-261	199	15.17	_			
1205	24.62		6.60	0.259	196	15.19		7.5	100	-
1210	79.89		-	0.257	196	15-31		6-2	100	1 -1
1215	Samp	2 (0/10	tel							4.790
										J
17/4										
										(g)
				APPLACE.	SAMPLE INFO	RMATION		The same	Vol. Dept. o	
	1	Dilution:		-	Sodium Pers	sulfate Reading:				-
NOTES:				*(
l .										

1990 SB 1990 TB

1 mm

Appendix D Monitoring Well Survey Report

Surveyors Report

Monitoring Well Elevations and Positions

CLEAN 9000 - CTO JU23

Naval Research Laboratory – Chesapeake Bay Detachment

Chesapeake Beach, Maryland

1) Initial Project Control

Horizontal and Vertical datum

Bowman Consulting Group (BCG) performed horizontal and vertical location of new six (6) monitoring wells and one existing monitoring well for the project "CH2m-Navy Clean 9000-CTO JU23" at the address 5813 Bayside RD, Chesapeake RD, Chesapeake Beach MD, 20732 on April 25, 2018. This work is done based on the existing survey control established by Bowman on March 21-24, 2018. This control is on NAD83(2011) for horizontal and on NAVD88 vertical datum. The horizontal datum for GPS1 was calculated using OPUS Project (See data Sheet "<u>5 Mark gps1.pdf</u> attached) and vertical datum is based on the NGS monument on site J133 (For more details see the survey report titled "CH2m-Navy Clean N62470-16-D-9000"). Bowman did a verification of horizontal and vertical datum of existing surveying control. We used only Magnet Tools (Topcon) to post process all GPS Static Observations. GPS 1 is tied to CORS for horizontal and for vertical NGS Monument J133 is used as BM (See the picture below).

BCG performed static observations on two GPS control (GPS9 and GPS18), which we used for the location on both areas as shown on the picture below:

Table 2 below has the result of these verifications:

<u>Table 2</u> Diff=EX Control on Site – Verification (USft) (NAD 1983(2011) & NAVD 1988)										
ΔGrid Northing	ΔGrid Easting	ΔElevation								
(USft)	(USft)	(USft)	Name							
0.053	0.004	0.014	J133(HV1569)							
0.014	0.014	0.001	GPS18							
0.008	-0.009	-0.027	GPS9							
0.033	-0.009	-0.015	GPS1							
			•							

Table 3 below has the existing control used:

Table 3 Existing control on site used for horizontal and vertical locations(NAD83(2011) NAVD88						
Name	North	East	ELV	CODE		
1	361481.1770	1446230.1160	125.7460	BASE		
9	361361.5440	1444505.7600	155.0450	GPS9		
17	361406.9880	1445430.7160	118.3830	GPS17		
18	361532.1440	1445602.4650	121.4310	GPS18		

The vertical locations are on NAVD88 based on existing control. <u>GPS 17 and GPS 9</u> are used as Benchmarks. We run digital level loop on all these wells and new temporary points set using total stations on each site. Table 4 has the first loop as you see below:

CH2M17 2018-04-25.DAT

	Table 4 CH2M-Navy CLEAN 9000 CTO JU23 (DL-TRIMBLE) 2018-04-25							
NAME	LOCAL ELV	DESC	NOTE	DIFF=NAVD88- LOCAL	ELV NAVD88(USFEET)	DIFF=RIM- PVC		
17	118.3830	GPS17	BM	0	118.3830			
1000	117.5224	GR	CDD CO3	0	117.5224			
1001	120.5694	RIM	CBD-SO3- MW01	0	120.5694			
1002	120.4839	PVC		0	120.4839	0.0855		
1003	121.2128	GR		0	121.2128			
1004	124.2353	RIM		0	124.2353			
1005	124.3038	PVC	SO3-MW03	0	124.3038	-0.0685		
1006	118.6082	NLS	1504	0	118.6082			
1008	129.3192	GR		0	129.3192			
1009	132.2493	RIM		0	132.2493			
1010	132.1621	PVC	SO4-MW02	0	132.1621	0.0872		

1012	134.4753	GR		0	134.4753	
1013	137.5709	RIM		0	137.5709	
1015	137.6048	PVC	SO4-MW03	0	137.6048	-0.0339
1018	118.3865	CLOSE/17		0	118.3865	-0.0035

Average Distance back				
and forward				
Db=	523.37'			
Df= 549.24'				

Field Notes:

Table 5 has the digital level loop for the second site:

GPS9 2018-04-25.DAT

GF39 2010-04-23.DA1							
<u>Table 5</u> CH2M-Navy CLEAN 9000 CTO JU23 (DL-TRIMBLE) 2018-04-25							
CITZIVI-INAVY CLEAIN 9000 CTO JUZS (DL-INIIVIBLE) 2018-04-25							
NAME	LOCAL ELV	DESC	NOTE	DIFF=NAVD88- LOCAL	ELV NAVD88(USFEET)	DIFF=RIM- PVC	
9	155.0450	GPS9	BM	0	155.0450		
1503	142.7071	GR		0	142.7071		
1504	145.5820	RIM		0	145.5820		
2501	145.5803	PVC	SO5-MW03	0	145.5803	0.0017	
1505	145.7043	GR		0	145.7043		
1506	148.5547	RIM		0	148.5547		
2502	148.5966	PVC	SO5-MW02	0	148.5966	-0.0419	
1507	151.9588	GR		0	151.9588		
1508	154.6876	RIM	SO5-MW01	0	154.6876		
2503	154.7118	PVC		0	154.7118	-0.0242	
2504	150.7656	NLS	1551	0	150.7656		
2505	155.0445	CLOSE	GPS9	0	155.0445	0.0005	

Average Distance back			
and forward			
Db=	440.67		
Df=	404.33		

BCG did not adjust these loops, because the miss closures are less than 0.01 usft.

2) Methodology used for horizontal and vertical locations of monitoring wells

BCG used control base lines GPS-17-18 to locate wells on the site one (1) and control base lines GPS 9-10 for the location of the new monitoring wells on second site. See file 3 CH2M-NC-900-1196 2018-04-25.RW5. Total station Topcon PS103A was used for the horizontal locations of all wells. The picture below has the location and the base lines used for all wells. The vertical location of all wells and new temporary points set on site are based on the digital level loops using points GPS-17 and GPS-9 as benchmark.

The table below has all points on NAD83 (2011) and NAVD88 datum. The elevation of the top inner (plastic/ PVC) well casing with the well plastic cap removed is based on level loop, which are used as a turning points. The top of steel casing (RIM) with the cover of protective removed and ground shots are based on level loop as a side shots. Table 6 below has the final values of the text file for all locations on NAD83(2011) NAVD88:

	Table 6 CH2M-Navy CLEAN 9000 CTO JU23 SPC83_NAVD88 2018-04-25.txt(Well elevations from DL)						
Ci	H2M-Navy CLE	AN 9000 CTO .	IU23 SPC8:	3_NAVD88 2018-04-25.txt(We	ll elevations from DL)		
Name	North(usft	East(usft)	Elv(usft)	CODE	Note		
1500	361356.4900	1446128.7580	129.2490	СНК			
1501	361407.0330	1445430.7400	118.3510	RTK /CHK IPF /GPS17			
1502	361532.1630	1445602.4500	121.4010	RTK /CHKIPF			
1503	361532.1260	1445602.4470	121.4280	IPF /18			
1504	361494.9440	1445244.9960	118.6082	NLS	ELV from DL_RUN		
1505	361406.9860	1445430.7190	118.3660	CHK /17			
1506	361455.8480	1445297.1580	117.6580	CON1 S			
1507	361456.7630	1445294.9140	117.6440	CON1			
1508	361459.0440	1445295.9310	117.6140	CON1 REC E			
1509	361460.4140	1445295.5610	117.4320	BOL			
1510	361458.6330	1445299.2040	117.3910	BOL			
1511	361454.5720	1445298.0220	117.5950	BOL			
1512	361455.9420	1445293.5670	117.7090	BOL			
1513	361458.8990	1445296.9420	117.4650	GR			
1514	361457.5240	1445296.3890	120.5694	RIM /CBD-SO3-MW-01	ELV from DL_RUN		
1515	361457.5050	1445296.4690	120.4839	WELL/CBD-SO3-MW-01 PVC	ELV from DL_RUN		
1516	361390.6430	1445251.7960	121.2020	CON2 S			
1517	361388.9910	1445250.9640	121.2910	CON2			
1518	361389.7850	1445249.2860	121.2720	CON2			
1519	361391.3670	1445250.0700	121.2650	CON2 C E			
1520	361392.3650	1445249.9880	121.3040	BOL			

1521	361391.0590	1445252.6610	120.9290	BOL	
1522	361388.1750	1445251.3020	121.0930	BOL	
1523	361389.4750	1445248.6180	121.2900	BOL	
1524	361391.2620	1445250.9480	121.1830	GR	
1525	361390.3360	1445250.4870	124.2353	RIM /SO3-MW-03	ELV from DL_RUN
1526	361390.2850	1445250.5660	124.3038	WELL /SO3-MW-03 PVC	ELV from DL RUN
1527	361485.0350	1445076.5140	129.4310	CON3 S	
1528	361485.2030	1445074.6580	129.5090	CON3	
1529	361487.0100	1445074.9400	129.4340	CON3 REC E	
1530	361487.4900	1445074.3590	129.3840	BOL	
1531	361487.2960	1445077.4060	129.2140	BOL	
1532	361484.5100	1445077.1750	129.3740	BOL	
1533	361484.4950	1445073.7670	129.5170	BOL	
1534	361487.1190	1445076.0680	129.3370	GR	
1535	361486.1120	1445075.6890	132.1621	WELL /SO4-MW-02 PVC	ELV from DL_RUN
1536	361486.1200	1445075.6180	132.2493	RIM /SO4-MW-02	ELV from DL_RUN
1537	361471.1580	1444986.6990	134.5570	CON4 S	
1538	361471.2580	1444984.9140	134.6330	CON4	
1539	361473.0910	1444985.0460	134.5670	CON4 REC E	
1540	361473.7550	1444984.6000	134.6580	BOL	
1541	361473.5270	1444987.5710	134.1900	BOL	
1542	361470.6950	1444987.7430	134.3780	BOL	
1543	361470.5040	1444984.3320	134.7440	BOL	
1544	361472.0410	1444985.8390	137.6048	WELL /SO4 MW-03 PVC	ELV from DL_RUN
1545	361472.0660	1444985.7440	137.5709	RIM /SO4 MW-03	ELV from DL_RUN
1546	361473.1130	1444986.2080	134.4300	GR	
1547	361407.0080	1445430.7190	118.3710	CHK /17	
1548	361361.5370	1444505.6830	155.0770	CHK /9	
1549	361795.2570	1444471.1380	156.7160	CHK /10	
1550	361795.1470	1444471.1580	156.6510	СНК	
1551	361671.8270	1444617.4190	150.7656	NLS	ELV from DL_RUN
1552	361361.5430	1444505.7590	155.0300	CHK /GPS9	
1553	361699.8350	1444602.2370	151.8140	BOL	
1554	361701.0890	1444605.3830	151.6820	BOL	
1555	361704.0830	1444603.9790	151.8050	BOL	
1556	361702.5560	1444604.5570	151.8710	GR	
1557	361702.7680	1444601.0670	151.8610	BOL	
1558	361700.9450	1444602.6520	151.9190	CON5 S	
1559	361701.5980	1444604.3520	151.9330	CON5	
1560	361703.3440	1444603.6030	151.9020	CON5 REC E	
1561	361702.1370	1444603.1380	154.7118	WELL /SO5 MW-01 PVC	ELV from DL_RUN

1562	361702.1670	1444603.2160	154.6876	RIM /S05 MW-01	ELV from DL_RUN
1563	361686.7430	1444657.4270	145.2650	BOL	
1564	361689.7710	1444657.4210	145.2900	BOL	
1565	361690.1410	1444654.3180	145.9400	BOL	
1566	361686.5700	1444654.3300	145.8780	BOL	
1567	361687.4550	1444654.6040	145.8470	CON6 S	
1568	361689.3040	1444654.6120	145.8000	CON6	
1569	361689.3260	1444656.4040	145.6430	CON6 REC E	
1570	361688.4310	1444656.7490	145.5850	GR	
1571	361688.4660	1444655.3720	148.5966	WELL /SO5 MW-02 PVC	ELV from DL_RUN
1572	361688.5110	1444655.3830	148.5547	RIM /SO5 MW-02	ELV from DL_RUN
1573	361653.3370	1444681.2810	142.9980	BOL	
1574	361655.9050	1444684.3930	142.1920	BOL	
1575	361653.5580	1444686.3410	142.2720	BOL	
1576	361651.0570	1444684.0190	142.6190	BOL	
1577	361652.3450	1444683.7820	142.7990	CON7 S	
1578	361653.6120	1444682.5580	142.8120	CON7	
1579	361654.9220	1444683.8420	142.6440	CON7 REC E	
1580	361654.4480	1444684.7970	142.4720	GR	
1581	361653.7430	1444683.6810	145.5803	WELL /SO5 MW-03 PVC	ELV from DL_RUN
1582	361653.7930	1444683.6530	145.5820	RIM /SO5 MW-03	ELV from DL_RUN
1583	361361.5540	1444505.7790	155.0390	СНК /9	
1584	361361.5530	1444505.7670	155.0360	CHK /9	

<u>Table 8</u>								
	Hand Taped Measurements with lid removed							
NAME DIFF=RIM TO PVC DIRECTION DIFF=RIM TO CONC DIRECTION								
SO3-MW01	0.08	DWN	2.93	DWN				
SO3-MW03	0.07	UP	2.91	DWN				
SO4-MW02	SO4-MW02 0.09		2.72	DWN				
SO4-MW03	0.04	UP	2.92	DWN				
SO5-MW01	SO5-MW01 0.02		2.69	DWN				
SO5-MW03 0		EVEN	2.7	DWN				
SO5-MW02	0.04	UP	2.68	DWN				

Table 4 on CH2M-Navy CLEAN 9000 CTO JU23 2018-04-25. xlsx file has the quality check of the field work. There is a comparison between level loop elevations and total station locations. The picture below has all points Google map. All RAW data and field sketch are attached to the report.

Table 7 has the final locations of the six (6) new wells and one of existing well for checking:

Monitoring Well Elevations and Positions CLEAN 9000 – CTO JU23 Naval Research Laboratory – Chesapeake Bay Detachment Chesapeake Beach, Maryland

Monitoring Well	Northing (SPC83(2011) Maryland, US Survey Feet)	Easting (SPC83(2011) Maryland, US Survey Feet)	Top of Inner PVC Casing Elevation (US Survey Feet)	Top of Outer Steel Casing Elevation (US Survey Feet)	Ground Surface Elevation NAVD88 (US Survey Feet)
CBD-SO3-MW-01	361457.505	1445296.469	120.4839	120.5694	117.465
SO3-MW-03	361390.285	1445250.566	124.3038	124.2353	121.183
SO4-MW-02	361486.112	1445075.689	132.1621	132.2493	129.337
SO4 MW-03	361472.041	1444985.839	137.6048	137.5709	134.43
SO5 MW-01	361702.137	1444603.138	154.7118	154.6876	151.871

SO5 MW-02	361688.466	1444655.372	148.5966	148.5547	145.585
SO5 MW-03	361653.743	1444683.681	145.5803	145.582	142.472

Ground surface elevations and top of inner casing elevations of permanent monitoring wells were surveyed by Bowman on April 25, 2018.

3) Equipment used

BCG used GPS receivers GR5 and GR3 for static observations. The receivers are apdated to recent Firmware provided from Topcon Support. We used 3 seconds Robotic Total Station (PS103) to do our stake out. We used Trimble Electronic Level DiNi to run level loop on site to set new control. The certificate of calibration is attached for this instrument.

Precision Lase		Constru	ction Survey	GIS			
& Instrument, Inc. www.laserinst.com		Sales Servi	ce Rentals Traini	ing Support			
	CE	ERTIFICA	TE OF CAL	IBRATIO	V		
Customer: Bowman	Consulting Group		SVO Number:	231900		Calibration Date:	6/8/2017
Manufacture: Trimble			Equipment Number:	4		Calibration Due:	6/6/2018
Description: DiNi 0.3			P.O. Number	001878-GN Chanti	lly		
Model Number: 7803001	17		Calibration Interval:	One Year			
Serial Number: 736016			1				
	WE HERERY CERTIES	THAT THE AROVE	REFERENCED INSTRU	MENT HAS BEEN CA	LIBRATEDIIS	ING .	
STANDARD	S WHOSE BASIC ACCURA					HATBUREN DE HINDE	1
	O THIOSE BASIC ACCURA	OILU ARE ITACEA	DLE TO THE MATIONAL	MOINGIE OF SIAM	DANDO O TEC	/ IIIOLOG1 (II.I.S.1.	
STANDARDS USED:							
In compliance with AN	SI/NCSL Z540-1:1994 and M	WIL-STD-45862A					
		AUGT# 0011500		E 00 470/4/00 470400	00 4041/70 47	0105.00	al. Due: 2/16/20
Brunson, 290 Variable	Wedge, S/N: 268	NIS 1# 86H523-	170105-00,185P13.17010	3-00,1700008-170103	-00,184779-17	0105-00	ai. Due. Zi (6/20
			170105-00,185P13.17010 170105-00,185P13.17010				
Brunson, 187-S Stride	Vial, S/N: 906	NIST# 86H523-	170105-00,185P13.17010	05-00,170W68-170105	5-00,184V79-17	'0105-00 Ca	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b	Vial, S/N: 906 seen calibrated using a Trimb	NIST# 86H523-	170105-00,185P13.17010	05-00,170W68-170105	5-00,184V79-17	'0105-00 Ca	al. Due: 2/16/20
Brunson, 187-S Stride	Vial, S/N: 906 seen calibrated using a Trimb on number 0383.	NIST# 86H523- ble 5601 DR Standar	170105-00,185P13.17010	05-00,170W58-170105 ated at Trimble Naviga	5-00,184V79-17 ation Dayton, Ol	0105-00 Ci	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have to to NAMAS accreditation	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star	05-00,170W58-170105 ated at Trimble Naviga	6-00,184V79-17 ation Dayton, Ol eview upon appoi	0105-00 Ci thio and is referenced intment.	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra r of the above referenced star angle Measurements:	05-00,170W58-170105 ated at Trimble Naviga	5-00,184V79-17 ation Dayton, Ol	0105-00 Ci	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have to to NAMAS accreditation	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star	05-00,170W58-170105 ated at Trimble Naviga	6-00,184V79-17 ation Dayton, Ol eview upon appoi	0105-00 Ci thio and is referenced intment.	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have to to NAMAS accreditation	Vial, S/N: 906 reen calibrated using a Trimt on number 0363. Supporting documentation re	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra r of the above referenced star angle Measurements:	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	5-00,184V79-17 ation Dayton, Ol eview upon appoi	0105-00 Ci thio and is referenced intment.	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have to to NAMAS accreditation	Vial, S/N: 906 reen calibrated using a Trimt on number 0363. Supporting documentation re	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION	Vial, S/N: 906 seen calibrated using a Trimt on number 0363. Supporting documentation re RESULTS Angular	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions:	Vial, S/N: 906 seen calibrated using a Trimt on number 0363. Supporting documentation re RESULTS Angular	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions: Temp 23:	Vial, S/N: 906 eeen calibrated using a Trimb on number 0363. Supporting documentation re RESULTS Angular B C mbar	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions: Temp 23.1 Press 98:	Vial, S/N: 906 eeen calibrated using a Trimb on number 0363. Supporting documentation re RESULTS Angular B C mbar	NIST# 86H523- ble 5601 DR Standar slative to the traceability	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	05-00,170W68-170105 ated at Trimble Naviga andards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions: Temp 23.1 Press 98:	Vial, S/N: 906 eeen calibrated using a Trimt on number 0363. Supporting documentation re I RESULTS Angular B C mbar %	NIST# 86H523- ble 5801 DR Standar stative to the traceability A R specification:	170105-00,185P13.17010 rd instrument that is calibra of the above referenced star angle Measurements: ecorded in Arc Seconds	15-00,170W68-170105 ated at Trimble Navige indards are available for n	s-00,184V79-17 ation Dayton, Of eview upon appoi	0105-00 Ci hio and is referenced intment. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions: Temp 23: Press 98: Humldity 34	Vial, S/N: 906 eeen calibrated using a Trimt on number 0363. Supporting documentation re I RESULTS Angular B C mbar %	NIST# 86H523- ble 5801 DR Standar stative to the traceability A specification:	170105-00,185P13.17010 rd instrument that is calibre r of the above referenced star angle Measurements: ecorded in Arc Seconds 1	15-00,170W68-170105 ated at Trimble Navige indards are available for n V In	6-00,184V79-17 etion Dayton, Ol eview upon appoi	0105-00 Ci thio and is referenced intrent. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have b to NAMAS accreditation CALIBRATION Conditions: Temp Press 98: Humldity 34	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re IRESULTS Angular B C mbar %	NIST# 86H523- ble 5801 DR Standar stative to the traceability A specification:	170105-00,185P13.17010 rd instrument that is calibre r of the above referenced star angle Measurements: ecorded in Arc Seconds 1	15-00,170W68-170105 ated at Trimble Navige indards are available for n V In	6-00,184V79-17 etion Dayton, Ol eview upon appoi	0105-00 Ci thio and is referenced intrent. Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have be to NAMAS accreditation CALIBRATION Conditions: Temp 23.1 Press 98: Humidity 34 rvice Technickin:	Vial, S/N: 906 eeen calibrated using a Trimb on number 0363. Supporting documentation re I RESULTS Angular B C mbar %	NIST# 86H523- ble 5801 DR Standar stative to the traceability A specification: R specification:	170105-00,185P13.17010 rd instrument that is calibrated in the above referenced starting le Measurements: ecorded in Arc Seconds 1 It is started and complies with the lit, without the expressed with the started in the expressed with the started in the expressed with the started in the expressed with the expressed w	15-00,170W68-170105 ated at Trimble Navige indards are available for in V In original specifications. ritten consent of Pracle	ion Laser & Inst	20105-00 Cithio and is referenced intrent. Out Out	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have be to NAMAS accreditation CALIBRATION Conditions: Temp 23: Press 98: Humidity 34 rvice Technician:	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re I RESULTS Angular B C Market M	NIST# 86H523- ble 5801 DR Standar slative to the traceability A specification: R specification:	170105-00,185P13.17010 rd instrument that is calibre of the above referenced star angle Measurements: ecorded in Arc Seconds 1 Itested and complies with the II, without the expressed we	15-00,170W68-170105 ated at Trimble Navige indards are available for in V In Programmer of Practs Chartes Chartes	F-00, 184V79-17 etion Dayton, Ol eview upon appoi In finity 7	0105-00 Ci hio and is referenced intment. Out 0 rument, Inc.	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have be to NAMAS accreditation CALIBRATION Conditions: Temp 23.1 Press 98: Humidity 34 rvice Technicksn:	Vial, S/N: 906 seen calibrated using a Trimt on number 0363. Supporting documentation re RESULTS Angular B C mbar % The material continues a series and continues a series and continues and cont	NIST# 86H523- ble 5801 DR Standar stative to the traceability A Ri specification: his instrument has been roduced, except in ful Concinnati Office #20 B Lethanon St	170105-00,185P13.17010 rd instrument that is calibrated in the above referenced starting in the abo	15-00,170W68-170105 ated at Trimble Navige indards are available for in V In Provided the variable of the control of the control Charles Git Ste 5 304 On	e-00,184V79-17 etion Dayton, Ol eview upon appoi In finity 7	0105-00 Ci hio and is referenced intment. Out 0 rument, Inc. Gridgeport Office 919 West Main St	al. Due: 2/16/20
Brunson, 187-S Stride EDM baselines have be to NAMAS accreditation CALIBRATION Conditions: Temp 23: Press 98: Humidity 34 rvice Technician:	Vial, S/N: 906 seen calibrated using a Trimb on number 0363. Supporting documentation re I RESULTS Angular B C Market M	NIST# 86H523- ble 5801 DR Standar slative to the traceability A specification: R specification:	170105-00,185P13.17010 rd instrument that is calibre of the above referenced star angle Measurements: ecorded in Arc Seconds 1 Itested and complies with the II, without the expressed we	15-00,170W68-170105 ated at Trimble Navige andards are available for n V In Provided the provi	F-00, 184V79-17 etion Dayton, Ol eview upon appoi In finity 7	0105-00 Ci hio and is referenced intment. Out 0 rument, Inc.	al. Due: 2/16/20

Surveyor's Certification

THIS AS BUILT SURVEY WAS PREPARED BY ME, TRISTAN STEWART FROM AN ACTUAL GROUND SURVEY MADE UNDER MY SUPERVISION ON APRIL 25, 2018. I HEREBY CERTIFY THAT THE ACCURACY OF THIS SURVEY MEETS THE ACCURACY REQUIREMENTS OF THE CH2M STATEMENT OF WORK AND THAT THE PLAN SHOWN ON THE MAP PROVIDED WITH THIS REPORT IS ACCURATE, AND THAT I WAS IN RESPONSIBLE CHARGE OVER ITS PREPARATION IN ACCORDANCE WITH THE REQUIREMENTS SET FORTH IN THE STATEMENT OF WORK AND IN COMAR 09.13.06.03.

BOWMAN CONSULTING GROUP BY: TRISTAN STEWART PROFESSIONAL LAND SURVEYOR MD REG. NO. 21306

RENEWAL DATE: 06/26/2018

DATE

(NAD83(2011)) -NOT TO SCALE-

+ 119.811 GPS5

+ 119.152 GPS6

GPS 1 TIED TO CORS. CORS (ANP5, LOYF AND HNPT HELD FOR HORIZONTAL

+ 124.972 GPS4

NOTES:

NORTH MERIDIAN INFORMATION AS SHOWN HEREON IS MARYLAND STATE PLANE NAD 83/91, AND HAS BEEN PROCESSED THROUGH THE USE OF MAGNET TOOLS

-NOT TO SCALE-

CONTROL POINT 1 (BASE) N: 361481.17700 E: 1446230.11600 ELEVATION 125.746 (FEET) REBAR & CAP SET (R/C)

CONTROL POINT9 GPS9 N: 361361.54400 E: 1444505.76000 ELEVATION 155.045 R/C SET

CONTROL POINT17 GPS17 N: 361406.98800 E: 1445430.71600 ELEVATION 118.383 R/C SET

CONTROL POINT18 GPS 18 N: 361532.14400 E: 1445602.46500 ELEVATION 121.431 R/C

- 2. VERTICAL DATUM SHOWN HEREON IS NAVD 88 AND IS BASED ON THE CONTROL POINTS DESCRIBED IN NOTE 1.
- 3. THIS SURVEY HAS BEEN PREPARED WITHOUT THE BENEFIT OF A TITLE REPORT. THE PROPERTY SHOWN HEREON MAY BE SUBJECT TO EASEMENTS, GRANTS, RIGHTS-OF-WAY AND BUILDING RESTRICTION LINES NOT OTHERWISE SHOWN.
- 4. FIELD WORK WAS PERFORMED APRIL 25, 2018

+ 1080 + 150.703 FLY |N: 361956 N: 361956 1549 156.716 CHK /10 WELL /S05 MW-02 PVC 1572 148.55 RIM /S05 MW-02 1582 145.58 145.58 1581RIM /SO5 MW-03 134.63 145.58 WELL /SO5 MW-01 PVC VELL /SO5 MW-03 PVC ₁₅₃₉ 134.57 CON4 REC E RIM /S05 MW-01 WELL /SO4-MW-02 PVC/ 1579 142.64 CON7 REC E 1515 RIM /CBD-S03-MW-01 - 120.48 1578 142.81 142.6 CON7 142.6 BOL 1519 121.27 CON2 C E WELL/CBD-S03-MW-01 PVC 1542 134.4 -BOL 1 CHK /17 1547 118.371 1521 120.9 – BOL 1522 121.1 – BOL 1523 121.3 – BOL WELL /SO4 MW-03 PVC CHK /17 1545 137.57 RTK /CHK IPF /GPS17 RIM /SO4 MW-03 RIM /S03-MW-03 117.198 GPS16 WELL /SO3-MW-03 PVC

+ 94.391 GPS15

N: 360956

E:1444964

MONITORING WELL LOCATIONS NAVY CLEAN 9000 CTO JU23

ON THE PROPERTY OF CHESAPEAKE DETACHMENT CHESAPEAKE BEACH MARYLAND

CALVERT COUNTY, MARYLAND SCALE: 1"=100' DATE: APRIL, 2017 Phone: (410) 224-7590 Fax: (410) 224-7592 www.bowmanconsulting.com Bowman Consulting Group, Ltd. 195 Admiral Cochran Drive, Suite 215 © Bowmen Consulting Group, Ltd. BY: TMS CHK: T.S. QC:

BCG PROJECT NO: 8740-01-001 TASK: ? COUNTY REF NO: ?

PREPARED FOR
CH2M
5701 CLEVELAND STREET SUITE 200
VIRGINIA BEACH, VIRGINIA 23462 OFFICE: 757-671-6258

SHEET 1 OF 1

THIS STAKEOUT SURVEY WAS PREPARED BY ME, TRISTAN STEWART FROM AN ACTUAL GROUND SURVEY MADE UNDER MY SUPERVISION ON APRIL 25, 2018 I HEREBY CERTIFY THAT THE PLAT SHOWN HEREON IS ACCURATE, AND THAT I WAS IN RESPONSIBLE CHARGE OVER ITS PREPARATION IN ACCORDANCE WITH THE REQUIREMENTS SET FORTH IN COMAR 09.13.06.03.

Tristan Stewart

05/03/18 DATE

7 122.052 GPS7

十 125.75 BASE

BOWMAN CONSULTING GROUP BY: TRISTAN STEWART PROFESSIONAL LAND SURVEYOR MD REG. NO. 21306 RENEWAL DATE: 06/26/2018

3/31/2017 Mark gps1

OPUS Projects - "ch2m-0326"

- NGS Home
- About NGS
- Data & Imagery
- Tools
- Surveys
- Science & Education

MARK gps1 • Datasheet Mock-up

Upload A Photo Save Description

MARK gps1 v Occupations

Manage Data Files Save Occupations

3/31/2017 Mark gps1

gps1080o.17o	Start	2017-03-21T14:20:00 GPS	Antenna	Model:	TPSGR5 NONE ▼	S/N:		Height (m):	2.000
gps10800.170	End	2017-03-21T20:19:00 GPS	Receiver	Model:	Topcon	S/N:	U00040U9R82	Firmware:	
gps10811.17o	Start	2017-03-22T11:48:00 GPS	Antenna	Model:	TPSGR5 NONE ▼	S/N:		Height (m):	2.000
gps10611.170	End	2017-03-22T20:30:00 GPS	Receiver	Model:	Topcon	S/N:	U00040U9R82	Firmware:	
ama1092 a 17a	Start	2017-03-23T16:08:00 GPS	Antenna	Model:	TPSGR5 NONE ▼	S/N:		Height (m):	2.000
gps1082q.17o	End	2017-03-23T20:36:00 GPS	Receiver	Model:	Topcon	S/N:	U00040U9R82	Firmware:	

MARK gps1 • Processing Results From network-final •

Manage Coordinates

Scale uncertainties by 1.0x (68.3%) ▼

Coordinate Source: network-final **REF FRAME:** IGS08 (2017.2208) NAD_83(2011) (2010.0000) COORDINATE SYSTEM: SPC 1900 MD **UTM 18** N38:39:29.90149 ±0.000 m $N38:39:29.87040 \pm 0.000 \text{ m}$ 4279970.649 m LAT: **NORTHING:** 110179.683 m E283:28:08.03953 ±0.000 m **EAST LON:** E283:28:08.01889 ±0.000 m **EASTING:** 440811.821 m 366780.514 m WEST LON: W076:31:51.98111 ±0.000 m W076:31:51.96047 ±0.000 m **CONVERGENCE:** 0.29429756° -0.95657970° **EL HGT:** $3.275 \pm 0.002 \text{ m}$ 4.574 ±0.002 m **POINT SCALE:** 0.99995702 0.99981855 X: $1161585.630 \pm 0.000 \text{ m}$ 1161586.491 ±0.000 m **COMBINED FACTOR:** 0.99995630 0.99981783 Y: -4849950.370 ±0.001 m -4849951.823 ±0.001 m **U.S. NATIONAL GRID:** 18SUH6678079970 3962769.196 ±0.001 m 3962769.259 ±0.001 m **ORTHO HGT:** 38.315 ± 0.016 m (H = h - N WHERE N = GEOID12B HGT)

DATA FILE	ANTE	NNA	HEIGHT (m)	ЕРН ТҮРЕ	OBS (%)	FIXED (%)	RMS (m)	LAT (m)	LON (m)	HGT (m)	SOLUTION
gps1080o.17o	TPSGR5	NONE	2.000	rapid	97.1	99.7	_	0.000	0.000	0.002	network-final
gps10811.17o	TPSGR5	NONE	2.000	rapid	97.1	99.7	_	0.000	0.000	0.002	network-final
gps1082q.17o	TPSGR5	NONE	2.000	rapid	97.1	99.7	_	0.000	0.000	0.002	network-final
	Prefere	nces		Best Available	≥80.0	≥80.0	≤0.025	≤0.020	≤0.020	≤0.040	Preferences

MARK gps1 • Processing Results Plots

Scale uncertainties by 1.0x (68.3%) ▼. Show preferences network session OPUS published. The "zero" point coordinates, N38:39:29.90150, W076:31:51.98112, 3.275 m el. height, are the mean of all network adjustments.

3/31/2017 Mark gps1

MARK gps1 • Processing Results Table

Scale uncertainties by $\boxed{1.0x (68.3\%)}$ $\boxed{\bullet}$. Show $\boxed{\bullet}$ preferences $\boxed{\bullet}$ network $\boxed{\bullet}$ session $\boxed{\bullet}$ OPUS $\boxed{\bullet}$ published. The "zero" point coordinates, N38:39:29.90150, W076:31:51.98112, 3.275 m el. height, are the mean of all network adjustments.

o OPUS SOLUTIONS	NORTH (cm)	EAST (cm)	UP (cm)	REFERENCE FRAME	EPOCH (GPS)
gps1080o.17o	0.1 ±0.4	-0.3 ±0.4	-1.7 ±0.5	IGS08	2017-03-21T17:11:02
gps10811.17o	-0.1 ±0.3	0.1 ±0.2	-2.0 ±0.6	IGS08	2017-03-22T15:57:36
gps1082q.17o	0.0 ±0.4	0.3 ±0.4	-2.6 ±0.5	IGS08	2017-03-23T18:14:23
♦ SESSION SOLUTIONS	NORTH (cm)	EAST (cm)	UP (cm)	REFERENCE FRAME	EPOCH (GPS)
2017-080-session1	0.4 ±0.0	-0.5 ±0.0	-0.7 ±0.2	IGS08	2017-03-21T17:19:41
2017-081-session2	0.3 ±0.0	0.0 ± 0.0	-0.3 ±0.2	IGS08	2017-03-22T16:08:53
2017-082-session3	0.5 ±0.0	-0.1 ±0.0	-1.1 ±0.2	IGS08	2017-03-23T18:11:52
□ NETWORK SOLUTIONS	NORTH (cm)	EAST (cm)	UP (cm)	REFERENCE FRAME	EPOCH (GPS)
network-final	0.0 ±0.0	0.0 ±0.0	0.0 ±0.2	IGS08	2017-03-22T14:03:21

Website Owner: National Geodetic Survey / Last modified by OPUS Projects team Dec 27 2016

NOS Home • NGS Employees • Privacy Policy • Disclaimer • USA.gov • Ready.gov • Site Map • Contact Webmaster

Appendix E Validated Analytical Data (Base-Wide Site Inspection and Expanded Site Inspection)

Station ID	1	CBD-S03-DP01		CRD-90	03-DP02	CBD-S03-DP03		CBD-S03-DP04		CBD-S03-DP05	
Sample ID	CBD-S03-SS01-1012	CBD-S03-SB01-1315	CBD-S03-SB01P-1315	CBD-S03-SS02-1012	CBD-S03-SB02-2022	CBD-S03-SS03-1012	CBD-S03-SB03-2022	CBD-S03-SS04-1012	CBD-S03-SB04-1820	CBD-S03-SS05-1012	CBD-S03-SB05-1315
Sample Date	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12
Chemical Name											
V-1-(")- O											
Volatile Organic Compounds (UG/KG) 1,1,1-Trichloroethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,1,2,2-Tetrachloroethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,1,2-Trichloroethane 1,1-Dichloroethane	0.42 U 0.21 U	0.9 U 0.45 U	0.56 U 0.28 U	0.5 U 0.25 U	0.77 U 0.38 U	0.55 U 0.28 U	0.67 U 0.33 U	0.44 U 0.22 U	0.65 U 0.33 U	0.44 U 0.22 U	0.47 U 0.23 U
1,1-Dichloroethene	0.42 U	0.43 U	0.26 U	0.25 U	0.30 U	0.25 U	0.67 U	0.22 U 0.44 U	0.65 U	0.44 U	0.23 U
1,2,3-Trichlorobenzene	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,2,4-Trichlorobenzene	0.42 U 0.42 U	0.9 U 0.9 U	0.56 U 0.56 U	0.5 U 0.5 U	0.77 U 0.77 U	0.55 U 0.55 U	0.67 U 0.67 U	0.44 U 0.44 U	0.65 U 0.65 U	0.44 U 0.44 U	0.47 U 0.47 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,2-Dichlorobenzene	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,2-Dichloroethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
1,2-Dichloropropane 1,3-Dichlorobenzene	0.42 U 0.21 U	0.9 U 0.45 U	0.56 U 0.28 U	0.5 U 0.25 U	0.77 U 0.38 U	0.55 U 0.28 U	0.67 U 0.33 U	0.44 U 0.22 U	0.65 U 0.33 U	0.44 U 0.22 U	0.47 U 0.23 U
1,4-Dichlorobenzene	0.21 U	0.45 U	0.28 U	0.25 U	0.38 U	0.28 U	0.33 U	0.22 U	0.33 U	0.22 U	0.23 U
2-Butanone	1.1 B	0.9 U	0.56 U	1.7 B	0.77 U	0.55 U	0.67 U	1.6 B	2.9 B	1.4 B	0.47 UJ
2-Hexanone 4-Methyl-2-pentanone	0.42 UJ 0.42 UJ	0.9 UJ 0.9 UJ	0.56 UJ 0.56 UJ	0.5 UJ 0.5 UJ	0.77 UJ 0.77 UJ	0.55 UJ 3 J	0.67 UJ 0.67 UJ	0.44 UJ 0.44 UJ	0.65 UJ 0.65 UJ	0.44 UJ 0.44 UJ	0.47 UJ 0.47 UJ
Acetone	0.42 UJ 41 B	0.9 UJ	5.6 U	71 B	9.1 B	3 J 31 B	9.5 B	0.44 UJ 62 B	0.65 UJ 29 B	65 J	7.6 B
Benzene	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.38 J	0.44 U	0.47 U
Bromochloromethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
Bromodichloromethane Bromoform	0.42 U 0.21 U	0.9 U 0.45 U	0.56 U 0.28 U	0.5 U 0.25 U	0.77 U 0.38 U	0.55 U 0.28 U	0.67 U 0.33 U	0.44 U 0.22 U	0.65 U 0.33 U	0.44 U 0.22 U	0.47 U 0.23 U
Bromomethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
Carbon disulfide	0.66 B	0.7 B	0.44 B	0.45 B	0.72 B	0.47 B	0.59 B	0.42 B	0.86 B	0.4 B	0.36 B
Carbon tetrachloride Chlorobenzene	0.21 U 0.21 U	0.45 U 0.45 U	0.28 U 0.28 U	0.25 U 0.25 U	0.38 U 0.38 U	0.28 U 0.28 U	0.33 U 0.33 U	0.22 U 0.22 U	0.33 U 0.33 U	0.22 U 0.22 U	0.23 U 0.23 U
Chloroethane	0.42 U	0.43 U	0.26 U	0.25 U	0.30 U	0.25 U	0.67 U	0.22 U 0.44 U	0.65 U	0.44 U	0.23 U
Chloroform	0.21 U	0.45 U	0.22 B	0.25 U	0.49 B	0.28 U	0.24 B	0.18 B	0.33 U	0.14 J	0.23 U
Chloromethane	0.42 U	0.9 U 0.45 U	0.56 U 0.28 U	0.5 U 0.25 U	0.77 U	0.55 U 0.28 U	0.67 U 0.33 U	0.44 U 0.22 U	0.65 U 0.33 U	0.44 U 0.22 U	0.47 U 0.23 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.21 U 0.21 U	0.45 U	0.28 U	0.25 U	0.38 U 0.38 U	0.28 U	0.33 U	0.22 U 0.22 U	0.33 U	0.22 U	0.23 U
Cyclohexane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
Dibromochloromethane	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
Dichlorodifluoromethane (Freon-12) Ethylbenzene	0.42 U 0.42 U	0.9 U 0.9 U	0.56 U 0.56 U	0.5 U 0.5 U	0.77 U 0.77 U	0.55 U 0.55 U	0.67 U 0.67 U	0.44 U 0.44 U	0.65 U 0.22 J	0.44 U 0.44 U	0.47 U 0.47 U
Isopropylbenzene	0.42 U	0.45 U	0.28 U	0.25 U	0.38 U	0.28 U	0.33 U	0.44 U	0.33 U	0.44 U	0.47 U
m- and p-Xylene	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.43 J	0.44 U	0.47 U
Methyl acetate Methylcyclohexane	1.5 B 0.42 U	1.7 B 0.9 U	1.1 B 0.56 U	2.6 B 0.5 U	1.7 B 0.77 U	2.4 B 0.55 U	1.6 B 0.67 U	1.3 B 0.44 U	2.7 B 0.18 J	1.6 B 0.44 U	1.2 B 0.47 U
Methylene chloride	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.16 J 0.65 U	0.44 U	18
Methyl-tert-butyl ether (MTBE)	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	0.65 U	0.44 U	0.47 U
o-Xylene	0.21 U	0.45 U	0.28 U	0.25 U	0.38 U	0.28 U	0.33 U	0.22 U	0.33 U	0.22 U	0.23 U
Styrene Tetrachloroethene	0.21 U 0.42 U	0.45 U 0.9 U	0.28 U 0.56 U	0.25 U 0.5 U	0.38 U 0.77 U	0.28 U 0.55 U	0.33 U 0.67 U	0.22 U 0.44 U	0.33 U 0.65 U	0.22 U 0.44 U	0.23 U 0.47 U
Toluene	0.42 U	0.9 U	0.56 U	0.5 U	0.77 U	0.55 U	0.67 U	0.44 U	1.1 J	0.44 U	0.47 U
trans-1,2-Dichloroethene	0.21 U	0.45 U	0.28 U	0.25 U	0.38 U	0.28 U	0.33 U	0.22 U	0.33 U	0.22 U	0.23 U
trans-1,3-Dichloropropene Trichloroethene	0.42 U 0.21 U	0.9 U 0.45 U	0.56 U 0.28 U	0.5 U 0.25 U	0.77 U 0.38 U	0.55 U 0.28 U	0.67 U 0.33 U	0.44 U 0.22 U	0.65 U 0.33 U	0.44 U 0.22 U	0.47 U 0.23 U
Trichlorofluoromethane (Freon-11)	0.21 U	0.45 U	0.28 U	0.25 U	1.5 J	0.28 J	0.33 U	0.22 U	0.33 U	0.22 U	0.23 U
Vinyl chloride	0.21 U	0.45 U	0.28 U	0.25 U	0.38 U	0.28 U	0.33 U	0.22 U	0.33 U	0.22 U	0.23 U
Semivoletile Organic Compounds (UC/KC)											
Semivolatile Organic Compounds (UG/KG) 1,1-Biphenyl	18 U	20 U	19 U	18 U	29 U	18 U	24 U	18 U	25 U	18 U	20 U
1,2,4,5-Tetrachlorobenzene	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
2,2'-Oxybis(1-chloropropane)	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	3.7 U 18 U	3.9 U 20 U	3.7 U 19 U	3.6 U 18 U	5.7 U 29 U	3.7 U 18 U	4.8 U 24 U	3.6 U 18 U	4.9 U 25 U	3.7 U 18 U	4 U 20 U
2,4,6-Trichlorophenol	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
2,4-Dichlorophenol	3.6 U	3.9 U	3.7 U	3.6 U	5.7 U	3.6 U	4.8 U	3.6 U	4.9 U	3.6 U	4 U
2,4-Dimethylphenol	37 U	39 U 200 U	37 U	36 U 180 U	57 U	37 U 180 U	48 U	36 U	49 U 250 U	37 U	40 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	180 U 18 U	200 U	190 U 19 U	180 U 18 U	290 U 29 U	180 U 18 U	240 U 24 U	180 U 18 U	250 U	180 U 18 U	200 U 20 U
2,6-Dinitrotoluene	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
2-Chloronaphthalene	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
2-Chlorophenol 2-Methylnaphthalene	3.7 U 1.8 U	3.9 U 2 U	3.7 U 1.9 U	3.6 U 1.8 U	5.7 U 2.9 U	3.7 U 1.8 U	4.8 U 2.4 U	3.6 U 1.8 U	4.9 U 2.5 U	3.7 U 1.8 U	4 U 2 U
2-Methylphenol	7.3 U	7.8 U	7.4 U	7.2 U	11 U	7.3 U	9.5 U	7.2 U	9.8 U	7.2 U	8 U
2-Nitroaniline	18 U	20 U	19 U	18 U	29 U	18 U	24 U	18 U	25 U	18 U	20 U
2-Nitrophenol 3,3'-Dichlorobenzidine	3.7 U 370 U	3.9 U 390 U	3.7 U 370 U	3.6 U 360 U	5.7 U 570 U	3.7 U 370 U	4.8 U 480 U	3.6 U 360 U	4.9 U 490 U	3.7 U 370 U	4 U 400 U
3-Nitroaniline	370 U	390 U	370 U	36 U	570 U	370 U	480 U	360 U	490 U	370 U	400 U
4,6-Dinitro-2-methylphenol	18 U	20 U	19 U	18 U	29 U	18 U	24 U	18 U	25 U	18 U	20 U
4-Bromophenyl-phenylether	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
4-Chloro-3-methylphenol 4-Chloroaniline	7.3 U 18 U	7.8 U 20 U	7.4 U 19 U	7.2 U 18 U	11 U 29 U	7.3 U 18 U	9.5 U 24 U	7.2 U 18 U	9.8 U 25 U	7.2 U 18 U	8 U 20 U
4-Chlorophenyl-phenylether	1.8 U	20 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	20 U
4-Methylphenol	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
4-Nitroaniline	37 U	39 U	37 U	36 U	57 U	37 U	48 U	36 U	49 U	37 U	40 U
4-Nitrophenol	37 U	39 U	37 U	36 U	57 U	37 U	48 U	36 U	49 U	37 U	40 U

Station ID		CBD-S03-DP01		CBD-S0	2 DD02	CDD SO	03-DP03	CBD-S0	22 DD04	CBD-S0	2 DD05
Sample ID	CBD-S03-SS01-1012	CBD-S03-DP01 CBD-S03-SB01-1315	CBD-S03-SB01P-1315	CBD-S03-SS02-1012	CBD-S03-SB02-2022	CBD-S03-SS03-1012	CBD-S03-SB03-2022	CBD-S03-SS04-1012	CBD-S03-SB04-1820	CBD-S03-SS05-1012	CBD-S03-SB05-1315
Sample Date	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12
Chemical Name									10		
Acenaphthene	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.5 J	2.5 U	1.8 U	2 U
Acenaphthylene	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Acetophenone	18 U	20 U	19 U	18 U	29 U	18 U	24 U	18 U	25 U	18 U	20 U
Anthracene Atrazine	1.8 U 18 U	2 U 20 U	1.9 U 19 U	1.8 U 18 U	2.9 U 29 U	1.8 U 18 U	2.4 U 24 U	4.8 B 18 U	2.5 U 25 U	1.1 B 18 U	2 U 20 U
Benzaldehyde	18 R	20 C	19 C	18 R	29 R	18 R	24 U	18 R	25 C	18 R	20 G
Benzo(a)anthracene	1.8 U	2 U	1.9 U	3 B	2.9 U	1.8 B	2.4 U	41 B	2.5 U	7.1 B	2 U
Benzo(a)pyrene	7.4 U	4 U	3.8 U	3.7 U	4.6 U	40	3.9 U	48	5 U	2.9 U	3.2 U
Benzo(b)fluoranthene	2.3 B	3.9 U	3.7 U	7.4 B	5.7 U	4 B	4.8 U	120	4.9 U	23 B	4 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1.8 U 3.7 U	2 U 3.9 U	1.9 U 3.7 U	3 B 3 B	2.9 U 5.7 U	1.8 B 2.6 B	2.4 U 4.8 U	42 58	2.5 U 4.9 U	8.2 B 7.4 B	2 U 4 U
bis(2-Chloroethoxy)methane	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.4 D	2 U
bis(2-Chloroethyl)ether	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
bis(2-Ethylhexyl)phthalate	11 B	6.3 B	9.2 B	8.5 B	7.6 B	9.2 B	9.8 B	46 B	6.7 B	9.7 B	20 U
Butylbenzylphthalate	3.7 U 18 U	3.9 U 20 U	3.7 U 19 U	3.6 U 18 U	5.7 U 29 U	3.7 U 18 U	4.8 U 24 U	3.6 U 18 U	4.9 U 25 U	3.7 U 18 U	4 U 20 U
Caprolactam Carbazole	37 U	39 U	37 U	36 U	57 U	37 U	48 U	36 U	49 U	37 U	40 U
Chrysene	2.3 B	2 U	1.9 U	3.7 B	2.9 U	2.2 B	2.4 U	45 B	2.5 U	9.7 B	2 U
Dibenz(a,h)anthracene	7.4 U	4 U	3.8 U	3.7 U	4.6 U	4.5 J	3.9 U	7.4 J	5 U	2.9 U	3.2 U
Dibenzofuran	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Diethylphthalate Dimethyl phthalate	6.1 B 3.7 U	8.3 B 3.9 U	8.1 B 3.7 U	7.4 B 3.6 U	23 B 5.7 U	6.6 B 3.7 U	19 B 4.8 U	10 B 3.6 U	13 B 4.9 U	5.9 B 3.7 U	12 B 4 U
Di-n-butylphthalate	3.7 U 18 U	3.9 U 20 U	3.7 U 19 U	3.6 U 18 U	29 U	3.7 U 18 U	4.8 U 24 U	3.6 U 18 U	4.9 U 25 U	3.7 U 18 U	20 U
Di-n-octylphthalate	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Fluoranthene	1.8 U	2 U	1.9 U	3.7 B	2.9 U	3.3 B	2.4 U	39	2.5 U	11 B	2 U
Fluorene	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.1 J	2.5 U	1.8 U	2 U
Hexachlorobenzene Hexachlorobutadiene	1.8 U 1.8 U	2 U 2 U	1.9 U 1.9 U	1.8 U 1.8 U	2.9 U 2.9 U	1.8 U 1.8 U	2.4 U 2.4 U	1.8 U 1.8 U	2.5 U 2.5 U	1.8 U 1.8 U	2 U 2 U
Hexachlorocyclopentadiene	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	3.6 U	4.9 U	3.7 U	4 U
Hexachloroethane	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Indeno(1,2,3-cd)pyrene	3.7 U	3.9 U	3.7 U	3.6 U	5.7 U	3.7 U	4.8 U	37	4.9 U	7.1 B	4 U
Isophorone	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Naphthalene n-Nitroso-di-n-propylamine	1.8 U 3.7 U	2 U 3.9 U	1.9 U 3.7 U	1.8 U 3.6 U	2.9 U 5.7 U	1.8 U 3.7 U	2.4 U 4.8 U	1.8 U 3.6 U	2.5 U 4.9 U	1.8 U 3.7 U	2 U 4 U
n-Nitrosodiphenylamine	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Nitrobenzene	1.8 U	2 U	1.9 U	1.8 U	2.9 U	1.8 U	2.4 U	1.8 U	2.5 U	1.8 U	2 U
Pentachlorophenol	37 U	39 U	37 U	36 U	57 U	37 U	48 U	36 U	49 U	37 U	40 U
Phenanthrene	1.1 B	2 U	1.9 U 3.7 U	1.9 B	2.9 U	2.2 B	2.4 U	21	2.5 U	5.9 B	2 U
Phenol Pyrene	3.6 U 1.5 B	3.9 U 3.9 U	3.7 U 3.7 U	3.6 U 4.5 B	5.7 U 5.7 U	3.6 U 3.7 B	4.8 U 4.8 U	3.6 U 68	4.9 U 4.9 U	3.6 U 13 B	4 U 4 U
Total cresols	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pesticide/Polychlorinated Biphenyls (UG/KG)											
4,4'-DDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE 4,4'-DDT	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aldrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
alpha-BHC	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
alpha-Chlordane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1016	14 U 14 U	15 U	15 U	14 U 14 U	22 U 22 U	290 U 290 U	19 U 19 U	140 U 140 U	19 U 19 U	14 U 14 U	16 U
Aroclor-1221 Aroclor-1232	14 U	15 U 15 U	15 U 15 U	14 U	22 U	290 U	19 U	140 U	19 U	14 U	16 U 16 U
Aroclor-1242	14 U	15 U	15 U	14 U	22 U	290 U	19 U	140 U	19 U	14 U	16 U
Aroclor-1248	14 U	15 U	15 U	14 U	22 U	290 U	19 U	140 U	19 U	14 U	16 U
Aroclor-1254	14 U	15 U	15 U	14 U	22 U	290 U	19 U	140 U	19 U	14 U	16 U
Aroclor-1260 Aroclor-1262	120 14 U	15 U 15 U	15 U 15 U	41 14 U	22 U 22 U	5,500 290 U	81 19 U	2,100 140 U	17 J 19 U	150 14 U	16 U 16 U
Aroclor-1262 Aroclor-1268	14 U	15 U	15 U	14 U	22 U	290 U	19 U	140 U	19 U	14 U	16 U
beta-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
delta-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I Endosulfan II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan sulfate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin aldehyde	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin ketone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
gamma-BHC (Lindane)		NΔ				NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA NA	NA NA	NA NA	NA	NA					1471	
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	NA NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	NA NA	NA	NA			NA NA					NA NA
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	NA NA NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA	NA	NA NA	
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum	NA NA NA NA 5,700	NA NA NA	NA NA NA 1,600	NA NA 5,800	NA NA 5,700	NA 4,500	NA NA 5,400	NA NA 6,300	NA NA 6,100	7,900	NA 2,500
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony	NA NA NA NA S,700	NA NA NA 1,500 0.071 J	NA NA NA 1,600 0.065 J	NA NA 5,800 0.35	NA NA 5,700 0.18	4,500 0.9	NA NA 5,400 0.083 J	NA NA 6,300 0.36	NA NA 6,100 0.1	NA NA 7,900 0.08 J	2,500 0.081 J
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic	NA NA NA NA S,700 0.12 1.6	NA NA NA 1,500 0.071 J 1.5	NA NA NA 1,600 0.065 J 1.6	5,800 0.35 2.1	5,700 0.18 5.2	NA 4,500 0.9 14	NA NA 5,400 0.083 J 2.1	6,300 0.36 2.2	6,100 0.1 2.9	7,900 0.08 J 1.2	NA 2,500 0.081 J 1.2
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic Barium	NA NA NA NA NA 5,700 0.12 1.6	NA NA NA 1,500 0.071 J 1.5 4.5	NA NA NA 1,600 0.065 J 1.6 4.6	5,800 0.35 2.1 27	5,700 0.18 5.2	NA 4,500 0.9 14 9.8	5,400 0.083 J 2.1 13	6,300 0.36 2.2 27	6,100 0.1 2.9	7,900 0.08 J 1.2 44	2,500 0.081 J 1.2 5
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic	NA NA NA NA NA 5,700 0.12 1.6 37 0.51	NA NA NA 1,500 0.071 J 1.5 4.5 0.12	NA NA NA 1,600 0.065 J 1.6 4.6 0.13	5,800 0.35 2.1 27 0.33	NA NA 5,700 0.18 5.2 14 0.7	NA 4,500 0.9 14	5,400 0.083 J 2.1 13	6,300 0.36 2.2 27 0.3	6,100 0.1 2.9	7,900 0.08 J 1.2	2,500 0.081 J 1.2 5
gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic Barium Beryllium	NA NA NA NA NA 5,700 0.12 1.6	NA NA NA 1,500 0.071 J 1.5 4.5	NA NA NA 1,600 0.065 J 1.6 4.6	5,800 0.35 2.1 27	5,700 0.18 5.2	NA 4,500 0.9 14 9.8 0.26	5,400 0.083 J 2.1 13	6,300 0.36 2.2 27	6,100 0.1 2.9 13 0.45	7,900 0.08 J 1.2 44 0.64	2,500 0.081 J 1.2 5

Appendix D - Site 3 Soil Analytical Data

Station ID		CBD-S03-DP01		CBD-S0	3-DP02	CBD-S0	3-DP03	CBD-S0	03-DP04	CBD-S	03-DP05
Sample ID	CBD-S03-SS01-1012	CBD-S03-SB01-1315	CBD-S03-SB01P-1315	CBD-S03-SS02-1012	CBD-S03-SB02-2022	CBD-S03-SS03-1012	CBD-S03-SB03-2022	CBD-S03-SS04-1012	CBD-S03-SB04-1820	CBD-S03-SS05-1012	CBD-S03-SB05-1315
Sample Date	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12
Chemical Name											
Chromium	7.6	6.7	8.4	11	24	12	22	8.7	26	6.2	14
Cobalt	2.6	0.48	0.5	1.9	1.2	1.4	1.7	2.3	5	3.4	0.4
Copper	2.9	1	1.1	2.6	3.1	3.9	2.8	3	3	1.9	1.6
Cyanide	0.055 U	0.059 U	0.056 U	0.055 U	0.086 U	0.055 U	0.072 U	0.054 U	0.074 U	0.043 J	0.061 U
Iron	5,600	2,300	2,600	6,400	18,000	8,100	9,700	8,400	13,000	5,600	4,400
Lead	5.9	1.4	1.8	7.2	5	2.9	3.7	11	4.4	4.3	1.9
Magnesium	1,400	390	460	660	1,700	480	1,800	630	19,000	630	530
Manganese	160	5.4	4.2	57	8.3	20	13	69	320	140	4
Mercury	0.012 J	0.016 U	0.01 J	0.0095 J	0.017 U	0.017 U	0.017 U	0.011 J	0.017 U	0.0078 J	0.017 U
Nickel	10	0.62	0.67	5.7	2.5	2.3	4.4	4.5	18	6.2	0.86
Potassium	300	310	330	400	1,500	350	1,100	340	1,800	250	410
Selenium	0.25	0.098 B	0.12 B	0.18 B	1.4	0.96	0.42	0.28	0.62	0.4	0.39
Silver	0.024 J	0.033 J	0.035 J	0.031 J	0.054	0.026 J	0.047 J	0.034 J	0.072	0.024 J	0.042 J
Sodium	200	25 U	13 B	17 B	77 B	26 B	46 B	24 B	200	15 B	20 B
Thallium	0.19	0.19	0.17	0.2	0.32	0.08	0.22	0.2	0.19	0.24	0.11
Vanadium	9	4.7	5.2	11	14	18	9.3	12	11	8.2	5.4
Zinc	35	6.6	7.5	20 B	54	8.6 B	51	30	45	45	8.4
Wet Chemistry											
pH (ph)	5.9	NA	NA	6.3	NA	6.6	NA	5.4	NA	5.7	NA
Total organic carbon (TOC) (mg/kg)	1,300	NA	NA	1,300	NA	1,100 U	NA	6,800	NA	11,000	NA

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or J - Analyte present, value may or may not be accurate or precise
 J - Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R - Unreliable Result
 U - The material was analyzed for, but not detected
 UJ - Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site 3 Soil Analytical Data

Station ID	CBD-S0	13-DP06	CBD-S0	3-DP07	CRD-SI	03-DP08	CRD-90	03-DP09	CBD-S0	3_DP10
Sample ID	CBD-S03-SS06-000H	CBD-S03-SB06-0810	CBD-S03-SS07-000H	CBD-S03-SB07-0810	CBD-S03-SS08-000H	CBD-S03-SB08-0810	CBD-S03-SS09-000H	CBD-S03-SB09-0810	CBD-S03-SS10-000H	CBD-S03-SB10-0810
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18
Chemical Name										
Valatila Oussaia Communida (UC/I/C)										
Volatile Organic Compounds (UG/KG) 1,1,1-Trichloroethane	NA	NA NA	NA	NA						
1,1,2,2-Tetrachloroethane	NA									
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA									
1,1,2-Trichloroethane 1,1-Dichloroethane	NA NA									
1,1-Dichloroethane	NA NA	NA NA								
1,2,3-Trichlorobenzene	NA									
1,2,4-Trichlorobenzene	NA									
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane	NA NA									
1,2-Dichlorobenzene	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1,2-Dichloroethane	NA									
1,2-Dichloropropane	NA NA									
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NA NA									
2-Butanone	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2-Hexanone	NA									
4-Methyl-2-pentanone	NA NA									
Acetone Benzene	NA NA									
Bromochloromethane	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
Bromodichloromethane	NA									
Bromoform Bromomethane	NA NA									
Carbon disulfide	NA NA									
Carbon tetrachloride	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	NA									
Chloroethane Chloroform	NA NA									
Chloromethane	NA NA									
cis-1,2-Dichloroethene	NA									
cis-1,3-Dichloropropene	NA									
Cyclohexane Dibromochloromethane	NA NA									
Dichlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	NA									
Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
m- and p-Xylene Methyl acetate	NA NA									
Methylcyclohexane	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Methylene chloride	NA									
Methyl-tert-butyl ether (MTBE)	NA NA									
o-Xylene Styrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene	NA NA	NA NA	NA NA	NA NA	NA					
Toluene	NA									
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	NA NA									
Trichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Trichlorofluoromethane (Freon-11)	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Vinyl chloride	NA									
Semivolatile Organic Compounds (UG/KG)										
1,1-Biphenyl	NA									
1,2,4,5-Tetrachlorobenzene	NA									
2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol	NA NA									
2,3,4,0-1 etrachiorophenol 2,4,5-Trichlorophenol	NA NA									
2,4,6-Trichlorophenol	NA									
2,4-Dichlorophenol	NA									
2,4-Dimethylphenol 2,4-Dinitrophenol	NA NA									
2,4-Dirittophenol 2,4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,6-Dinitrotoluene	NA									
2-Chloronaphthalene	NA NA									
2-Chlorophenol 2-Methylnaphthalene	NA NA									
2-Methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Nitroaniline	NA									
2-Nitrophenol	NA NA									
3,3'-Dichlorobenzidine 3-Nitroaniline	NA NA									
4,6-Dinitro-2-methylphenol	NA									
4-Bromophenyl-phenylether	NA									
4-Chloro-3-methylphenol 4-Chloroaniline	NA NA									
4-Chlorophenyl-phenylether	NA NA									
4-Methylphenol	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitroaniline	NA									
4-Nitrophenol	NA									

Appendix D - Site 3 Soil Analytical Data

- · · · · -										
Station ID		03-DP06		03-DP07	CBD-S0	<u> </u>	CBD-S0	<u> </u>		03-DP10
Sample ID	CBD-S03-SS06-000H	CBD-S03-SB06-0810	CBD-S03-SS07-000H	CBD-S03-SB07-0810	CBD-S03-SS08-000H	CBD-S03-SB08-0810	CBD-S03-SS09-000H	CBD-S03-SB09-0810	CBD-S03-SS10-000H	CBD-S03-SB10-0810
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18
Chemical Name										
Acenaphthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Acetophenone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Atrazine	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzaldehyde	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA
Benzo(g,h,i)perylene Benzo(k)fluoranthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Chloroethoxy)methane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Chloroethyl)ether	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Caprolactam	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA
Chrysene Dibenz(a,h)anthracene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzofuran	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Diethylphthalate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dimethyl phthalate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-butylphthalate	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Di-n-octylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorobenzene Hexachlorobutadiene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isophorone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Nitroso-di-n-propylamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Nitrosodiphenylamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol Phenanthrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticide/Polychlorinated Biphenyls (UG/KG)		0.400.11	0.40.11	0.400.11	0.404.5	0.040.11		0.000 11		0.404.11
4,4'-DDD 4,4'-DDE	0.13 U 2.73	0.136 U 0.136 U	0.13 U 0.13 U	0.133 U 0.133 U	0.134 R 0.134 R	0.242 U 0.242 U	0.132 R 7.94 J-	0.226 U 0.226 U	0.132 U 0.132 U	0.131 U 0.131 U
4,4'-DDT	0.26 U	0.136 U 0.271 U	0.13 U 0.261 U	0.133 U 0.266 U	0.134 R 0.267 R	0.242 U 0.484 U	0.265 R	0.226 U 0.453 U	0.132 U 0.264 U	0.131 U 0.262 U
Aldrin	0.20 U	0.271 U	0.201 U	0.200 U	0.134 R	0.444 U	0.203 R 0.132 R	0.433 U 0.226 U	0.132 U	0.202 U 0.131 U
alpha-BHC	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U	0.132 R	0.226 U	0.132 U	0.131 U
alpha-Chlordane	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U	0.132 R	0.226 U	0.132 U	0.131 U
Aroclor-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA
Aroclor-1242 Aroclor-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1248 Aroclor-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1262	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1268	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
beta-BHC	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U	0.132 R	0.226 U	0.132 U	0.131 U
delta-BHC	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U		0.226 U		0.131 U
Dieldrin	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U		0.226 U	0.132 U	0.131 U
Endosulfan I Endosulfan II	0.13 U 0.13 U	0.136 U 0.136 U	0.13 U 0.13 U	0.133 U 0.133 U	0.134 R 0.134 R	0.242 U 0.242 U	0.132 R 0.132 R	0.226 U 0.226 U	0.132 U 0.132 U	0.131 U 0.131 U
Endosulfan il Endosulfan sulfate	0.13 U 0.26 U	0.136 U 0.271 U	0.13 U 0.261 U	0.133 U 0.266 U	0.134 R 0.267 R	0.242 U 0.484 U	0.132 R 0.265 R	0.226 U 0.453 U	0.132 U 0.264 U	0.131 U 0.262 U
Endosulian sulfate Endrin	0.20 U	0.271 U	0.201 U	0.200 U	0.207 R 0.134 R	0.464 U	0.203 R 0.132 R	0.433 U 0.226 U	0.204 U	0.202 U 0.131 U
Endrin aldehyde	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U	0.132 R	0.226 U		0.131 U
Endrin ketone	0.26 U	0.271 U	0.261 U	0.266 U	0.267 R	0.484 U	0.265 R	0.453 U	0.264 U	0.262 U
gamma-BHC (Lindane)	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U	0.132 R	0.226 U	0.132 U	0.131 U
Heptachlor	0.13 U	0.136 U	0.13 U		0.134 R	0.242 U		0.226 U		0.131 U
Heptachlor epoxide	0.13 U	0.136 U	0.13 U	0.133 U	0.134 R	0.242 U		0.226 U	0.132 U	0.131 U
Methoxychlor	0.26 U 13 U	0.271 U 13.6 U	0.261 U	0.266 U 13.3 U	0.267 R 13.4 R	0.484 U	0.265 R 13.2 R	0.453 U 22.6 U	0.264 U 13.2 U	0.262 U 13.1 U
Toxaphene	13 U	13.0 U	13 U	13.3 U	13.4 K	24.2 U	13.2 R	22.0 U	13.2 U	13.1 U
Total Metals (MG/KG)	+									
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium Chromium (hexavalent)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium (hexavalent)	INA	INA	NA	NA	INA	NA.	INA	NA	INA	INA

Appendix D - Site 3 Soil Analytical Data

Station ID	CBD-S0)3-DP06	CBD-S0	3-DP07	CBD-S0)3-DP08	CBD-S(03-DP09	CBD-S	03-DP10
Sample ID	CBD-S03-SS06-000H	CBD-S03-SB06-0810	CBD-S03-SS07-000H	CBD-S03-SB07-0810	CBD-S03-SS08-000H	CBD-S03-SB08-0810	CBD-S03-SS09-000H	CBD-S03-SB09-0810	CBD-S03-SS10-000H	CBD-S03-SB10-0810
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18
Chemical Name										
Chromium	NA									
Cobalt	NA									
Copper	NA									
Cyanide	NA									
Iron	NA									
Lead	NA									
Magnesium	NA									
Manganese	NA									
Mercury	NA									
Nickel	NA									
Potassium	NA									
Selenium	NA									
Silver	NA									
Sodium	NA									
Thallium	NA									
Vanadium	NA									
Zinc	NA									
Wet Chemistry										
pH (ph)	NA									
Total organic carbon (TOC) (mg/kg)	NA									

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site 3 Soil Analytical Data

Station ID Sample ID	CBD-S03-SS11-000H	CBD-S03-DP11 CBD-S03-SS11P-000H	CBD-S03-SB11-0810	CBD-S03 CBD-S03-SS12-000H	CBD-S03-SB12-0810	CBD-S03-SS13-000H	03-DP13 CBD-S03-SB13-0810	CBD-S03-SS14-000H	CBD-S03-SB14-0810
Sample Date									
•	04/03/18	04/03/18	04/03/18	04/04/18	04/04/18	04/03/18	04/03/18	04/04/18	04/04/18
hemical Name									
olatile Organic Compounds (UG/KG)									
1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
I-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3-Trichlorobenzene 2,4-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Dibromo-3-chloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Dibromoethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA
3-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Dichlorobenzene Butanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl-2-pentanone	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA
cetone	NA	NA	NA	NA	NA	NA	NA	NA	NA
enzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
omochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
romodichloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
omoform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
omomethane arbon disulfide	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
arbon distande	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
llorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
nloroethane	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA
nloroform	NA	NA	NA	NA	NA	NA	NA	NA	NA
loromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
s-1,2-Dichloroethene	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA
-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
rclohexane oromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
chlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
hylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
ppropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
and p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ethyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA
ethylcyclohexane	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
ethylene chloride ethyl-tert-butyl ether (MTBE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Xylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
yrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trachloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
bluene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ns-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ans-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA
ichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
chlorofluoromethane (Freon-11) nyl chloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
iyi onionue	INA	INA	INA	INA	INA	INA	INA	INA	INA
mivolatile Organic Compounds (UG/KG)									
1-Biphenyl	560 U	410 UJ	400 U	640 U	400 U	500 U	420 U	460 U	380
2,4,5-Tetrachlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
2'-Oxybis(1-chloropropane)	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
3,4,6-Tetrachlorophenol	NA 196 LI	NA 127 III	NA 124 II	NA 245 H	NA 124 II	NA 169 LL	NA 142 II	NA 155 II	NA 126 I
1,5-Trichlorophenol 1,6-Trichlorophenol	186 U 186 U	137 UJ 137 UJ	134 U 134 U	215 U 215 U	134 U 134 U	168 U 168 U	142 U 142 U	155 U 155 U	126 126
l-Dichlorophenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
I-Dimethylphenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
I-Dinitrophenol	1,860 U	1,370 UJ	1,340 U	2,150 U	1,340 U	1,680 U	1,420 U	1,550 U	1,260
1-Dinitrotoluene	371 U	275 UJ	269 U	430 U	269 U	335 U	283 U	309 U	252
3-Dinitrotoluene	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Chloronaphthalene	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Chlorophenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Methylnaphthalene Methylphenol	2.7 U 186 U	2.3 U 137 UJ	2 U 134 U	3 U 215 U	2.1 U 134 U	2.3 U 168 U	2.2 U 142 U	2.3 U 155 U	2.3 126
vietnyiphenoi Nitroaniline	371 U	275 UJ	134 U 269 U	430 U	269 U	335 U	283 U	309 U	252
Nitrophenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
S'-Dichlorobenzidine	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Nitroaniline	370 U	270 UJ	270 U	430 U	270 U	340 U	280 U	310 U	250
6-Dinitro-2-methylphenol	1,860 U	1,370 UJ	1,340 U	2,150 U	1,340 U	1,680 U	1,420 U	1,550 U	1,260
Bromophenyl-phenylether	371 U	275 UJ	269 U	430 U	269 U	335 U	283 U	309 U	252
Chloro-3-methylphenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Chlorophopyl phopylothor	186 U 371 U	137 UJ	134 U 269 U	215 U 430 U	134 U	168 U 335 U	142 U	155 U 309 U	126 U 252 U
Chlorophenyl-phenylether Methylphenol	3/1 U NA	275 UJ NA	269 U NA	430 U NA	269 U NA	335 U NA	283 U NA	309 U NA	252 U NA
Nitroaniline	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126
Nitrophenol	370 U	270 UJ	270 U	430 UJ	270 UJ	340 U	280 U	310 UJ	250 (

Appendix D - Site 3 Soil Analytical Data

Station ID		CBD-S03-DP11		CBD-S0	3-DP12	CBD-S0)3-DP13	CBD-S03-	DP14
Sample ID	CBD-S03-SS11-000H	CBD-S03-SS11P-000H	CBD-S03-SB11-0810	CBD-S03-SS12-000H	CBD-S03-SB12-0810	CBD-S03-SS13-000H	CBD-S03-SB13-0810	CBD-S03-SS14-000H	CBD-S03-SB14-0810
Sample Date	04/03/18	04/03/18	04/03/18	04/04/18	04/04/18	04/03/18	04/03/18	04/04/18	04/04/18
Chemical Name									
Acenaphthene	1.3 U	0.76 J	1.1 U	1.6 U	0.58 J	1.2 U	1.2 U	0.81 J	1.2 U
Acenaphthylene	0.49 J	1.8 J	1.1 U	1.6 U	1.1 U	0.69 J	1.2 U	12	1.2 U
Acetophenone	190 U	140 UJ	130 U	210 U	130 U	170 U	140 U	150 U	130 U
Anthracene	5.1 U	2.6 J	4.3 U	6.5 U	1.7 J	5 U	4.8 U	13	5 U
Atrazine	560 U	410 UJ	400 U	640 U	400 U	500 U	420 U	460 U	380 U
Benzaldehyde Benzo(a)anthracene	560 UJ 5.1 U	410 UJ 15	400 UJ 4.3 U	640 U 6.5 U	400 U 11	500 UJ 7.5 U	420 UJ 4.8 U	460 U 29	380 U 5 U
Benzo(a)pyrene	3.1 U	20 J	4.3 U	2.9 J	14	7.6 J	4.8 U	41	5 U
Benzo(b)fluoranthene	9.8 UJ	40 J	6.7 U	10 U	26	15	7.4 U	97	7.7 U
Benzo(g,h,i)perylene	4.5 J	19 J	6.7 U	10 U	12	9.1 J	7.4 U	42	7.7 U
Benzo(k)fluoranthene	5.1 U	13	4.3 U	6.5 U	7.5 U	8.9 U	4.8 U	30	5 U
bis(2-Chloroethoxy)methane	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
bis(2-Chloroethyl)ether	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
bis(2-Ethylhexyl)phthalate	853 UJ	434 UJ	486 U	215 U	134 U	785 U	607 U	155 U	126 U
Butylbenzylphthalate Caprolactam	186 U 4,600 UJ	137 UJ 3,400 UJ	134 U 3,400 UJ	215 U 5,400 U	134 U 3,400 U	168 U 4,200 UJ	142 U 3,500 UJ	155 U 3,900 U	126 U 3,200 U
Carbazole	186 U	137 UJ	134 U	215 U	134 U	4,200 UJ	3,300 U3	155 U	126 U
Chrysene	5.1 UJ	24 J	4.3 U	6.5 U	16	10 U	4.8 U	47	5 U
Dibenz(a,h)anthracene	7.8 U	3.7 J	6.7 U	10 U	3.2 J	5.2 J	7.4 U	10 J	7.7 U
Dibenzofuran	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Diethylphthalate	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Dimethyl phthalate	370 U	270 UJ	270 U	430 U	270 U	340 U	280 U	310 U	250 U
Di-n-butylphthalate	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Di-n-octylphthalate	186 U 5.1 UJ	137 UJ 29 J	134 U 4.3 U	215 U 6.6 U	134 U 16	168 U 6.7 U	142 U 4.8 U	155 U 52	126 U 5 U
Fluoranthene Fluorene	5.1 UJ 3.1 U	29 J 1.2 J	4.3 U 2.7 U	6.6 U 4 U	2.8 U	6.7 U 3.1 U	4.8 U	2.1 J	3.1 U
Hexachlorobenzene	186 U	1.2 J 137 UJ	134 U	215 U	134 U	3.1 U 168 U	142 U	155 U	126 U
Hexachlorobutadiene	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Hexachlorocyclopentadiene	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Hexachloroethane	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Indeno(1,2,3-cd)pyrene	5 J	22 J	6.7 U	10 U	15	10 J	7.4 U	51	7.7 U
Isophorone	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Naphthalene	2.8 U	2.3 U	2 U	3 U	2.1 U	2.3 U	2.2 U	2.3 U	2.3 U
n-Nitroso-di-n-propylamine n-Nitrosodiphenylamine	186 U 186 U	137 UJ 137 UJ	134 U 134 U	215 U 215 U	134 U 134 U	168 U 168 U	142 U 142 U	155 U 155 U	126 U 126 U
Nitrobenzene	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Pentachlorophenol	371 U	275 UJ	269 U	430 U	269 U	335 U	283 U	309 U	252 U
Phenanthrene	7.8 U	14	6.7 U	6.6 J	8.6 J	7.7 U	7.4 U	13	7.7 U
Phenol	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Pyrene	4.5 J	25 J	6.7 U	3.4 J	13	5.9 J	7.4 U	48	7.7 U
Total cresols	186 U	137 UJ	134 U	215 U	134 U	168 U	142 U	155 U	126 U
Pesticide/Polychlorinated Biphenyls (UG/KG)									
4,4'-DDD	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
4,4'-DDE	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
4,4'-DDT	0.599 U	0.284 U	0.256 U	0.503 UJ	0.264 U	0.291 U	0.263 U	0.263 UJ	0.252 U
Aldrin	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
alpha-BHC	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
alpha-Chlordane	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Aroclor-1016	15 UJ	7.1 U	6.4 U	13 UJ	6.6 U	7.3 UJ	6.6 U	6.6 U	6.3 U
Aroclor-1221 Aroclor-1232	15 UJ 15 UJ	7.1 U 7.1 U	6.4 U 6.4 U	13 UJ 13 UJ	6.6 U 6.6 U	7.3 UJ 7.3 UJ	6.6 U 6.6 U	6.6 U 6.6 U	6.3 U 6.3 U
Aroclor-1232 Aroclor-1242	15 UJ	7.1 U	6.4 U	13 UJ	6.6 U	7.3 UJ	6.6 U	6.6 U	6.3 U
Aroclor-1248	15 UJ	7.1 U	6.4 U	13 UJ	6.6 U	7.3 UJ	6.6 U	6.6 U	6.3 U
Aroclor-1254	15 UJ	7.1 U	6.4 U	13 UJ	6.6 U	7.3 UJ	6.6 U	6.6 U	6.3 U
Aroclor-1260	36 J	70 J	6.4 U	51 J	6.6 U	1,200	6.6 U	1,600	4.9 J
Aroclor-1262	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1268	NA 0.000 H	NA 0.440.11	NA 0.400 LL	NA 0.050.111	NA 0.400 H	NA 0.440.11	NA 0.404 H	NA 0.404.111	NA 0.400 H
beta-BHC	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
delta-BHC Dieldrin	0.299 U 0.299 U	0.142 U 0.142 U	0.128 U 0.128 U	0.252 UJ 0.252 UJ	0.132 U 0.132 U	0.146 U 0.146 U	0.131 U 0.131 U	0.131 UJ 0.131 UJ	0.126 U 0.126 U
Dieldrin Endosulfan I	0.299 U 0.299 U	0.142 U 0.142 U	0.128 U 0.128 U	0.252 UJ 0.252 UJ	0.132 U 0.132 U	0.146 U 0.146 U	0.131 U 0.131 U	0.131 UJ 0.131 UJ	0.126 U 0.126 U
Endosulfan II	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Endosulfan sulfate	0.599 U	0.142 U	0.126 U	0.503 UJ	0.132 U 0.264 U	0.140 U	0.131 U 0.263 U	0.131 03 0.263 UJ	0.120 U
Endrin	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Endrin aldehyde	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Endrin ketone	0.599 U	0.284 U	0.256 U	0.503 UJ	0.264 U	0.291 U	0.263 U	0.263 UJ	0.252 U
gamma-BHC (Lindane)	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Heptachlor	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Heptachlor epoxide	0.299 U	0.142 U	0.128 U	0.252 UJ	0.132 U	0.146 U	0.131 U	0.131 UJ	0.126 U
Methoxychlor Toxaphene	0.599 U 29.9 U	0.284 U 14.2 U	0.256 U 12.8 U	0.503 UJ 25.2 UJ	0.264 U 13.2 U	0.291 U 14.6 U	0.263 U 13.1 U	0.263 UJ 13.1 UJ	0.252 U 12.6 U
. orapriorio	23.3 0	14.2 0	12.0 0	20.2 00	13.2 0	14.0 0	13.1 0	13.1 00	12.0 0
Total Metals (MG/KG)									
Aluminum	6,800	5,200	2,000	7,000	4,100	5,600	2,100	7,200	2,200
Antimony	0.15 J	0.13 J	0.14 U	0.13 J	0.11 J	0.11 J	0.1 J	0.076 J	0.099 J
Arsenic	3.2	2.5	0.61	2.9	4.2	3.3	0.28	2.5	0.59
	37	29	5.4	37	7.3	25	3.5	42	3.1
Barium									
Beryllium	0.36 J	0.31 J	0.28 U	0.52 J	0.19 J	0.37 J	0.27 U	0.57 J	0.27 U
		0.31 J 0.18 J 666,000	0.28 U 0.14 U 343	0.52 J 0.2 J 258	0.19 J 0.16 U 363	0.37 J 0.37 543	0.27 U 0.14 U 322	0.57 J 0.24 J 360	0.27 U 0.14 U 47.4

Appendix D - Site 3 Soil Analytical Data

Station ID		CBD-S03-DP11		CBD-S0	3-DP12	CBD-S0	3-DP13	CBD-S0	3-DP14
Sample ID	CBD-S03-SS11-000H	CBD-S03-SS11P-000H	CBD-S03-SB11-0810	CBD-S03-SS12-000H	CBD-S03-SB12-0810	CBD-S03-SS13-000H	CBD-S03-SB13-0810	CBD-S03-SS14-000H	CBD-S03-SB14-0810
Sample Date	04/03/18	04/03/18	04/03/18	04/04/18	04/04/18	04/03/18	04/03/18	04/04/18	04/04/18
Chemical Name									
Chromium	12	8.9	7.6	11	14	16	8.8	14	3.5
Cobalt	2.4	1.8	0.54	3.5	0.72	1.8	0.28	3.9	0.24 J
Copper	6.1	6.6	1.1	6.8	3.3	5.1	1.2	5.8	1.4
Cyanide	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	9,800	7,600	1,800	9,800	7,300	10,000	1,900	9,800	2,300
Lead	15	12	1.6	11	2.6	17	1.7	17	2.1
Magnesium	797,000	625,000	435	735	655	789	437	662	180
Manganese	97	83	3	110	6.5	81	2.5	130	3.9
Mercury	0.18 U	0.15 U	0.14 U	0.19 U	0.16 U	0.18 U	0.14 U	0.16 U	0.14 U
Nickel	8.1	6.1	0.87	8.7	1.2	5.1	0.59	8.8	0.62
Potassium	577,000	514,000	300	399	417	958	307	344	217
Selenium	0.87	0.95	0.3 J	1.3	0.5 J	0.75	0.27 U	1.1	0.27 U
Silver	0.18 U	0.15 U	0.14 U	0.11 J	0.076 J	0.14 J	0.077 J	0.16 U	0.064 J
Sodium	215,000 J	379,000 J	4.8 U	12.9 U	6.6 U	6.3 U	5.3 U	14.1 J+	6 U
Thallium	0.2 J	0.16 J	0.066 J	0.24 J	0.12 J	0.17 J	0.13 J	0.19 J	0.14 U
Vanadium	16	12	3.2	14	10	16	3.6	13	5.1
Zinc	48	41	6	43	9.9	29	3.3	43	2.6
Wet Chemistry									
pH (ph)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

- Notes:

 Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or J - Analyte present, value may or may not be accurate or precise
 J - Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R - Unreliable Result
 U - The material was analyzed for, but not detected
 UJ - Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site 3 Soil Analytical Data

Station ID	ODD 000 0045 000H	CBD-S03-DP15 CBD-S03-SB15-0810	CBD-S03-SB15P-0810
Sample ID Sample Date	CBD-S03-SS15-000H 04/03/18	04/03/18	04/03/18
Chemical Name	04/03/10	04/03/10	04/03/10
Onemical Name			
Volatile Organic Compounds (UG/KG)			
1,1,1-Trichloroethane	NA NA	NA	NA NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	NA NA	NA NA	NA NA
1,1-Dichloroethane	NA	NA	NA
1,1-Dichloroethene	NA	NA	NA
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NA NA	NA NA	NA NA
1,2-Dibromo-3-chloropropane	NA NA	NA NA	NA NA
1,2-Dibromoethane	NA	NA	NA
1,2-Dichlorobenzene	NA	NA	NA
1,2-Dichloroethane 1,2-Dichloropropane	NA NA	NA NA	NA NA
1,3-Dichlorobenzene	NA NA	NA NA	NA NA
1,4-Dichlorobenzene	NA	NA	NA
2-Butanone	NA	NA	NA
2-Hexanone	NA NA	NA NA	NA NA
4-Methyl-2-pentanone Acetone	NA NA	NA NA	NA NA
Benzene	NA NA	NA NA	NA NA
Bromochloromethane	NA	NA	NA
Bromodichloromethane	NA NA	NA NA	NA NA
Bromoform Bromomethane	NA NA	NA NA	NA NA
Carbon disulfide	NA NA	NA NA	NA NA
Carbon tetrachloride	NA NA	NA NA	NA NA
Chlorobenzene	NA	NA	NA
Chloroethane	NA NA	NA NA	NA NA
Chloroform Chloromethane	NA NA	NA NA	NA NA
cis-1,2-Dichloroethene	NA NA	NA NA	NA NA
cis-1,3-Dichloropropene	NA	NA	NA
Cyclohexane	NA	NA	NA
Dibromochloromethane Dichlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA
Ethylbenzene	NA NA	NA NA	NA NA
Isopropylbenzene	NA	NA	NA
m- and p-Xylene	NA	NA	NA
Methyl acetate Methylcyclohexane	NA NA	NA NA	NA NA
Methylene chloride	NA NA	NA NA	NA NA
Methyl-tert-butyl ether (MTBE)	NA	NA	NA
o-Xylene	NA	NA	NA
Styrene Tetrachloroethene	NA NA	NA NA	NA NA
Tetrachioroethene Toluene	NA NA	NA NA	NA NA
trans-1,2-Dichloroethene	NA NA	NA	NA
trans-1,3-Dichloropropene	NA	NA	NA
Trichloroethene	NA NA	NA NA	NA NA
Trichlorofluoromethane (Freon-11) Vinvl chloride	NA NA	NA NA	NA NA
viriyi omonuo	101	101	101
Semivolatile Organic Compounds (UG/KG)			
1,1-Biphenyl	480 UJ	420 U	420 U
1,2,4,5-Tetrachlorobenzene 2,2'-Oxybis(1-chloropropane)	NA 160 UJ	NA 139 U	NA 140 U
2,3,4,6-Tetrachlorophenol	NA	NA	NA
2,4,5-Trichlorophenol	160 U	139 U	140 L
2,4,6-Trichlorophenol	160 U	139 U	140 L
2,4-Dichlorophenol 2,4-Dimethylphenol	160 U 160 U	139 U 139 U	140 l 140 l
2,4-Dinitrophenol	1,600 U	1,390 U	1,400 l
2,4-Dinitrotoluene	321 UJ	278 U	279 l
2,6-Dinitrotoluene	160 UJ	139 U	140 l
2-Chloronaphthalene	160 UJ	139 U	140 (
2-Chlorophenol 2-Methylnaphthalene	160 U 2.1 U	139 U 2 U	140 U 2.5 U
2-Methylphenol	160 U	139 U	140 (
2-Nitroaniline	321 UJ	278 U	279 l
2-Nitrophenol	160 U	139 U	140 U
3,3'-Dichlorobenzidine 3-Nitroaniline	160 UJ 320 UJ	139 U 280 U	140 U 280 U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	1,600 U	1,390 U	1,400 l
4-Bromophenyl-phenylether	321 UJ	278 U	279 (
4-Chloro-3-methylphenol	160 U	139 U	140 U
4-Chloroaniline	160 UJ	139 U	140 U
4-Chlorophenyl-phenylether 4-Methylphenol	321 UJ NA	278 U NA	279 L NA
4-Metnyiphenoi 4-Nitroaniline	160 UJ	139 U	140 U
4-Nitrophenol	320 U	280 U	280 (

Page 10 of 12

Appendix D - Site 3 Soil Analytical Data

Camping D				
Sample Date	Station ID			
Chemical Name	•			
Acenspathyleme	•	04/03/18	04/03/18	04/03/18
Accessperity/purple 1.1 U		4411	4.4.11	4011
Acetophenome 4.6 U 4.4 U 5.5 U 4.2	•			
Anthranome			_	
Affrazzine Affraz				
Berozo (a) private 4.6 U	Atrazine		_	
Berozola prize	Benzaldehyde	480 UJ	420 UJ	420 UJ
Semotoly Dipripries 7.1 U	Benzo(a)anthracene			
Semong Programmer Part Semong Part Part Semong Part Semong Part Part Semong Part Semong Part Part Semong Part			_	
Senzo(Ri)Noraniharie				
Desig 2-Nicronethoxy/methane 160 UJ 139 U 140 U				
Display Disp				
Design				
Caprolactam	bis(2-Ethylhexyl)phthalate			
Carbazole	Butylbenzylphthalate	160 UJ	139 U	140 U
Citysene	Caprolactam	,		3,500 UJ
Diserval Jahnthracene				
Diberoxidran 160 UJ				
Diethyphthalate				
Dimethyl phthalate				
Dis-butyphthialate				
Dim-octyphthalate				
Filoranthene	Di-n-octylphthalate			
Hexachlorobenzene	Fluoranthene			
Hexachlorocupentaliene	Fluorene			
Hexachirorcyclopentacliene	Hexachlorobenzene			
Hexachirorethane				
Indenot (1.2.3-cd)pyrene 7.1 U	, ,			
Isophorone				
Naphthalene				
In-Nitroso-din-propylamine 160 UJ 139 U 140 U U				
n-Nitrosodiphenylamine 160 UJ 139 U 140 U 139 U 140 U 139 U 140 U 139 U 140 U 140 U 139 U 140				
Nitrobenzene				
Phenanthene 7.1 U	Nitrobenzene			
Phenol	Pentachlorophenol	321 U	278 U	279 U
Pyrene	Phenanthrene			
Total cresols				
4.4-IDDD	Pyrene Total cresols			
13.5	Pesticide/Polychlorinated Biphenyls (UG/KG)			
A4-DDT	4,4'-DDD			
Aldrin 0.143 U 0.137 U 0.13 U 0.137 U 0.13 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
alpha-BHC 0.143 U 0.137 U 0.13 U alpha-Chlordane 0.143 U 0.137 U 0.13 U Arcolor-1016 7.2 U 6.8 U 6.5 U Arcolor-1221 7.2 U 6.8 U 6.5 U Arcolor-1232 7.2 U 6.8 U 6.5 U Arcolor-1242 7.2 U 6.8 U 6.5 U Arcolor-1248 7.2 U 6.8 U 6.5 U Arcolor-1254 7.2 U 6.8 U 6.5 U Arcolor-1260 350 23 J 6.5 U Arcolor-1262 NA NA NA Arcolor-1268 NA NA NA Dieldrin 0.143 U 0.137 U 0.13 U Dieldrin 0.143 U 0.137 U				
alpha-Chlordane 0.143 U 0.137 U 0.13 U Arcolor-1016 7.2 U 6.8 U 6.5 U Arcolor-1221 7.2 U 6.8 U 6.5 U Arcolor-1232 7.2 U 6.8 U 6.5 U Arcolor-1242 7.2 U 6.8 U 6.5 U Arcolor-1248 7.2 U 6.8 U 6.5 U Arcolor-1250 3550 23 J 6.5 U Arcolor-1260 3550 23 J 6.5 U Arcolor-1262 NA NA NA Arcolor-1268 NA NA NA Arcolor-1269 NA NA NA Arcolor-1260 3550 23 J 6.5 U Arcolor-1262 NA NA NA NA NA NA NA Arcolor-1268 NA NA NA NA NA NA NA NA NA NA NA Dieldrin 0.143 U 0.137 U 0.13 U <t< td=""><td></td><td></td><td></td><td></td></t<>				
Aroclor-1016 7.2 U 6.8 U 6.5 U Aroclor-1221 7.2 U 6.8 U 6.5 U Aroclor-1232 7.2 U 6.8 U 6.5 U Aroclor-1242 7.2 U 6.8 U 6.5 U Aroclor-1248 7.2 U 6.8 U 6.5 U Aroclor-1254 7.2 U 6.8 U 6.5 U Aroclor-1260 350 23 J 6.5 U Aroclor-1262 NA NA NA Aroclor-1268 NA NA NA Aroclor-1269 NA NA NA Aroclor-1269 NA NA NA Aroclor-1260 NA NA NA A	'			
Aroclor-1221 7.2 U 6.8 U 6.5 U 6.5 U Aroclor-1232 7.2 U 6.8 U 6.5 U 6.5 U 7.2 U 6.8 U 6.5 U 6.5 U 7.2 U 6.8 U 6.5 U 7.2 U 6.8 U 6.5 U 7.2 U 6.8 U 6.5 U 7.2				
Aroclor-1232 7.2 U 6.8 U 6.5 U 6.5 U Aroclor-1242 7.2 U 6.8 U 6.5 U 6.5 U 6.5 U 7.2 U 6.8 U 6.5 U 6.5 U 7.2 U 6.8 U 7.2 U 6.8 U 7.2	Aroclor-1221			
Aroclor-1248 7.2 U 6.8 U 6.5 U Aroclor-1254 7.2 U 6.8 U 6.5 U Aroclor-1260 350 23 J 6.5 U Aroclor-1262 NA NA NA NA Aroclor-1262 NA NA NA NA NA Aroclor-1268 NA NA NA NA NA Deta-BHC 0.143 U 0.137 U 0.13 U Dieldrin 0.143 U 0.137 U 0.13 U Dieldrin 0.143 U 0.137 U 0.13 U Endosulfan II 0.143 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin ladehyde 0.143 U 0.137 U	Aroclor-1232			
Aroclor-1254 7.2 U 6.8 U 6.5 U Aroclor-1260 350 23 J 6.5 UJ Aroclor-1262 NA NA NA NA Aroclor-1268 NA NA NA NA Aroclor-1268 NA NA NA NA Aroclor-1268 NA NA NA NA NA Aroclor-1268 NA NA NA NA NA Aroclor-1268 NA NA NA NA NA NA Aroclor-1268 NA NA NA NA NA NA Aroclor-1268 NA NA NA NA NA NA NA Deta-BHC 0.143 U 0.137 U 0.13 U Dieldrin 0.143 U 0.137 U 0.13 U Dieldrin 0.143 U 0.137 U 0.13 U Endosulfan I 0.143 U 0.137 U 0.13 U Endosulfan II 0.143 U 0.137 U 0.13 U Endosulfan sulfate 0.286 U 0.273 U 0.26 U Endrin 1.43 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U 0.1	Aroclor-1242			
Aroclor-1260 Aroclor-1262 NA Aroclor-1268 NA	Aroclor-1248			
Aroclor-1262 NA NA NA NA NA NA NA Aroclor-1268 NA				
Aroclor-1268				
Deta-BHC				
Dieldrin				
Dieldrin 0.143 U 0.137 U 0.13 U Endosulfan I 0.143 U 0.137 U 0.13 U Endosulfan II 0.143 U 0.137 U 0.13 U Endosulfan sulfate 0.286 U 0.273 U 0.26 U Endrin 0.143 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 0.137 U 0.13 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) 0.286 U 0.273 U 0.26 U Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J	delta-BHC			
Endosulfan I 0.143 U 0.137 U 0.13 U Endosulfan II 0.143 U 0.137 U 0.13 U Endosulfan sulfate 0.286 U 0.273 U 0.26 U Endrin 0.143 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) 14.3 U 13.7 U 13 U Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U	Dieldrin			
Endosulfan II 0.143 U 0.137 U 0.13 U Endosulfan sulfate 0.286 U 0.273 U 0.26 U Endrin 0.143 U 0.137 U 0.13 U Endrin ladehyde 0.143 U 0.137 U 0.13 U Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) 14.3 U 13.7 U 13 U Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U	Endosulfan I			
Endrin 0.143 U 0.137 U 0.13 U Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	Endosulfan II			
Endrin aldehyde 0.143 U 0.137 U 0.13 U Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	Endosulfan sulfate			
Endrin ketone 0.286 U 0.273 U 0.26 U gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	Endrin			
gamma-BHC (Lindane) 0.143 U 0.137 U 0.13 U Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491				
Heptachlor 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Heptachlor epoxide 0.143 U 0.137 U 0.13 U Toxaphene 0.286 U 0.273 U 0.26 U Toxaphene 0.143 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Baryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491				
Heptachlor epoxide 0.143 U 0.137 U 0.13 U Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	,			
Methoxychlor 0.286 U 0.273 U 0.26 U Toxaphene 14.3 U 13.7 U 13 U Total Metals (MG/KG) Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491				
Total Metals (MG/KG) Aluminum	Methoxychlor	0.286 U	0.273 U	0.26 U
Aluminum 4,800 3,500 4,300 Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	•	14.3 U	13.7 U	13 U
Antimony 0.2 J 0.17 U 0.17 U Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491		4.000	0.500	1.000
Arsenic 3.8 1.9 J 3.4 J Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491		-	,	
Barium 27 4.8 6.7 Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491	,			
Beryllium 0.24 J 0.33 U 0.33 U Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491				
Cadmium 1.7 0.17 U 0.17 U Calcium 935 453 491				
Calcium 935 453 491	Cadmium			
	Chromium (hexavalent)	NA	NA	NA

Appendix D - Site 3 Soil Analytical Data

Station ID		CBD-S03-DP15	
Sample ID	CBD-S03-SS15-000H	CBD-S03-SB15-0810	CBD-S03-SB15P-0810
Sample Date	04/03/18	04/03/18	04/03/18
Chemical Name			
Chromium	11	15	15
Cobalt	1.9	0.32 J	0.55
Copper	16	1.5	1.8
Cyanide	NA	NA	NA
Iron	9,200	4,900	6,200
Lead	95	2.2	2.4
Magnesium	607	521	579
Manganese	100	2.3 J	6.9 J
Mercury	0.14 U	0.17 U	0.17 U
Nickel	7.4	0.65 J	1.2
Potassium	414	401	424
Selenium	0.76	0.33 U	0.34 J
Silver	0.12 J	0.17 U	0.17 U
Sodium	22.4 J+	21 J+	18.3 J+
Thallium	0.12 J	0.17 U	0.17 U
Vanadium	13	6	8.5
Zinc	70	6.8	6.4
Wet Chemistry			
pH (ph)	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA

\\orightarrow\con\\Proj\\CLEANII\\BASE\\NavaIResearchLab_ChesBayDetach\\CTO JU2

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Page 12 of 12

Station ID		CDD S04 DD04	ı	CBD CC	04 DD02	CDD C	04 DD03	CDD C	04 DD04	CDD COA	I DD06
Sample ID	CBD-S04-SS01-1012	CBD-S04-DP01 CBD-S04-SS01P-1012	CBD-S04-SB01-1820	CBD-S04-SS02-1012	04-DP02 CBD-S04-SB02-1618	CBD-S04-SS03-1012	04-DP03 CBD-S04-SB03-1416	CBD-S04-S04-1012	04-DP04 CBD-S04-SB04-1012	CBD-S04 CBD-S04-SS05-1012	1-DP05 CBD-S04-SB05-1315
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12
Chemical Name											
Malatila Osmania Communuda (HOMO)											
Volatile Organic Compounds (UG/KG) 1,1,1-Trichloroethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,1,2,2-Tetrachloroethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,1,2-Trichloroethane 1,1-Dichloroethane	0.42 U 0.21 U	0.42 U 0.21 U	0.6 U 0.3 U	0.57 U 0.29 U	0.69 U 0.35 U	0.44 U 0.22 U	0.56 U 0.28 U	0.55 U 0.27 U	0.52 U 0.26 U	0.43 U 0.21 U	1.2 U 0.62 U
1,1-Dichloroethene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,2,3-Trichlorobenzene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	0.42 U 0.42 U	0.42 U 0.42 U	0.6 U 0.6 U	0.57 U 0.57 U	0.69 U 0.69 U	0.44 U 0.44 U	0.56 U 0.56 U	0.55 U 0.55 U	0.52 U 0.52 U	0.43 U 0.43 U	1.2 U 1.2 U
1,2-Dibromoethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
1,2-Dichlorobenzene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 L
1,2-Dichloroethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U 0.44 U	0.56 U 0.56 U	0.55 U	0.52 U	0.43 U 0.43 U	1.2 L
1,2-Dichloropropane 1,3-Dichlorobenzene	0.42 U 0.21 U	0.42 U 0.21 U	0.6 U 0.3 U	0.57 U 0.29 U	0.69 U 0.35 U	0.44 U 0.22 U	0.56 U 0.28 U	0.55 U 0.27 U	0.52 U 0.26 U	0.43 U 0.21 U	1.2 U 0.62 U
1,4-Dichlorobenzene	0.21 U	0.21 U	0.3 U	0.29 U	0.35 U	0.22 U	0.28 U	0.27 U	0.26 U	0.21 U	0.62 U
2-Butanone	0.42 UJ	0.42 UJ	0.6 U	0.57 UJ	0.69 UJ	3.8 B	0.56 UJ	1.3 B	0.52 UJ	3.1 B	1.2 U
2-Hexanone 4-Methyl-2-pentanone	0.42 UJ 0.42 UJ	0.42 UJ 0.42 UJ	0.6 U 0.6 U	0.57 UJ 0.57 UJ	0.69 UJ 0.69 UJ	0.44 UJ 0.44 UJ	0.56 UJ 0.56 UJ	0.55 UJ 0.55 UJ	0.52 UJ 0.52 UJ	0.43 U 0.43 U	1.2 U 1.2 U
Acetone	50 J	7.4 J	23	22 J	28 J	100 J	5.6 UJ	57 J	5.2 UJ		1.2 U
Benzene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.18 J	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Bromochloromethane	0.42 U 0.42 U	0.42 U 0.42 U	0.6 U 0.6 U	0.57 U 0.57 U	0.69 U 0.69 U	0.44 U 0.44 U	0.56 U 0.56 U	0.55 U	0.52 U	0.43 U 0.43 U	1.2 U
Bromodichloromethane Bromoform	0.42 U 0.21 U	0.42 U 0.21 U	0.6 U 0.3 U	0.57 U 0.29 U	0.69 U 0.35 U	0.44 U 0.22 U	0.56 U 0.28 U	0.55 U 0.27 U	0.52 U 0.26 U	0.43 U 0.21 U	1.2 U 0.62 U
Bromomethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Carbon disulfide	0.31 B	0.33 B	0.41 B	0.4 B	0.5 B	0.36 B	0.4 B	0.63 B	0.38 B	0.38 B	0.87 B
Carbon tetrachloride Chlorobenzene	0.21 U 0.21 U	0.21 U 0.21 U	0.3 U 0.3 U	0.29 U 0.29 U	0.35 U 0.35 U	0.22 U 0.22 U	0.28 U 0.28 U	0.27 U 0.27 U	0.26 U 0.26 U	0.21 U 0.21 U	0.62 U 0.62 U
Chloroethane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Chloroform	0.21 U	0.21 U	0.3 U	0.23 B	0.35 U	0.18 B	0.25 B	0.17 B	0.23 B	0.21 U	0.62 U
Chloromethane cis-1,2-Dichloroethene	0.42 U 0.21 U	0.42 U 0.21 U	0.6 U 0.3 U	0.57 U 0.29 U	0.69 U 0.35 U	0.44 U 0.22 U	0.56 U 0.28 U	0.55 U 0.27 U	0.52 U 0.26 U	0.43 U 0.21 U	1.2 U 0.62 U
cis-1,3-Dichloropropene	0.21 U	0.21 U	0.3 U	0.29 U	0.35 U	0.22 U	0.28 U	0.27 U	0.26 U	0.21 U	0.62 U
Cyclohexane	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Dibromochloromethane	0.42 U	0.42 U	0.6 U	0.57 U 0.57 U	0.69 U	0.44 U 0.44 U	0.56 U	0.55 U	0.52 U	0.43 U 0.43 U	1.2 U 1.2 U
Dichlorodifluoromethane (Freon-12) Ethylbenzene	0.42 U 0.42 U	0.42 U 0.42 U	0.6 U 0.6 U	0.57 U	0.69 U 0.69 U	0.44 U	0.56 U 0.56 U	0.55 U 0.55 U	0.52 U 0.52 U	0.43 U	1.2 U
Isopropylbenzene	0.21 U	0.21 U	0.3 U	0.29 U	0.35 U	0.22 U	0.28 U	0.27 U	0.26 U	0.21 U	0.62 U
m- and p-Xylene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Methyl acetate Methylcyclohexane	6.3 B 0.42 U	0.99 B 0.42 U	1.8 B 0.6 U	1.3 B 0.57 U	1.5 B 0.69 U	1.8 B 0.44 U	1.2 B 0.56 U	1.6 B 0.55 U	1 B 0.52 U	1.8 B 0.43 U	8.4 B 1.2 U
Methylene chloride	3.7 B	0.42 U	0.6 U	0.57 U	1.8 B	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
Methyl-tert-butyl ether (MTBE)	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.44 U	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
o-Xylene Styrene	0.21 U 0.21 U	0.21 U 0.21 U	0.3 U 0.3 U	0.29 U 0.29 U	0.35 U 0.35 U	0.22 U 0.22 U	0.28 U 0.28 U	0.27 U 0.27 U	0.26 U 0.26 U	0.21 U 0.21 U	0.62 U 0.62 U
Tetrachloroethene	0.42 U	0.42 U	0.5 U	0.29 U	0.69 U	0.44 U	0.26 U	0.55 U	0.52 U	0.43 U	1.2 U
Toluene	0.42 U	0.42 U	0.6 U	0.57 U	0.69 U	0.2 J	0.56 U	0.55 U	0.52 U	0.43 U	1.2 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.21 U 0.42 U	0.21 U 0.42 U	0.3 U 0.6 U	0.29 U 0.57 U	0.35 U 0.69 U	0.22 U 0.44 U	0.28 U 0.56 U	0.27 U 0.55 U	0.26 U 0.52 U	0.21 U 0.43 U	0.62 U 1.2 U
Trichloroethene	0.42 U	0.42 U 0.21 U	0.8 U	0.57 U 0.29 U	0.89 U	0.44 U 0.22 U	0.36 U 0.28 U	0.55 U 0.27 U	0.52 U	0.43 U	0.62 U
Trichlorofluoromethane (Freon-11)	0.26 J	0.21 U	0.3 U	0.29 U	0.32 J	0.22 U	0.28 U	0.27 U	0.26 U	0.21 U	0.62 U
Vinyl chloride	0.21 U	0.21 U	0.3 U	0.29 U	0.35 U	0.22 U	0.28 U	0.27 U	0.26 U	0.21 U	0.62 U
Semivolatile Organic Compounds (UG/KG)											
1,1-Biphenyl	19 U	19 U	20 U	19 U	19 U	13 J	19 U	18 U	19 U	19 U	20 U
1,2,4,5-Tetrachlorobenzene	1.9 U	1.9 U	2 U	1.9 U	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U
2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol	3.8 U 3.8 U	3.7 U 3.7 U	4 U 4 U	3.8 U 3.8 U	3.8 U 3.8 U	3.7 U 3.7 U	3.7 U 3.7 U	3.7 U 3.7 U	3.8 U 3.8 U	3.8 U 3.8 U	4 U 4 U
2,4,5-Trichlorophenol	19 U	19 U	20 U	19 U	19 U	18 U	19 U	18 U	19 U	19 U	20 U
2,4,6-Trichlorophenol	3.8 U	3.7 U	4 U	3.8 U	3.8 U	3.7 U	3.7 U	3.7 U	3.8 U	3.8 U	4 U
2,4-Dichlorophenol 2,4-Dimethylphenol	3.7 U 38 U	3.7 U 37 U	3.9 U 40 U	3.8 U 38 U	3.7 U 38 U	3.6 U 37 U	3.7 U 37 U	3.6 U 37 U	3.7 U 38 U	3.7 U 38 U	3.9 U 40 U
2,4-Dinterryphenol	190 U	190 U	200 U	190 U	190 U	180 U	190 U	180 U	190 U	190 U	200 U
2,4-Dinitrotoluene	19 U	19 U	20 U	19 U	19 U	18 U	19 U	18 U	19 U	19 U	20 U
2,6-Dinitrotoluene 2-Chloronaphthalene	3.8 U 3.8 U	3.7 U 3.7 U	4 U 4 U	3.8 U 3.8 U	3.8 U 3.8 U	3.7 U 3.7 U	3.7 U 3.7 U	3.7 U 3.7 U	3.8 U 3.8 U	3.8 U 3.8 U	4 U 4 U
2-Chlorophenol	3.8 U	3.7 U 3.7 U	4 U	3.8 U	3.8 U 3.8 U	3.7 U 3.7 U	3.7 U 3.7 U	3.7 U 3.7 U	3.8 U	3.8 U	4 U
2-Methylnaphthalene	1.9 U	1.9 U	2 U	1.9 U	1.9 U	32	1.9 U	1.8 U	1.9 U	1.9 U	2 U
2-Methylphenol	7.5 U	7.4 U	7.9 U	7.6 U	7.5 U	7.3 U	7.3 U	7.2 U	7.5 U	7.4 U	7.9 U
2-Nitroaniline 2-Nitrophenol	19 U 3.8 U	19 U 3.7 U	20 U 4 U	19 U 3.8 U	19 U 3.8 U	18 U 3.7 U	19 U 3.7 U	18 U 3.7 U	19 U 3.8 U	19 U 3.8 U	20 U 4 U
3,3'-Dichlorobenzidine	380 U	370 U	400 U	380 U	380 U	370 U	370 U	370 U	380 U	380 U	400 U
3-Nitroaniline	38 U	37 U	40 U	38 U	38 U	37 U	37 U	37 U	38 U	38 U	40 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	19 U 1.9 U	19 U 1.9 U	20 U 2 U	23 J 1.9 U	19 U 1.9 U	18 U 1.8 U	19 U 1.9 U	18 U 1.8 U	22 J 1.9 U	19 U 1.9 U	20 L 2 L
4-Bromophenyi-phenyiether 4-Chloro-3-methylphenol	7.5 U	7.4 U	7.9 U	7.6 U	7.5 U	7.3 U	7.3 U	7.2 U	7.5 U	7.4 U	7.9 U
4-Chloroaniline	19 U	19 U	20 U	19 U	19 U	18 U	19 U	18 U	18 J	19 U	20 U
4-Chlorophenyl-phenylether	1.9 U	1.9 U	2 U	1.9 U 3.8 U	1.9 U 3.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U 3.8 U	2 U 4 U
4-Methylphenol 4-Nitroaniline	3.8 U 38 U	3.7 U 37 U	4 U 40 U	3.8 U 38 U	3.8 U 38 U	3.7 U 37 U	3.7 U 37 U	3.7 U 37 U	3.8 U 38 U	3.8 U	4 U 40 U
	11	37 U	40 U	38 U	38 U	37 U	37 U	37 U		38 U	40 U

Station ID	STUIX D - Site 4 Soil Alialytical Data			CDD 004	DD00	CDD C	24 DD02	CDD CO	A DD04	CBD-S04-DP05		
Station ID Sample ID	CBD-S04-SS01-1012	CBD-S04-DP01 CBD-S04-SS01P-1012	CBD-S04-SB01-1820	CBD-S04 CBD-S04-SS02-1012	-DP02 CBD-S04-SB02-1618	CBD-S04-SS03-1012	04-DP03 CBD-S04-SB03-1416	CBD-S0 CBD-S04-SS04-1012	CBD-S04-SB04-1012	CBD-S04-SS05-1012	CBD-S04-SB05-1315	
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	
Chemical Name	10/10/12	10/10/12	10/10/12	10,10,12	10/10/12	10/10/12	10/10/12	10/10/12	10/10/12	10/10/12	10/10/12	
Acenaphthene	1.9 U	1.9 U	2 U	1.9 U	1.9 U	310	1.9 U	5.6 J	1.9 U	1.9 U	2 U	
Acenaphthylene	1.9 U	1.9 U	2 U		1.9 U	3.4 J	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Acetophenone	19 U	19 U	20 U	19 U	19 U	18 U	19 U	18 U	19 U	19 U	20 U	
Anthracene Atrazine	1.9 U 19 U	1.9 U 19 U	2 U 20 U	1.9 U 19 U	1.9 U 19 U	580 18 U	1.9 U 19 U	13 J 18 U	1.9 U 19 U	1.9 U 19 U	2 U 20 U	
Benzaldehyde	19 G	19 G	20 U	19 G	19 C	18 R	19 G	18 R	47 L	19 G	20 C	
Benzo(a)anthracene	1.9 U	1.9 U	2 U		1.9 U	3,100	1.9 U	58	1.9 U	1.9 U	2 U	
Benzo(a)pyrene	0.76 U	3.7 U	0.8 U	0.77 U	0.76 U	3,500	3.7 U	71	0.76 U	3.8 U	0.8 U	
Benzo(b)fluoranthene	3.8 U 1.9 U	3.7 U	4 U 2 U		3.8 U 1.9 U	3,900 800	3.7 U	80 29 J	3.8 U 1.9 U	3.8 U	4 U	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1.9 U 3.8 U	1.9 U 3.7 U	2 U	1.2 J 3.8 U	1.9 U	730	1.9 U 3.7 U	29 J 41	1.9 U	1.9 U 3.8 U	2 U 4 U	
bis(2-Chloroethoxy)methane	1.9 U	1.9 U	2 U		1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
bis(2-Chloroethyl)ether	1.9 U	1.9 U	2 U	1.9 U	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
bis(2-Ethylhexyl)phthalate	5 B	5.7 B	6.1 B	5 B	7.4 B	16 B	4.6 B	8.2 B	6.6 B	5.7 B	13 B	
Butylbenzylphthalate Caprolactam	3.8 U 19 U	3.7 U 19 U	4 U 20 U	3.8 U 19 U	3.8 U 19 U	3.7 U 18 U	3.7 U 19 U	3.7 U 18 U	3.8 U 19 U	3.8 U 19 U	4 U 20 U	
Carbazole	38 U	37 U	40 U	38 U	38 U	380	37 U	37 U	38 U	38 U	40 U	
Chrysene	1.9 U	1.9 U	2 U	1.5 J	1.9 U	2,600	1.5 J	56	1.9 U	1.9 U	2 U	
Dibenz(a,h)anthracene	0.76 U	3.7 U	0.8 U	0.77 U	0.76 U	230 J	3.7 U	5.4 J	0.76 U	3.8 U	0.8 U	
Dibenzofuran	1.9 U	1.9 U	2 U	1.9 U	1.9 U	170	1.9 U	2.2 J	1.9 U	1.9 U	2 U	
Diethylphthalate Dimethyl phthalate	3.1 B 3.8 U	3.1 B 3.7 U	3.7 B 4 U	4.2 B 2.3 J	3.9 B 3.8 U	8.7 B 3.7 U	13 B 3.7 U	7.8 B 3.7 U	8.5 B 3.8 U	3.8 U 3.8 U	3.7 B 2.4 J	
Di-n-butylphthalate	19 U	3.7 U	20 U	2.3 J	19 U	18 U	3.7 U	3.7 U	19 U	19 U	2.4 J	
Di-n-octylphthalate	1.9 U	1.9 U	2 U	1.9 U	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Fluoranthene	1.2 J	1.1 J	2 U		1.9 U	4,800	2.7 J	97	1.9 U	1.9 U	2 U	
Fluorene	1.9 U 1.9 U	1.9 U 1.9 U	2 U 2 U		1.9 U 1.9 U	210 1.8 U	1.9 U 1.9 U	4.1 J 1.8 U	1.9 U 1.9 U	1.9 U 1.9 U	2 U 2 U	
Hexachlorobenzene Hexachlorobutadiene	1.9 U 1.9 U	1.9 U	2 U	1.9 U 1.9 U	1.9 U	1.8 U	1.9 U 1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Hexachlorocyclopentadiene	3.8 U	3.7 U	4 U	3.8 U	3.8 U	3.7 U	3.7 U	3.7 U	3.8 U	3.8 U	4 U	
Hexachloroethane	1.9 U	1.9 U	2 U		1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Indeno(1,2,3-cd)pyrene	3.8 U	3.7 U	4 U		3.8 U	830	3.7 U	28 J	3.8 U	3.8 U	4 U	
Isophorone Naphthalene	1.9 U 1.9 U	1.9 U 1.9 U	2 U 2 U	1.9 U 1.9 U	1.9 U 1.9 U	1.8 U 84	1.9 U 1.9 U	1.8 U 2.2 J	1.9 U 1.9 U	1.9 U 1.9 U	2 U 2 U	
n-Nitroso-di-n-propylamine	3.8 U	3.7 U	4 U		3.8 U	3.7 U	3.7 U	3.7 U	49	3.8 U	4 U	
n-Nitrosodiphenylamine	1.9 U	1.9 U	2 U	1.9 U	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Nitrobenzene	1.9 U	1.9 U	2 U	1.9 U	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U	2 U	
Pentachlorophenol	38 U 1.2 J	37 U	40 U	38 U 1.9 J	38 U 1.2 J	37 U 3,500	37 U 2.3 J	37 U	38 U	38 U	40 U	
Phenanthrene Phenol	1.2 J 3.7 U	1.1 J 3.7 U	2 U 3.9 U	1.9 J 3.8 U	1.2 J 3.7 U	3,500 3.6 U	2.3 J 3.7 U	57 3.6 U	1.9 U 1.9 J	1.9 U 3.7 U	2 U 3.9 U	
Pyrene	3.7 U	3.7 U	3.9 U	2.3 J	3.7 U	4,500	1.9 J	89	3.7 U	3.7 U	3.9 U	
Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Postisida/Polyablasinatad Binhamda (UC/VC)												
Pesticide/Polychlorinated Biphenyls (UG/KG) 4,4'-DDD	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4,4'-DDE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Aldrin	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
alpha-BHC alpha-Chlordane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Aroclor-1016	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
Aroclor-1221	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
Aroclor-1232	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
Aroclor-1242	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
Aroclor-1248 Aroclor-1254	15 U 15 U	14 U 14 U	15 U 15 U		15 U 15 U	14 U 14 U	14 U 14 U	14 U 14 U	15 U 15 U	15 U 15 U	15 U 15 U	
Aroclor-1260	15 U	14 U	15 U		15 U	260	14 U	23	15 U	15 U	15 U	
Aroclor-1262	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
Aroclor-1268	15 U	14 U	15 U	15 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U	
beta-BHC delta-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Dieldrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Endosulfan I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Endosulfan II	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endosulfan sulfate	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Endrin Endrin aldehyde	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Endrin aldenyde Endrin ketone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
gamma-BHC (Lindane)	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Heptachlor	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Heptachlor epoxide	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	
Methoxychlor Toxyphene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Toxaphene	INA	INA	INA	NA NA	INA	INA	INA	INA	NA NA	INA	NA NA	
Total Metals (MG/KG)												
Aluminum	8,000 J	10,000 J	2,400	7,100	1,600	6,400	2,100	6,900	1,700	15,000	1,700	
Antimony	0.25	0.26	0.13 B	0.16	0.097 J	0.16	0.17	2.1	0.34	0.25	0.055 B	
Arsenic Barium	5.2 15 J	5.1 23 J	1.8 6.7	3.2 12	1.6 4.1	2.2 29	3.5 5.3	3.3 40	4.1 5.6	5.1 43	1.6 11	
Beryllium	0.34	0.37	0.5	0.29	1.1	0.39	0.25	0.48	0.12	0.58	0.99	
Cadmium	0.048 J	0.062	0.027 J	0.2	0.058	0.044 J	0.034 J	0.12	0.039 J	0.054	0.048 J	
Calcium	480	590	62	210	38 J	240	110	650	350	580	120	
Chromium (hexavalent)	0.22 U	0.35 J	1.5	NA	NA	NA	NA	NA	NA	NA	NA	

Appendix D - Site 4 Soil Analytical Data

Station ID		CBD-S04-DP01		CBD-S0	4-DP02	CBD-S0	4-DP03	CBD-S0)4-DP04	CBD-S	04-DP05
Sample ID	CBD-S04-SS01-1012	CBD-S04-SS01P-1012	CBD-S04-SB01-1820	CBD-S04-SS02-1012	CBD-S04-SB02-1618	CBD-S04-SS03-1012	CBD-S04-SB03-1416	CBD-S04-SS04-1012	CBD-S04-SB04-1012	CBD-S04-SS05-1012	CBD-S04-SB05-1315
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12	10/18/12
Chemical Name											
Chromium	16	15	9.1	11	7.5	7.8	12	10	7	20	6.5
Cobalt	0.96	1.2	2	1.4	1.7	2.8	0.75	2.7	0.58	4	0.65
Copper	6.3	6.4	1.5	4.6	1.1	3	1.4	13	1.9	6.4	0.83
Cyanide	0.056 U	0.056 U	0.06 U	0.057 U	0.057 U	0.055 U	0.056 U	0.055 U	0.062 J	0.056 U	0.059 L
ron	17,000	17,000	4,200	11,000	3,500	8,200	6,300	10,000	4,800	21,000	5,000
_ead	16	11	2.6	8.6	2.2	5.8	1.7	59	1.7	8.8	1.9
Magnesium	940	1,100	540	790	360	590	500	700	490	1,400	480
Manganese	24	25	24	33	13	78	5.2	78	3.2	120	4.6
Mercury	0.018 J	0.022 J	0.017 U	0.0064 J	0.017 U	0.017 U	0.017 U	0.084	0.011 J	0.027 J	0.017 l
Nickel	1.8	2.6	2.5	2.9	0.98	4.2	1.9	5.4	0.99	7.7	1.1
Potassium	850	930	410	590	310	360	340	440	340	810	380
Selenium	0.41	0.39	0.12 B	0.25	0.13 B	0.24	0.18	0.38	0.14 B	0.32	0.1 \
Silver	0.08	0.052	0.033 J	0.033 J	0.03 J	0.037 J	0.038 J	0.94	0.029 J	0.045 J	0.026 J
Sodium	16 B	21 B	12 B	13 B	8.2 B	13 B	9.8 B	19 B	15 B	23 B	14 E
Thallium	0.12	0.13	0.093	0.12	0.12	0.23	0.29	0.18	0.16	0.27	0.07
Vanadium Vanadium	18	21	4.9	16	3.5	14	7.5	16	4.2	31	3.5 7.2
Zinc	15 B	23 B	13 B	19 B	23 B	22 B	18 B	66	13 B	32	7.2
Wet Chemistry											
oH (ph)	5.5	NA	NA	5.7	NA	5.8	NA	6.1	NA	5.2	NA
Total organic carbon (TOC) (mg/kg)	10,000	NA	NA	1,500	NA	3,300	NA	4,300	NA	2,400	NA

\lorioniProjiCLEANIIiBASES\NavalResearchLab_ChesBayDetach\CTO JU23 CLEAN 9000 (Basewide Expanded SI)!2 deliverables\Expanded SI Report\5. Final\Appendicies\Appendicies\Appendic F - Validated Analytical Data\{Appendix E - Validated Data.xisxi, D'Onofrio, Jackie/WDC, 12/18/2018

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate
 MG/KG Milligrams per kilogram
 PH pH units

- PH pH units
- UG/KG Micrograms per kilogram

Appendix D - Site 4 Soil Analytical Data

Station ID	CBD-S0	4-DP07	CBD-S04	-DP08	CBD-S04	1-DP09	CBD-S0)4-DP10	CBD-S04-	DP11
Sample ID	CBD-S04-SS07-000H	CBD-S04-SB07-0810	CBD-S04-SS08-000H	CBD-S04-SB08-0810	CBD-S04-SS09-000H	CBD-S04-SB09-0810	CBD-S04-SS10-000H	CBD-S04-SB10-0810	CBD-S04-SS11-000H	CBD-S04-SB11-081
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/04/18	04/04/18	04/04/18	04/04/18	04/05/18	04/05/18
Chemical Name										
Volatile Organic Compounds (UG/KG)										
1,1,1-Trichloroethane	NA	NA NA								
1,1,2,2-Tetrachloroethane	NA	NA.								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 1,1,2-Trichloroethane	NA NA	NA NA								
1,1,2-1 richloroethane 1,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethene	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	N/
1,2,3-Trichlorobenzene	NA	NA NA								
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	NA NA	NA NA								
1,2-Dibromoethane	NA NA	NA NA								
1,2-Dichlorobenzene	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	N/
1,2-Dichloroethane	NA	NA NA								
1,2-Dichloropropane	NA NA	NA NA								
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NA NA	NA NA								
2-Butanone	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
2-Hexanone	NA	NA								
4-Methyl-2-pentanone	NA NA	NA NA								
Acetone Benzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	N/
Bromodichloromethane	NA	N/								
Bromoform	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	N/
Bromomethane Carbon disulfide	NA NA	NA NA								
Carbon tetrachloride	NA NA	NA NA								
Chlorobenzene	NA	NA								
Chloroethane	NA	NA								
Chloroform Chloromethane	NA NA	NA NA								
cis-1,2-Dichloroethene	NA NA	NA NA								
cis-1,3-Dichloropropene	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Cyclohexane	NA	NA								
Dibromochloromethane	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dichlorodifluoromethane (Freon-12) Ethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isopropylbenzene	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene	NA	NA								
Methyl acetate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methylcyclohexane Methylene chloride	NA NA	NA NA								
Methyl-tert-butyl ether (MTBE)	NA NA	NA NA								
o-Xylene	NA	NA NA								
Styrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	N/
Tetrachloroethene Toluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,3-Dichloropropene	NA	N/								
Trichloroethene	NA NA	NA NA								
Trichlorofluoromethane (Freon-11) Vinyl chloride	NA NA	NA NA								
viny, silionas	INA	INF								
Semivolatile Organic Compounds (UG/KG)						_				
1,1-Biphenyl	NA NA	NA NA								
1,2,4,5-Tetrachlorobenzene 2,2'-Oxybis(1-chloropropane)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,3,4,6-Tetrachlorophenol	NA NA	NA NA	N/							
2,4,5-Trichlorophenol	NA	N/								
2,4,6-Trichlorophenol	NA NA	N/								
2,4-Dichlorophenol 2,4-Dimethylphenol	NA NA	N/ N/								
2,4-Dinitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	N.
2,4-Dinitrotoluene	NA	N.								
2,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	N.
2-Chloronaphthalene 2-Chlorophenol	NA NA	N.								
2-Methylnaphthalene	NA NA	N.								
2-Methylphenol	NA	N								
2-Nitroaniline	NA	N.								
2-Nitrophenol	NA NA	N								
3,3'-Dichlorobenzidine 3-Nitroaniline	NA NA	N								
1,6-Dinitro-2-methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
4-Bromophenyl-phenylether	NA	N								
4-Chloro-3-methylphenol	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	N
4-Chloroaniline 4-Chlorophenyl-phenylether	NA NA	N N								
4-Chiorophenyi-phenyiether 4-Methylphenol	NA NA	N N								
4-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA	N				
4-Nitrophenol	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	N

Appendix D - Site 4 Soil Analytical Data

	-									
Station ID		04-DP07	CBD-S0	04-DP08		04-DP09		04-DP10)4-DP11
Sample ID	CBD-S04-SS07-000H	CBD-S04-SB07-0810	CBD-S04-SS08-000H	CBD-S04-SB08-0810	CBD-S04-SS09-000H	CBD-S04-SB09-0810	CBD-S04-SS10-000H	CBD-S04-SB10-0810	CBD-S04-SS11-000H	CBD-S04-SB11-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/04/18	04/04/18	04/04/18	04/04/18	04/05/18	04/05/18
Chemical Name										
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetophenone	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Anthracene Atrazine	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzaldehyde	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroethoxy)methane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Caprolactam	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dimethyl phthalate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-butylphthalate	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-octylphthalate Fluoranthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hexachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isophorone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
n-Nitroso-di-n-propylamine n-Nitrosodiphenylamine	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Posticide/Polyablerinated Pinhanyle (UC/VC)										
Pesticide/Polychlorinated Biphenyls (UG/KG) 4.4'-DDD	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
4,4'-DDE	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.519	0.13 U	0.223 U	0.127 U
4,4'-DDT	0.457 U	0.248 U	0.269 U	0.245 U	0.262 U	0.28 UJ	0.31 U	0.261 U	0.447 U	0.255 U
Aldrin	0.229 U		0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
alpha-BHC	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
alpha-Chlordane	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
Aroclor-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
Aroclor-1232 Aroclor-1242	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1242 Aroclor-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Aroclor-1262	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1268	NA	NA	NA a 101 I I	NA a 100 H	NA a 101 H	NA	NA 0.455.11	NA 2.42.11	NA a aga ti	NA NA
beta-BHC	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
delta-BHC Dieldrin	0.229 U 0.229 U		0.134 U 0.134 U	0.123 U 0.123 U	0.131 U 0.131 U	0.14 UJ 0.14 UJ	0.155 U 0.155 U	0.13 U 0.13 U	0.223 U 0.223 U	0.127 U 0.127 U
Endosulfan I	0.229 U		0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
Endosulfan II	0.229 U		0.134 U	0.123 U	0.131 U		0.155 U		0.223 U	0.127 U
Endosulfan sulfate	0.457 U		0.269 U	0.245 U	0.262 U	0.28 UJ	0.31 U	0.261 U	0.447 U	0.255 U
Endrin	0.229 U	0.124 U	0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
Endrin aldehyde	0.229 U		0.134 U	0.123 U	0.131 U		0.155 U		0.223 U	0.127 U
Endrin ketone	0.457 U		0.269 U	0.245 U	0.262 U	0.28 UJ	0.31 U	0.261 U	0.447 U	0.255 U
gamma-BHC (Lindane)	0.229 U		0.134 U	0.123 U	0.131 U	0.14 UJ	0.155 U	0.13 U	0.223 U	0.127 U
Heptachlor	0.229 U 0.229 U		0.134 U 0.134 U	0.123 U 0.123 U	0.131 U 0.131 U	0.14 UJ 0.14 UJ	0.155 U 0.155 U	0.13 U 0.13 U	0.223 U 0.223 U	0.127 U 0.127 U
Heptachlor epoxide Methoxychlor	0.229 U 0.457 U		0.134 U 0.269 U	0.123 U 0.245 U	0.131 U 0.262 U	0.14 UJ 0.28 UJ	0.155 U 0.31 U		0.223 U 0.447 U	0.127 U 0.255 U
Toxaphene	22.9 U		13.4 U	12.3 U	13.1 U	0.28 UJ 14 UJ	15.5 U		22.3 U	12.7 U
	22.9 0	12.4 0	10.4 0	12.0 0	10.1 0	17 00	10.0 0	10 0	22.0 0	12.7 0
Total Metals (MG/KG)										
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium Calcium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium (hexavalent)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
On onlun (nexavalent)	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

Appendix D - Site 4 Soil Analytical Data

Station ID	CBD-S	04-DP07	CBD-S0	04-DP08	CBD-S	04-DP09	CBD-S0	04-DP10	CBD-S0)4-DP11
Sample ID	CBD-S04-SS07-000H	CBD-S04-SB07-0810	CBD-S04-SS08-000H	CBD-S04-SB08-0810	CBD-S04-SS09-000H	CBD-S04-SB09-0810	CBD-S04-SS10-000H	CBD-S04-SB10-0810	CBD-S04-SS11-000H	CBD-S04-SB11-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/04/18	04/04/18	04/04/18	04/04/18	04/05/18	04/05/18
Chemical Name										
Chromium	NA									
Cobalt	NA									
Copper	NA									
Cyanide	NA									
Iron	NA									
Lead	NA									
Magnesium	NA									
Manganese	NA									
Mercury	NA									
Nickel	NA									
Potassium	NA									
Selenium	NA									
Silver	NA									
Sodium	NA									
Thallium	NA									
Vanadium	NA									
Zinc	NA									
Wet Chemistry										
pH (ph)	NA									
Total organic carbon (TOC) (mg/kg)	NA									

- Notes:

 Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate
 MG/KG Milligrams per kilogram
 PH pH units

- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 4 Soil Analytical Data

Otation ID		000 004 0040		CBD-S04-DP13				CBD-S04-DP14 CBD-S04-DP15			
Station ID Sample ID	000 004 0040 00011	CBD-S04-DP12	000 004 00400 0040	000 004 0040 00011		000 004 0040 0040					
•	CBD-S04-SS12-000H	CBD-S04-SB12-0810	CBD-S04-SB12P-0810	CBD-S04-SS13-000H	CBD-S04-SS13P-000H 04/05/18	CBD-S04-SB13-0810	CBD-S04-SS14-000H	CBD-S04-SB14-0810	CBD-S04-SS15-000H	CBD-S04-SB15-0810	
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	
Chemical Name											
Volatile Organic Compounds (UG/KG)											
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,1-Dichloroethene 1,2,3-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1.2.4-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,2-Dibromo-3-chloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,2-Dibromoethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1,2-Dichloropropane 1,3-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
1,4-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
2-Butanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
4-Methyl-2-pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Benzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Bromochloromethane Bromodichloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Bromoform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Bromomethane	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	
Carbon disulfide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Carbon tetrachloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Chlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Chloroethane Chloroform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Chloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
cis-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
cis-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Dibromochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Dichlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Ethylbenzene Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
m- and p-Xylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	
Methyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methyl-tert-butyl ether (MTBE) o-Xylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Styrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Tetrachloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	
Toluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
trans-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
trans-1,3-Dichloropropene	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	
Trichloroethene Trichlorofluoromethane (Freon-11)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
Vinyl chloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	IVA	14/1	14/7	14/1	IN/S	11/1	IVA	14/1	14/3	1471	
Semivolatile Organic Compounds (UG/KG)											
1,1-Biphenyl	580 U	650 U	680 U	610 U	740 U	380 U	430 U	400 U	470 U	410 U	
1,2,4,5-Tetrachlorobenzene	NA 104 II	NA 248 II	NA 226 LL	NA 204 II	NA 247 II	NA 126 LL	NA 144 II	NA 122 II	NA 157 LL	NA 137 LL	
2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol	194 U NA	218 U NA	226 U NA	204 U NA	247 U NA	126 U NA	144 U NA	132 U NA	157 U NA	137 U NA	
2,4,5-Trichlorophenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2,4,6-Trichlorophenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2,4-Dichlorophenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2,4-Dimethylphenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2,4-Dinitrophenol	1,940 U	2,180 U	2,260 U	2,040 U	2,470 U	1,260 U	1,440 U	1,320 U	1,570 U	1,370 U	
2,4-Dinitrotoluene 2,6-Dinitrotoluene	388 U 194 U	436 U 218 U	452 U 226 U	408 U 204 U	494 U 247 U	251 U 126 U	288 U 144 U	265 U 132 U	315 U 157 U	275 U 137 U	
2-Chloronaphthalene	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2-Chlorophenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2-Methylnaphthalene	2.2 U	2 U	2.2 U	2.3 U	2.3 U	2.1 U	2.1 U	2.3 U	2.3 U	2.2 U	
2-Methylphenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
2-Nitroaniline	388 U	436 U	452 U	408 U	494 U	251 U	288 U	265 U	315 U	275 U	
2-Nitrophenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
3,3'-Dichlorobenzidine 3-Nitroaniline	194 U 390 U	218 U 440 U	226 U 450 U	204 U 410 U	247 U 490 U	126 U 250 U	144 U 290 U	132 U 260 U	157 U 310 U	137 U 270 U	
4,6-Dinitro-2-methylphenol	1,940 U	2,180 U	2,260 U	2,040 U	2,470 U	1,260 U	1,440 U	1,320 U	1,570 U	1,370 U	
4-Bromophenyl-phenylether	388 U	436 U	452 U	408 U	494 U	251 U	288 U	265 U	315 U	275 U	
4-Chloro-3-methylphenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
4-Chloroaniline	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U	
4-Chlorophenyl-phenylether	388 U	436 U	452 U	408 U	494 U	251 U	288 U	265 U	315 U	275 U	
4-Methylphenol	NA 194 U	NA 219 II	NA 226 LL	NA 204 II	NA 247.11	NA 126 LL	NA 144 U	NA 122 II	NA 157 U	NA 127 LL	
4-Nitroaniline 4-Nitrophenol	194 U 390 U	218 U 440 U	226 U 450 U	204 U 410 U	247 U 490 U	126 U 250 U	144 U 290 U	132 U 260 U	157 U 310 U	137 U 270 U	
T-MICOPHENOI	390 0	440 0	450 U	410 0	490 0	200 0	290 U	200 0	310 0	210 0	

Appendix D - Site 4 Soil Analytical Data

Appendix B Oile 4 Ooli Aliaiyiloal Bata										
Station ID		CBD-S04-DP12			CBD-S04-DP13		CBD-S0			04-DP15
Sample ID	CBD-S04-SS12-000H	CBD-S04-SB12-0810	CBD-S04-SB12P-0810	CBD-S04-SS13-000H	CBD-S04-SS13P-000H	CBD-S04-SB13-0810	CBD-S04-SS14-000H	CBD-S04-SB14-0810	CBD-S04-SS15-000H	CBD-S04-SB15-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name										
Acenaphthene	1.1 U	1.1 U	1.1 U	1.2 U	1.2 U	1.1 U	0.85 J	1.2 U	3.9 J	1.2 U
Acenaphthylene	1.6 J 190 U	1.1 U 220 U	1.1 U 230 U	1.2 U 200 U	1.2 U 250 U	1.1 U 130 U	1.1 J 140 U	1.2 U 130 U	4.5 J 160 U	1.2 U 140 U
Acetophenone Anthracene	190 U	4.4 U	4.3 U	5.1 U	250 U	4.5 U	2.9 J	5 U	13	4.8 U
Atrazine	580 U	650 U	680 U	610 U	740 U	380 U	430 U	400 U	470 U	410 U
Benzaldehyde	580 U	650 U	680 U	610 U	740 U	380 U	430 U	400 U	470 U	410 U
Benzo(a)anthracene	8.2 J	4.4 U	4.3 U	5.1 U	5 U	4.5 U	19	5 U	150 J	4.8 U
Benzo(a)pyrene	8 J	4.4 U	4.3 U	5.1 U	5 U	4.5 U	21	5 U	180 J	4.8 U
Benzo(b)fluoranthene	15	6.7 U	6.6 U	7.8 U	7.7 U	6.9 U	42	7.6 U	270 J	7.4 U
Benzo(g,h,i)perylene	5.3 J	6.7 U	6.6 U	7.8 U	7.7 U	6.9 U	17	7.6 U	130 J	7.4 U
Benzo(k)fluoranthene	5.3 J	4.4 U	4.3 U	5.1 U	5 U	4.5 U	14	5 U	94 J	4.8 U
bis(2-Chloroethoxy)methane	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
bis(2-Chloroethyl)ether	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
bis(2-Ethylhexyl)phthalate	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Butylbenzylphthalate	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Caprolactam	4,900 U 194 U	5,400 U 218 U	5,600 U 226 U	5,100 U 204 U	6,200 U 247 U	3,100 U 126 U	3,600 U 144 U	3,300 U 132 U	3,900 U 157 U	3,400 U 137 U
Carbazole Chrysene	194 0	4.4 U	4.3 U	5.1 U	5 U	4.5 U	28	132 U	157 U	4.8 U
Dibenz(a,h)anthracene	7.2 U	6.7 U	6.6 U	7.8 U	7.7 U	6.9 U	3.8 J	7.6 U	34 J	7.4 U
Dibenzofuran	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Diethylphthalate	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Dimethyl phthalate	390 U	440 U	450 U	410 U	490 U	250 U	290 U	260 U	310 U	270 U
Di-n-butylphthalate	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Di-n-octylphthalate	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Fluoranthene	17	4.4 U	4.3 U	5.1 U	5 U	4.5 U	43	5 U	210 J	4.8 U
Fluorene	2.9 U	2.7 U	2.6 U	3.1 U	3.1 U	2.7 U	2.8 U	3.1 U	3.2 J	2.9 U
Hexachlorobenzene	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Hexachlorobutadiene	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Hexachlorocyclopentadiene	194 U	218 U	226 U	204 U	247 U	126 U	144 U 144 U	132 U	157 U	137 U
Hexachloroethane Indeno(1,2,3-cd)pyrene	194 U 6.7 J	218 U 6.7 U	226 U 6.6 U	204 U 7.8 U	247 U 7.7 U	126 U 6.9 U	144 U 20	132 U 7.6 U	157 U 160 J	137 U 7.4 U
Isophorone	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Naphthalene	2.2 U	2 U	4.2 U	2.3 U	2.3 U	2.1 U	2.1 U	2.3 U	2.3 U	2.2 U
n-Nitroso-di-n-propylamine	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
n-Nitrosodiphenylamine	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Nitrobenzene	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Pentachlorophenol	388 U	436 U	452 U	408 U	494 U	251 U	288 U	265 U	315 U	275 U
Phenanthrene	6.2 J	6.7 U	6.6 U	7.8 U	7.7 U	6.9 U	14	7.6 U	49 J	7.4 U
Phenol	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Pyrene	14	6.7 U	6.6 U	7.8 U	7.7 U	6.9 U	36	7.6 U	190 J	7.4 U
Total cresols	194 U	218 U	226 U	204 U	247 U	126 U	144 U	132 U	157 U	137 U
Bootiside/Bohashlerineted Biohamula (UC/VC)										
Pesticide/Polychlorinated Biphenyls (UG/KG) 4.4'-DDD	0.136 U	0.346 J	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
4,4'-DDE	0.136 U	0.512	0.245 U	0.236 U	0.156 U	0.125 U	0.188 J	0.128 U	0.138 U	0.131 U
4,4'-DDT	0.130 U	7.53 J	0.491 UJ	0.471 U	0.311 U	0.249 U	0.261 U	0.257 U	0.275 U	0.262 U
Aldrin	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
alpha-BHC	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
alpha-Chlordane	0.136 U	0.283 J	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Aroclor-1016	6.8 U	12 U	12 U	12 U	7.8 UJ	6.2 U	6.5 U	6.4 U	6.9 U	6.6 U
Aroclor-1221	6.8 U	12 U	12 U	12 U	7.8 UJ	6.2 U	6.5 U	6.4 U	6.9 U	6.6 U
Aroclor-1232	6.8 U	12 U	12 U	12 U	7.8 UJ	6.2 U	6.5 U	6.4 U	6.9 U	6.6 U
Aroclor-1242	6.8 U	12 U	12 U	12 U	7.8 UJ	6.2 U	6.5 U	6.4 U	6.9 U	6.6 U
Arcelor 1354	6.8 U 6.8 U	12 U	12 U	12 U	7.8 UJ 7.8 UJ	6.2 U	6.5 U	6.4 U	6.9 U	6.6 U
Aroclor-1254 Aroclor-1260	6.8 U	12 U 12 U	12 U 12 U	12 U 12 U	7.8 UJ 7.8 UJ	6.2 U 6.2 U	6.5 U 6.5 U	6.4 U 6.4 U	6.9 U	6.6 U 6.6 U
Aroclor-1260 Aroclor-1262	NA	NA	NA	NA	7.8 03 NA	NA	NA	NA	NA	NA
Aroclor-1268	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
beta-BHC	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
delta-BHC	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Dieldrin	0.136 U	6.29 J	0.245 UJ	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Endosulfan I	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Endosulfan II	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Endosulfan sulfate	0.273 U	0.479 U	0.491 U	0.471 U	0.311 U	0.249 U	0.261 U	0.257 U	0.275 U	0.262 U
Endrin	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Endrin aldehyde Endrin ketone	0.136 U 0.273 U	0.24 U 0.479 U	0.245 U 0.491 U	0.236 U 0.471 U	0.156 U 0.311 U	0.125 U 0.249 U	0.13 U 0.261 U	0.128 U 0.257 U	0.138 U 0.275 U	0.131 U 0.262 U
gamma-BHC (Lindane)	0.273 U 0.136 U	0.479 U 0.24 U	0.491 U 0.245 U	0.471 U 0.236 U	0.311 U 0.156 U	0.249 U 0.125 U	0.261 U 0.13 U	0.257 U 0.128 U	0.275 U 0.138 U	0.262 U 0.131 U
Heptachlor	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Heptachlor epoxide	0.136 U	0.24 U	0.245 U	0.236 U	0.156 U	0.125 U	0.13 U	0.128 U	0.138 U	0.131 U
Methoxychlor	0.273 U	0.479 U	0.491 U	0.471 U	0.311 U	0.249 U	0.261 U	0.257 U	0.275 U	0.262 U
Toxaphene	13.6 U	24 U	24.5 U	23.6 U	15.6 U	12.5 U	13 U	12.8 U	13.8 U	13.1 U
,								0	.2.2	
Total Metals (MG/KG)										
Aluminum	8,500 J-	3,200	3,100	7,700 J	21,000 J	2,200 J-	8,100 J-	2,900	6,400	2,700 J-
Antimony	0.14 U	0.23 J	0.18 J	0.17 U	0.17 U	0.054 J	0.14 U	0.078 J	0.084 J	0.14 U
Arsenic	5.8	3.2	2.5	1.9 J		2.2	2.7 J	2 J	8.3	5.7
Barium	6.3	12 J	5.7 J	8.5 J	13 J	6.9	27	5.3	14	5.7
Beryllium	0.23 J	0.74	0.33 J	0.31 J	0.8	0.56	0.47 J	0.86	0.29 J	0.35 J
Cadmium	0.14 U 229	0.48 31.3	0.18 U 19	0.17 U 405 J	0.17 U 893 J	0.32	0.14 U 389	0.14 U 40.8	0.14 U 314	0.14 U 305
Chromium (hexavalent)										
Chromium (hexavalent)	0.11 J	0.18 J	0.24 J	NA	NA	NA	0.11 J	0.1 J	NA	NA

Appendix D - Site 4 Soil Analytical Data

Station ID		CBD-S04-DP12			CBD-S04-DP13		CBD-S0)4-DP14	CBD-S0	04-DP15
Sample ID	CBD-S04-SS12-000H	CBD-S04-SB12-0810	CBD-S04-SB12P-0810	CBD-S04-SS13-000H	CBD-S04-SS13P-000H	CBD-S04-SB13-0810	CBD-S04-SS14-000H	CBD-S04-SB14-0810	CBD-S04-SS15-000H	CBD-S04-SB15-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name										
Chromium	15	8.6	6.7	11 J	32 J	7.4	11	10	14	11
Cobalt	0.55	13 J	6.1 J	0.68 J	1.2 J	10	2.2	2.1	0.93	0.92
Copper	3.1	3.2 J	1.9 J	2.5 J	6.1 J	2.4	2.9	1.7	2.8	2.2
Cyanide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ron	22,000	16,000 J	8,200 J	12,000 J	37,000 J	8,200	11,000	5,100	8,600	6,600
Lead	4.9	1.5 J	0.9 J	5 J	9.9 J	1.3	6	2.3	3.2	1.5
Magnesium	796	498	476	621 J	1,670 J	438	677	542	987	661
Manganese	6.4	350 J	64 J	10	8.3	140	61	11	14	2.3
Mercury	0.14 U	0.17 U	0.18 U	0.17 U	0.17 U	0.13 U	0.14 U	0.14 U	0.14 U	0.14 l
Nickel	0.99	30 J	11 J	1.3 J	2.1 J	18	3.9	3.6	2.1	1.8
Potassium	693	390	330	560 J	1,180 J	291	432	345	444	319
Selenium	1.3 J-	0.59 J	0.47 J	0.48 J-	1.1 J-	0.83 J-	1.2 J	0.79 J	1.2	0.37 .
Silver	0.14 U	0.078 J	0.18 U	0.17 U	0.17 U	0.13 U	0.14 U	0.088 J	0.081 J	0.14 l
Sodium	8.5 U		4.2 U	7.2 U	18.9 J+	2.6 U	10.4 U	5.5 U	6.7 U	4 l
Thallium	0.065 J	0.17 J	0.18 U	0.17 U	0.099 J	0.074 J	0.12 J	0.14 U	0.18 J	0.083 .
Vanadium	19	9.9	9.7	14 J	32 J	12	15	6.7	20	7.9
Zinc	25	23 J	12 J	7.8 J	20 J	21	17 J	18 J	15	19
Wet Chemistry										
oH (ph)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate
 MG/KG Milligrams per kilogram
 PH pH units

- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 4 Soil Analytical Data

Station ID	CBD-S04-I		CBD-S04-S006
Sample ID	CBD-S04-SS16-000H	CBD-S04-SB16-0810	CBD-S04-SS06-1012
Sample Date	04/05/18	04/05/18	10/18/12
Chemical Name			
Volatile Organic Compounds (UG/KG)			
1,1,1-Trichloroethane	NA	NA	0.53
1,1,2,2-Tetrachloroethane	NA NA	NA NA	0.53
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	0.53
1,1,2-Trichloroethane	NA	NA	0.53
1,1-Dichloroethane	NA	NA	0.26
1,1-Dichloroethene	NA NA	NA NA	0.53
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	NA NA	NA NA	0.53 0.53
1,2-Dibromo-3-chloropropane	NA NA	NA NA	0.53
1,2-Dibromoethane	NA NA	NA NA	0.53
I,2-Dichlorobenzene	NA	NA	0.53
1,2-Dichloroethane	NA	NA	0.53
1,2-Dichloropropane	NA NA	NA	0.53
I,3-Dichlorobenzene	NA NA	NA NA	0.26 0.26
2-Butanone	NA NA	NA NA	0.53
2-Hexanone	NA NA	NA NA	0.53
1-Methyl-2-pentanone	NA	NA	0.53
Acetone	NA	NA	41
Benzene	NA	NA	0.53
Bromochloromethane	NA NA	NA NA	0.53
Bromodichloromethane	NA NA	NA NA	0.53
Bromoform Bromomethane	NA NA	NA NA	0.26 0.53
Carbon disulfide	NA NA	NA NA	0.35
Carbon tetrachloride	NA NA	NA NA	0.26
Chlorobenzene	NA	NA	0.26
Chloroethane	NA	NA	0.53
Chloroform	NA	NA	0.26
Chloromethane	NA NA	NA NA	0.53
is-1,2-Dichloroethene is-1,3-Dichloropropene	NA NA	NA NA	0.26 0.26
Syclohexane	NA NA	NA NA	0.53
Dibromochloromethane	NA NA	NA NA	0.53
Dichlorodifluoromethane (Freon-12)	NA	NA	0.53
thylbenzene	NA	NA	0.53
sopropylbenzene	NA	NA	0.26
n- and p-Xylene	NA NA	NA NA	0.53
lethyl acetate lethylcyclohexane	NA NA	NA NA	1.6 0.53
Methylene chloride	NA NA	NA NA	0.53
lethyl-tert-butyl ether (MTBE)	NA	NA	0.53
-Xylene	NA	NA	0.26
tyrene	NA	NA	0.26
etrachloroethene	NA	NA	0.53
oluene	NA NA	NA NA	0.53
ans-1,2-Dichloroethene ans-1,3-Dichloropropene	NA NA	NA NA	0.26 0.53
richloroethene	NA NA	NA NA	0.26
richlorofluoromethane (Freon-11)	NA NA	NA NA	0.26
inyl chloride	NA	NA	0.26
emivolatile Organic Compounds (UG/KG)			
,1-Biphenyl	420 U	480 U	18
,2,4,5-Tetrachlorobenzene ,2'-Oxybis(1-chloropropane)	NA 141 U	NA 159 U	1.8
,3,4,6-Tetrachlorophenol	NA NA	NA	3.5
4,5-Trichlorophenol	141 U	159 U	18
4,6-Trichlorophenol	141 U	159 U	3.5
,4-Dichlorophenol	141 U	159 U	3.5
,4-Dimethylphenol	141 U	159 U	35
,4-Dinitrophenol ,4-Dinitrotoluene	1,410 U 282 U	1,590 U	180
,4-Dinitrotoluene ,6-Dinitrotoluene	282 U	319 U 159 U	18 3.5
-Chloronaphthalene	141 U	159 U	3.5
-Chlorophenol	141 U	159 U	3.5
-Methylnaphthalene	2.3 U	6.6 U	1.8
-Methylphenol	141 U	159 U	7
Nitroaniline	282 U	319 U	18
-Nitrophenol	141 U	159 U	3.5
,3'-Dichlorobenzidine -Nitroaniline	141 U	159 U	350
-Nitroaniline ,6-Dinitro-2-methylphenol	280 U 1,410 U	320 U 1,590 U	35 18
-Bromophenyl-phenylether	282 U	319 U	1.8
-Chloro-3-methylphenol	141 U	159 U	7
-Chloroaniline	141 U	159 U	18
-Chlorophenyl-phenylether	282 U	319 U	1.8
-Methylphenol	NA NA	NA 150 LL	3.5
-Nitroaniline	141 U 280 U	159 U 320 U	35 35

Page 10 of 12

Appendix D - Site 4 Soil Analytical Data

Station ID	CBD-S04	I-DP16	CBD-S04-S006
Sample ID	CBD-S04-SS16-000H	CBD-S04-SB16-0810	CBD-S04-SS06-1012
Sample Date	04/05/18	04/05/18	10/18/12
Chemical Name	İ		
Acenaphthene	0.58 J	56	6.1 J
Acenaphthylene	0.56 J	5 J	1.8 U
Acetophenone	140 U 2.4 J	160 U 170	18 U 15 J
Anthracene Atrazine	2.4 J 420 U	480 U	15 J
Benzaldehyde	420 U	480 U	18 R
Benzo(a)anthracene	20	490	89
Benzo(a)pyrene	23	470	73
Benzo(b)fluoranthene	38	620	130
Benzo(g,h,i)perylene	21	340	48
Benzo(k)fluoranthene	13	230	50
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	141 U 141 U	159 U 159 U	1.8 U 1.8 U
bis(2-Ethylhexyl)phthalate	141 U	159 U	8.6 B
Butylbenzylphthalate	141 U	159 U	3.5 U
Caprolactam	3,500 U	4,000 U	18 U
Carbazole	141 U	159 U	35 U
Chrysene	25	470	85
Dibenz(a,h)anthracene	5.1 J	89	6.9 J
Dibenzofuran Diethylphtholete	141 U	159 U	2.9 J
Diethylphthalate Dimethyl phthalate	141 U 280 U	159 U 320 U	5.7 B 3.5 U
Di-n-butylphthalate	141 U	159 U	3.5 U
Di-n-octylphthalate	141 U	159 U	1.8 U
Fluoranthene	25	850	140
Fluorene	3.1 U	48	3.2 J
Hexachlorobenzene	141 U	159 U	1.8 U
Hexachlorobutadiene	141 U	159 U	1.8 U
Hexachlorocyclopentadiene Hexachloroethane	141 U 141 U	159 U 159 U	3.5 U 1.8 U
Indeno(1,2,3-cd)pyrene	24	420	43
Isophorone	141 U	159 U	1.8 U
Naphthalene	2.5 U	19	1.1 J
n-Nitroso-di-n-propylamine	141 U	159 U	3.5 U
n-Nitrosodiphenylamine	141 U	159 U	1.8 U
Nitrobenzene	141 U	159 U	1.8 U
Pentachlorophenol	282 U	319 U	35 U
Phenanthrene Phenol	12 141 U	630 159 U	79 3.5 U
Pyrene	20	670	130
Total cresols	141 U	159 U	NA NA
Pesticide/Polychlorinated Biphenyls (UG/KG)			
4,4'-DDD	0.13 U	0.13 U	NA NA
4,4'-DDE 4,4'-DDT	0.13 U 0.26 U	8.31 0.26 U	NA NA
4,4-DD1 Aldrin	0.26 U	0.26 U	NA NA
alpha-BHC	0.13 U	0.13 U	NA NA
alpha-Chlordane	0.13 U	0.13 U	NA
Aroclor-1016	6.5 U	6.5 U	14 U
Aroclor-1221	6.5 U	6.5 U	14 U
Aroclor-1232	6.5 U	6.5 U	14 U
Aroclor-1242	6.5 U	6.5 U	14 U
Aroclor-1248 Aroclor-1254	6.5 U	6.5 U	14 U 14 U
Aroclor-1254 Aroclor-1260	6.5 U 6.5 U	6.5 U 160	18
Aroclor-1262	NA	NA NA	14 U
Aroclor-1268	NA NA	NA	14 U
beta-BHC	0.13 U	0.13 U	NA
delta-BHC	0.13 U	0.13 U	NA
Dieldrin	0.13 U	0.13 U	NA
Endosulfan I	0.13 U	0.13 U	NA NA
Endosulfan II Endosulfan sulfate	0.13 U 0.26 U	0.13 U 0.26 U	NA NA
Endosuiran suirate Endrin	0.26 U 0.13 U	0.26 U 0.13 U	NA NA
Endrin aldehyde	0.13 U	0.13 U	NA NA
Endrin ketone	0.26 U	0.26 U	NA NA
gamma-BHC (Lindane)	0.13 U	0.13 U	NA
Heptachlor		0.13 U	NA
	0.13 U		
Heptachlor epoxide	0.13 U 0.13 U	0.13 U	NA
Heptachlor epoxide Methoxychlor	0.13 U 0.13 U 0.26 U	0.13 U 0.26 U	NA
Heptachlor epoxide	0.13 U 0.13 U	0.13 U	
Heptachlor epoxide Methoxychlor Toxaphene	0.13 U 0.13 U 0.26 U	0.13 U 0.26 U	NA
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG)	0.13 U 0.13 U 0.26 U 13 U	0.13 U 0.26 U 13 U	NA NA
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum	0.13 U 0.13 U 0.26 U	0.13 U 0.26 U	NA
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic	0.13 U 0.13 U 0.26 U 13 U 7,100 J- 0.29 3.5 J	0.13 U 0.26 U 13 U 8,300 J- 0.79 4.1	NA NA 4,400 1 2.6
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic Barium	7,100 J- 0.29 3.5 J	0.13 U 0.26 U 13 U 8,300 J- 0.79 4.1 150	NA NA 4,400 1 2.6 36
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic Barium Beryllium	0.13 U 0.13 U 0.26 U 13 U 7,100 J- 0.29 3.5 J 85 0.64	0.13 U 0.26 U 13 U 8,300 J- 0.79 4.1 150	NA NA 4,400 1 2.6 36 0.39
Heptachlor epoxide Methoxychlor Toxaphene Total Metals (MG/KG) Aluminum Antimony Arsenic Barium	7,100 J- 0.29 3.5 J	0.13 U 0.26 U 13 U 8,300 J- 0.79 4.1 150	NA NA 4,400 1 2.6 36

Appendix D - Site 4 Soil Analytical Data

Station ID	CBD-S0	4-DP16	CBD-S04-S006
Sample ID	CBD-S04-SS16-000H	CBD-S04-SB16-0810	CBD-S04-SS06-1012
Sample Date	04/05/18	04/05/18	10/18/12
Chemical Name			
Chromium	15	33	9.4
Cobalt	2.7	18	2.1
Copper	46	480	14
Cyanide	NA	NA	0.026 J
Iron	10,000	46,000	7,600
Lead	160	690	53
Magnesium	670	1,420	490
Manganese	84	570	68
Mercury	0.18 J	1.2	0.065
Nickel	11	48	5.5
Potassium	474	303	350
Selenium	1.1 J+	0.79 J-	0.22
Silver	1.6	0.86	0.49
Sodium	9.8 U	131	9.6 B
Thallium	0.15 J	0.07 J	0.13
Vanadium	16	12	24
Zinc	170 J	2,000	96 B
Wet Chemistry			
pH (ph)	NA	NA	6.2
Total organic carbon (TOC) (mg/kg)	NA	NA	11,000

- Notes:

 Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or

- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate
 MG/KG Milligrams per kilogram
 PH pH units

- PH pH units
 UG/KG Micrograms per kilogram

Page 12 of 12

Tax a second and a second a second and a second a second and a second	Ann agr prod					000 005 0004			CBD-S05-DP05			
Station ID		CBD-S0			CBD-S0			05-DP03	CBD-S0			
Sample ID	CBD-S05-SS01-1012	CBD-S05-SS01P-1012	CBD-S05-SB01-2022	CBD-S05-SB01P-2022	CBD-S05-SS02-1012	CBD-S05-SB02-2022	CBD-S05-SS03-1012	CBD-S05-SB03-1820	CBD-S05-SS04-1012	CBD-S05-SB04-2022	CBD-S05-SS05-1012	CBD-S05-SB05-2022
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/19/12	10/19/12	10/18/12	10/18/12	10/19/12	10/19/12	10/19/12	10/19/12
Chemical Name												
												ļ
Volatile Organic Compounds (UG/KG)	0.47 U	0.44 U	0.011	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54.11	0.51 U	0.67 U	0.50.11
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.47 U	0.44 U	0.6 U 0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U 0.54 U	0.51 U	0.67 U	0.52 U 0.52 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
1,1,2-Trichloroethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
1,1-Dichloroethane	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
1,1-Dichloroethene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2,3-Trichlorobenzene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2,4-Trichlorobenzene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2-Dibromo-3-chloropropane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2-Dibromoethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2-Dichlorobenzene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2-Dichloroethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
1,2-Dichloropropane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.23 U 0.23 U	0.22 U 0.22 U	0.3 U 0.3 U	0.26 U 0.26 U	0.26 U 0.26 U	0.25 U 0.25 U	0.3 U 0.3 U	58 U 58 U	0.27 U 0.27 U	0.25 U 0.25 U	0.33 U 0.33 U	0.26 U 0.26 U
2-Butanone	0.23 U 5.4 B	0.22 U	0.5 U	0.26 U	9.9 B	0.25 U	0.3 U 4.4 B	210 J	0.27 U 2.9 B	0.25 U	4.7 B	0.52 U
2-Hexanone	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
4-Methyl-2-pentanone	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
Acetone	98	20	6 U	5.2 U	400 J	16	160	430 J	110	19	140	28
Benzene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.2 J	0.67 U	0.52 U
Bromochloromethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
Bromodichloromethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
Bromoform	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	58 U	0.27 U	0.25 U	0.33 U	0.26 U
Bromomethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
Carbon disulfide	0.38 B	0.37 B	0.51 B	0.35 B	0.42 B	0.44 B	0.7 B	58 U	0.41 B	1.5 B	0.45 B	0.38 B
Carbon tetrachloride	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	58 U	0.27 U	0.25 U	0.33 U	0.26 U
Chlorobenzene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
Chloroform	0.47 U 0.14 B	0.44 U 0.12 B	0.6 U 0.3 U	0.52 U 0.18 B	0.52 U 0.26 U	0.5 U 0.25 U	0.61 U 0.19 B	58 U 29 U	0.54 U 0.27 U	0.51 U 0.29 B	0.67 U 0.25 B	0.52 U 0.26 U
Chloroform Chloromethane	0.14 B 0.47 U	0.12 B 0.44 U	0.3 U 0.6 U	0.18 B 0.52 U	0.26 U 0.52 U	0.25 U	0.19 B 0.61 U	29 U	0.27 U 0.54 U	0.29 B 0.51 U	0.25 B 0.67 U	0.26 U
cis-1,2-Dichloroethene	0.47 U 0.23 U	0.44 U	0.8 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U 0.27 U	0.51 U	0.87 U	0.52 U
cis-1,3-Dichloropropene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
Cyclohexane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
Dibromochloromethane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
Dichlorodifluoromethane (Freon-12)	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
Ethylbenzene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	310	0.54 U	0.51 U	0.67 U	0.52 U
Isopropylbenzene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	2,600	0.27 U	0.25 U	0.33 U	0.26 U
m- and p-Xylene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	390	0.54 U	0.51 U	0.67 U	0.52 U
Methyl acetate	1.7 B	1 B	1.9 B	1 B	NA	1.6 B	1.8 B	1,300	2.9 B	2 J	31	2.4 B
Methylcyclohexane	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	160 J	0.54 U	0.51 U	0.67 U	0.52 U
Methylene chloride	0.47 U 0.47 U	0.44 U	0.6 U	0.52 U 0.52 U	1.4 B 0.52 U	0.5 U 0.5 U	0.61 U	58 U 29 U	0.54 U 0.54 U	0.51 U 0.51 U	0.67 U 0.67 U	2.9 B
Methyl-tert-butyl ether (MTBE) o-Xylene	0.47 U 0.23 U	0.44 U 0.22 U	0.6 U 0.3 U	0.52 U 0.26 U	0.52 U 0.26 U	0.5 U	0.61 U 0.3 U	650	0.54 U 0.27 U	0.51 U	0.67 U	0.52 U 0.26 U
Styrene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
Tetrachloroethene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	58 U	0.54 U	0.51 U	0.67 U	0.52 U
Toluene	0.78 J	0.31 J	0.6 U	0.52 U	1.3 J	0.5 U	0.24 J	29 U	0.71 J	0.75 J	1.8 J	0.52 U
trans-1,2-Dichloroethene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	58 U	0.27 U	0.25 U	0.33 U	0.26 U
trans-1,3-Dichloropropene	0.47 U	0.44 U	0.6 U	0.52 U	0.52 U	0.5 U	0.61 U	29 U	0.54 U	0.51 U	0.67 U	0.52 U
Trichloroethene	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
Trichlorofluoromethane (Freon-11)	0.23 U	0.22 U	0.3 U	0.26 U			0.3 U	58 U	0.27 U	0.25 U	0.33 U	0.43 J
Vinyl chloride	0.23 U	0.22 U	0.3 U	0.26 U	0.26 U	0.25 U	0.3 U	29 U	0.27 U	0.25 U	0.33 U	0.26 U
Out the Court of t												
Semivolatile Organic Compounds (UG/KG)	40	1- · · ·	20.11	00.11	40.11	00 11	4 000 11	45	40	00.11	05.11	00.11
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	18 U 1.8 U	17 U 1.7 U	20 U 2 U	20 U 2 U	18 U 1.8 U	20 U 2 U	1,000 U 100 U	45 1.9 U	18 U 1.8 U	20 U 2 U	25 U 2.5 U	20 U 2 U
2,2'-Oxybis(1-chloropropane)	1.8 U	3.4 U	2 U	3.9 U	3.5 U	3.9 U	200 U	1.9 U	1.8 U	3.9 U	2.5 U 4.9 U	2 U
2,3,4,6-Tetrachlorophenol	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
2,4,5-Trichlorophenol	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	20 U
2,4,6-Trichlorophenol	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
2,4-Dichlorophenol	3.5 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.8 U	3.6 U	3.9 U	4.9 U	4 U
2,4-Dimethylphenol	36 U	34 U	40 U	39 U	35 U	39 U	2,000 U	39 U	36 U	39 U	49 U	40 U
2,4-Dinitrophenol	180 U	170 U	200 U	200 U	180 U	200 U	10,000 U	190 U	180 U	200 U	250 U	200 U
2,4-Dinitrotoluene	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	
2,6-Dinitrotoluene	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	
2-Chloronaphthalene	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
2-Chlorophenol	3.6 U 1.8 U	3.4 U 1.7 U	4 U 2 U	3.9 U 2 U	3.5 U 1.8 U	3.9 U	200 U 330 J	3.9 U	3.6 U 1.8 U	3.9 U 2 U	4.9 U	4 U
2-Methylnaphthalene 2-Methylphenol	1.8 U 7.1 U	1.7 U 6.8 U	7.9 U	7.8 U	1.8 U 6.9 U	2 U 7.8 U	330 J 400 U	720 7.7 U	1.8 U 7.2 U	2 U 7.8 U	2.5 U 9.7 U	2 U 7.9 U
2-Metnyiphenoi 2-Nitroaniline	7.1 U	6.8 U	7.9 U	7.8 U 20 U	6.9 U	7.8 U	1,000 U	7.7 U	7.2 U	7.8 U	9.7 U 25 U	7.9 U
2-Nitroaniline 2-Nitrophenol	3.6 U	3.4 U	20 U	3.9 U	3.5 U	3.9 U	1,000 U	3.9 U	3.6 U	3.9 U	4.9 U	20 U
3,3'-Dichlorobenzidine	360 U	3.4 U	400 U	390 U	350 U	390 U	20,000 U	3.9 U	360 U	390 U	4.9 U	400 U
3-Nitroaniline	36 U	34 U	40 U	39 U	35 U	39 U	2,000 U	39 U	36 U	39 U	49 U	
4,6-Dinitro-2-methylphenol	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	20 U
4-Bromophenyl-phenylether	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
4-Chloro-3-methylphenol	7.1 U	6.8 U	7.9 U	7.8 U	6.9 U	7.8 U	400 U	7.7 U	7.2 U	7.8 U	9.7 U	7.9 U
4-Chloroaniline	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	20 U
4-Chlorophenyl-phenylether	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
4-Methylphenol	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	
4-Nitroaniline	36 U	34 U	40 U	39 U	35 U	39 U	2,000 U	39 U	36 U	39 U	49 U	40 U
4-Nitrophenol	36 U	34 U	40 U	39 U	35 U	39 U	2,000 U	39 U	36 U	39 U	49 U	40 U

Appendix B One o Gon Analytical Bata												
Station ID		CBD-S05	5-DP01		CBD-S0	05-DP02	CBD-S0	5-DP03	CBD-S0	5-DP04	CBD-S0	05-DP05
Sample ID	CBD-S05-SS01-1012	CBD-S05-SS01P-1012	CBD-S05-SB01-2022	CBD-S05-SB01P-2022	CBD-S05-SS02-1012	CBD-S05-SB02-2022	CBD-S05-SS03-1012	CBD-S05-SB03-1820	CBD-S05-SS04-1012	CBD-S05-SB04-2022	CBD-S05-SS05-1012	CBD-S05-SB05-2022
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/19/12	10/19/12	10/18/12	10/18/12	10/19/12	10/19/12	10/19/12	10/19/12
Chemical Name	16, 16, 12	10, 10, 12	10, 10, 12	10, 10, 12	10, 10, 12	107.107.12	107.107.12	16, 16, 12	16, 16, 12	10, 10, 12	10, 10, 12	10, 10, 12
Acenaphthene	1.7 J	1.7 U	2 U	2 U	1.8 U	2.11	2,600	02	1.8 U	2 U	2.5 U	2 U
	1.7 J 1.8 U	1.7 U	2 U	2 U	1.8 U	2 U 2 U	2,600 100 U	93 1.9 U	1.8 U	2 U	2.5 U	2 U
Acenaphthylene Acetophenone	1.6 U	1.7 U	20 U	2 U	1.8 U	2 U	1,000 U	1.9 U	1.6 U	2 U	2.5 U	20 U
Anthracene	1.8 U	1.7 U	20 U	20 U	1.8 U	20 U	6,400	2.4 J	1.8 U	20 U	2.5 U	20 U
Atrazine	1.8 U	1.7 U	20 U	20 U	1.8 U	20 U	1,000 U	2.4 J 19 U	1.8 U	20 U	2.5 U	20 U
Benzaldehyde	18 R	17 G	20 G	20 G	18 R	20 G	1,000 G	19 R	18 R	20 G	25 R	20 G
Benzo(a)anthracene	2.8 J	5.2 J	2 U	2 U	1.8 U	2 U	30,000	5.6 J	4.8 J	2 U	6.4 J	2 U
Benzo(a)pyrene	3.6 U	5.2 J	4 U	0.79 U	3.5 U	0.79 U	3,700	7.8 U	18	0.79 U	250	0.8 U
Benzo(b)fluoranthene	4.5 J	6.6 J	4 U	3.9 U	3.5 U	3.9 U	32,000	10 J	6.6 J	3.9 U	12 J	4 U
Benzo(g,h,i)perylene	2.4 J	3.1 J	2 U	2 U	1.8 U	2 U	13,000	13 J	2.9 J	2 U	5.4 J	2 U
Benzo(k)fluoranthene	2.4 J	3.8 J	4 U	3.9 U	3.5 U	3.9 U	11,000	4 J	3.3 J	3.9 U	6.4 J	4 U
bis(2-Chloroethoxy)methane	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
bis(2-Chloroethyl)ether	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
bis(2-Ethylhexyl)phthalate	6.6 B	6.3 B	5.1 B	5.9 B	18 U	6.3 B	1,000 U	10 B	16 B	7.6 B	16 B	5.6 B
Butylbenzylphthalate	3.6 UJ	61 J	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
Caprolactam	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	20 U
Carbazole	36 U	34 U	40 U	39 U	35 U	39 U	3,100 J	39 U	36 U	39 U	49 U	40 U
Chrysene	2.8 J	4.9 J	2 U	2 U	1.8 U	2 U	26,000	5.2 J	5.1 J	2 U	6.9 J	2 U
Dibenz(a,h)anthracene	3.6 U	3.4 U	4 U	0.79 U	3.5 U	0.79 U	420 J	7.8 U	3.6 U	0.79 U	25	0.8 U
Dibenzofuran	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	1,200	59	1.8 U	2 U	2.5 U	2 U
Diethylphthalate	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
Dimethyl phthalate	3.6 U	3.4 U	2.3 J	3.9 U	3.5 U	3.9 U	200 U	3.9 U	2.6 J	3.9 U	4.9 U	4 U
Di-n-butylphthalate	18 U	17 U	20 U	20 U	18 U	20 U	1,000 U	19 U	18 U	20 U	25 U	20 U
Di-n-octylphthalate	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
Fluoranthene	4.2 J	7.3 J	2 U	2 U	1 J	2 U	45,000	4.4 J	6.3 J	2 U	6.9 J	2 U
Fluorene	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	2,100	25	1.8 U 1.8 U	2 U	2.5 U 2.5 U	2 U
Hexachlorobutadione	1.8 U 1.8 U	1.7 U 1.7 U	2 U 2 U	2 U 2 U	1.8 U 1.8 U	2 U 2 U	100 U 100 U	1.9 U 1.9 U	1.8 U 1.8 U	2 U 2 U	2.5 U 2.5 U	2 U 2 U
Hexachlorocyclopentadiene	1.8 U 3.6 U	1.7 U 3.4 U	2 U	3.9 U	1.8 U 3.5 U	3.9 U	200 U	1.9 U	1.8 U 3.6 U	3.9 U	2.5 U 4.9 U	2 U
Hexachlorocyclopentadiene Hexachloroethane	3.6 U 1.8 U	3.4 U 1.7 U	2 U	3.9 U	3.5 U	3.9 U	100 U	3.9 U	3.6 U	3.9 U	4.9 U 2.5 U	2 U
Indeno(1,2,3-cd)pyrene	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	13,000	6.8 J	3.6 U	3.9 U	4.9 J	4 U
Isophorone	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
Naphthalene	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	1,500	82	1.8 U	2 U	2.5 U	2 U
n-Nitroso-di-n-propylamine	3.6 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.9 U	3.6 U	3.9 U	4.9 U	4 U
n-Nitrosodiphenylamine	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
Nitrobenzene	1.8 U	1.7 U	2 U	2 U	1.8 U	2 U	100 U	1.9 U	1.8 U	2 U	2.5 U	2 U
Pentachlorophenol	36 U	34 U	40 U	39 U	35 U	39 U	2,000 U	39 U	36 U	39 U	49 U	40 U
Phenanthrene	2.8 J	4.5 J	1.2 J	2 U	1.8 U	2 U	27,000	13 J	4 J	2 U	3.5 J	2 U
Phenol	3.5 U	3.4 U	4 U	3.9 U	3.5 U	3.9 U	200 U	3.8 U	3.6 U	3.9 U	4.9 U	4 U
Pyrene	4.9 J	7.3 J	4 U	3.9 U	3.5 U	3.9 U	48,000	13 J	7.4 J	3.9 U	10 J	4 U
Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticide/Polychlorinated Biphenyls (UG/KG)												
4,4'-DDD	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA
4,4'-DDE	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
4,4'-DDT Aldrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
alpha-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
alpha-Chlordane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1016	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
Aroclor-1221	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
Aroclor-1232	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	
Aroclor-1242	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
Aroclor-1248	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
Aroclor-1254	9.1 J	13 U	16 U	15 U	14 U	15 U	46	15 U	14 U	15 U	19 U	16 U
Aroclor-1260	14 U	8.2 J	16 U	15 U	14 U	15 U	80	15 U	5.6 J	15 U	19 U	16 U
Aroclor-1262	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
Aroclor-1268	14 U	13 U	16 U	15 U	14 U	15 U	16 U	15 U	14 U	15 U	19 U	16 U
beta-BHC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
delta-BHC	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Dieldrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan sulfate Endrin	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Endrin Endrin aldehyde	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Endrin ketone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
gamma-BHC (Lindane)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor epoxide	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toxaphene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
'												
Total Metals (MG/KG)												
Aluminum	5,600 J	4,400 J	2,500	2,300	2,700	4,400	7,400	1,800	6,300	7,000	2,300	1,800
Antimony	0.16	0.13 B	0.13 B	0.16	0.09 J	0.13	2.4	0.33	0.81	0.32	0.066 J	0.18
Arsenic	2.3	1.6	2.6	2.6	0.91	2.6	5.1	3.7	2.8	4.4	0.94	3.4
Barium	20	16	6.7	7.1	9.7	8.7	39	5.8	25	9.4	6	4.3
Beryllium	0.33	0.23	2.1	1.8	0.19	2.7	0.41	2.7	0.37	3.6	0.15	2.7
Cadmium	0.067	0.093	0.26	0.21	0.053	0.26	0.44	0.19	0.2	0.46	0.033 J	0.3
Calcium	140 J	460 J	360	300	250	340	2,500	410	1,100	88	25 J	450
Chromium (hexavalent)	0.17 J	0.21 U	0.25 U	0.27 U	NA							

Appendix D - Site 5 Soil Analytical Data

Station ID		CBD-S0	5-DP01		CBD-S0	5-DP02	CBD-S0	5-DP03	CBD-S0	05-DP04	CBD-S0)5-DP05
Sample ID	CBD-S05-SS01-1012	CBD-S05-SS01P-1012	CBD-S05-SB01-2022	CBD-S05-SB01P-2022	CBD-S05-SS02-1012	CBD-S05-SB02-2022	CBD-S05-SS03-1012	CBD-S05-SB03-1820	CBD-S05-SS04-1012	CBD-S05-SB04-2022	CBD-S05-SS05-1012	CBD-S05-SB05-2022
Sample Date	10/18/12	10/18/12	10/18/12	10/18/12	10/19/12	10/19/12	10/18/12	10/18/12	10/19/12	10/19/12	10/19/12	10/19/12
Chemical Name												
Chromium	9.9	6.2	8.4	8.2	4.8	9	18	7.6	17	7.4	4.8	8.2
Cobalt	2.1	1.1	2.9	2.6	0.83	3.9	2.1	9.8	1.7	110	0.7	5.4
Copper	5	5	1.1	1.2	1.9	1.3	230	5.6	17	1.5	2	1,
Cyanide	0.054 U	0.036 J	0.06 U	0.059 U	0.036 J	0.059 U	0.065 J	0.058 U	0.032 J	0.059 U	0.034 J	0.06
ron	8,000 J	6,100 J	3,800	3,400	3,200	4,500	14,000	4,300	10,000 B	5,100	2,600	4,300
_ead	8.7	8	2.1	2	4.1	1.8	140	3.4	25	1.6	4.2	1.7
Magnesium	550	450	740	660	330	860	1,300	630	1,000	560	220	660
Manganese	39	42	13 J	8.5 J	26	12	65	46	47	290	13	21
Mercury	0.017 U	0.011 J	0.017 U	0.016 U	0.0066 J	0.016 U	0.11	0.017 U	0.059	0.017 U	0.017 U	0.017
Nickel	3.5	3	4.8	4.4	1.8	11	10	13	4.6	32	1.4	20
Potassium	430	370	480	420	250	530	1,000	410	760	380	220	450
Selenium	0.26	0.16 B	0.3	0.4	0.17	0.53	0.38	0.26	0.33	0.86	0.1	0.071
Silver	0.052	0.15	0.027 J	0.028 J	0.17	0.028 J	0.3	0.29	0.49	0.024 J	0.076	0.023
Sodium	11 B	9 B	31 J	26 J	9.4 B	55 B	28 B	12 B	22 J	44 B	16 B	14
Thallium	0.11	0.076	0.21	0.19	0.052	0.18	0.13	0.15	0.12	0.31	0.045 J	0.14
Vanadium Vanadium	15	9.2	4.6	5	6.3	7.8	40	4.8	18	11	6.5	4.6
Zinc	19 B	18 B	68	78	12 B	80 B	200 B	110 B	52 B	130 B	5.9	57
Wet Chemistry												
oH (ph)	5.5	NA	NA	NA	5.7	NA	6.2	NA	5.6	NA	4.9	NA
Total organic carbon (TOC) (mg/kg)	2,700	NA	NA	NA	5,300	NA	14,000	NA	7,200	NA	5,000	NA

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or J - Analyte present, value may or may not be accurate or precise
 J - Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R - Unreliable Result
 U - The material was analyzed for, but not detected
 UJ - Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site 5 Soil Analytical Data

Station ID	CBD-S05	-DP07	CBD-S05	-DP08	CBD-S0	05-DP09	CBD-S05	5-DP10	CBD-S05	i-DP11
Sample ID	CBD-S05-SS07-000H	CBD-S05-SB07-0810	CBD-S05-SS08-000H	CBD-S05-SB08-0810	CBD-S05-SS09-000H	CBD-S05-SB09-0810	CBD-S05-SS10-000H	CBD-S05-SB10-0810	CBD-S05-SS11-000H	CBD-S05-SB11-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name	0 1/00/10	0 1/00/10	0 1/00/10	0 17 007 10	0 1/00/10	0 17 007 10	000, 10	0 17 007 10	000, 10	0 17007 10
Onemical Name	+									
Volatile Organic Compounds (UG/KG)										
1,1,1-Trichloroethane	NA									
1,1,2,2-Tetrachloroethane	NA									
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA									
1,1,2-Trichloroethane	NA									
1,1-Dichloroethane	NA									
1,1-Dichloroethene	NA									
1,2,3-Trichlorobenzene	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	NA NA									
1,2-Dibromoethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloropropane	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA
1,3-Dichlorobenzene	NA									
1,4-Dichlorobenzene	NA									
2-Butanone	NA									
2-Hexanone	NA									
4-Methyl-2-pentanone	NA									
Acetone	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Benzene Bromanhlaremethana	NA NA									
Bromochloromethane	NA NA									
Bromodichloromethane Bromoform	NA NA									
Bromomethane	NA NA	NA NA	NA NA	NA NA						
Carbon disulfide	NA NA	NA NA	NA NA	NA NA						
Carbon tetrachloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	NA NA									
Chloroethane	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA
Chloroform	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Chloromethane	NA									
cis-1,2-Dichloroethene	NA									
cis-1,3-Dichloropropene	NA									
Cyclohexane	NA									
Dibromochloromethane	NA									
Dichlorodifluoromethane (Freon-12)	NA									
Ethylbenzene	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA
Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene Methyl acetate	NA NA	NA NA	NA NA							
Methylcyclohexane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methylene chloride	NA NA	NA NA	NA NA	NA NA						
Methyl-tert-butyl ether (MTBE)	NA NA	NA								
o-Xylene	NA									
Styrene	NA									
Tetrachloroethene	NA									
Toluene	NA									
trans-1,2-Dichloroethene	NA									
trans-1,3-Dichloropropene	NA									
Trichloroethene	NA NA	NA	NA NA	NA						
Trichlorofluoromethane (Freon-11) Vinyl chloride	NA NA									
Viriyi Criioride	INA	INA	INA	INA	NA NA	INA .	INA	INA	INA	INA
Semivolatile Organic Compounds (UG/KG)										
1,1-Biphenyl	NA									
1,2,4,5-Tetrachlorobenzene	NA NA	NA NA	NA NA	NA	NA NA	NA NA				
2,2'-Oxybis(1-chloropropane)	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
2,3,4,6-Tetrachlorophenol	NA									
2,4,5-Trichlorophenol	NA									
2,4,6-Trichlorophenol	NA									
2,4-Dichlorophenol	NA									
2,4-Dimethylphenol	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA
2,4-Dinitrophenol	NA NA									
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NA NA									
2,6-Dinitrotoluene 2-Chloronaphthalene	NA NA									
z-Chlorophenol	NA NA	NA NA	NA NA	NA NA						
2-Methylnaphthalene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Nitrophenol	NA NA	NA NA	NA NA	NA	NA NA	NA NA				
3,3'-Dichlorobenzidine	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA
3-Nitroaniline	NA									
4,6-Dinitro-2-methylphenol	NA									
4-Bromophenyl-phenylether	NA									
4-Chloro-3-methylphenol	NA									
4-Chloroaniline	NA									
4-Chlorophenyl-phenylether	NA									
4-Methylphenol	NA NA	NA	NA NA	NA NA						
4-Nitroaniline	NA NA									
4-Nitrophenol	NA									

Appendix D - Site 5 Soil Analytical Data

Typerials B Cite o Coll 7 tharytical Bata										
Station ID	CBD-S0	5-DP07	CBD-S	05-DP08	CBD-S0	05-DP09	CBD-S0	5-DP10	CBD-S05	-DP11
Sample ID	CBD-S05-SS07-000H	CBD-S05-SB07-0810	CBD-S05-SS08-000H	CBD-S05-SB08-0810	CBD-S05-SS09-000H	CBD-S05-SB09-0810	CBD-S05-SS10-000H	CBD-S05-SB10-0810	CBD-S05-SS11-000H	CBD-S05-SB11-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
•	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16	04/05/16
Chemical Name										
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetophenone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Atrazine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzaldehyde	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Benzo(a)anthracene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Benzo(a)pyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(g,h,i)perylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Chloroethoxy)methane	NA NA									
bis(2-Chloroethyl)ether		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-Ethylhexyl)phthalate	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Butylbenzylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Caprolactam	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbazole	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diethylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dimethyl phthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-butylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-octylphthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
Hexachlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorobutadiene	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorocyclopentadiene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isophorone Naphthalene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
•										NA NA
n-Nitroso-di-n-propylamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	
n-Nitrosodiphenylamine	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pentachlorophenol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pesticide/Polychlorinated Biphenyls (UG/KG)										
4,4'-DDD	0.176 UJ	0.221 U	0.121 U	0.215 U	5.15 J-	0.252 UJ	4.16 J-	0.234 U	0.221 UJ	0.136 U
4,4'-DDE	0.431 J-	0.221 U	0.121 U	0.215 U	150	0.252 UJ	153	0.234 U	7.18 J-	0.136 U
4,4'-DDT	0.351 UJ	0.442 U	0.241 U	0.43 U	152	0.504 UJ	181	0.469 U	0.443 UJ	0.273 U
Aldrin	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
alpha-BHC	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
alpha-Chlordane	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.27 J	0.234 U	0.221 UJ	0.136 U
Aroclor-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				
Aroclor-1242	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1248	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254 Aroclor-1260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260 Aroclor-1262	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1268	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
beta-BHC	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ 0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
delta-BHC										
Dieldrin	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Endosulfan I	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Endosulfan II	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Endosulfan sulfate	0.351 UJ	0.442 U	0.241 U	0.43 U	0.428 UJ	0.504 UJ	0.557 UJ	0.469 U	0.443 UJ	0.273 U
Endrin	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Endrin aldehyde	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Endrin ketone	0.351 UJ	0.442 U	0.241 U	0.43 U	0.428 UJ	0.504 UJ	0.557 UJ	0.469 U	0.443 UJ	0.273 U
gamma-BHC (Lindane)	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Heptachlor	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Heptachlor epoxide	0.176 UJ	0.221 U	0.121 U	0.215 U	0.214 UJ	0.252 UJ	0.279 UJ	0.234 U	0.221 UJ	0.136 U
Methoxychlor	0.351 UJ	0.442 U	0.241 U	0.43 U	0.428 UJ	0.504 UJ	0.557 UJ	0.469 U	0.443 UJ	0.273 U
Toxaphene	17.6 UJ	22.1 U	12.1 U	21.5 U	21.4 UJ	25.2 UJ	27.9 UJ	23.4 U	22.1 UJ	13.6 U
•	1		, 0						==:: 30	
Total Metals (MG/KG)										
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic Barium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Beryllium	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium Calcium Chromium (hexavalent)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Appendix D - Site 5 Soil Analytical Data

Station ID	CBD-S0	05-DP07	CBD-S0)5-DP08	CBD-S0	05-DP09	CBD-S0	5-DP10	CBD-S0)5-DP11
Sample ID	CBD-S05-SS07-000H	CBD-S05-SB07-0810	CBD-S05-SS08-000H	CBD-S05-SB08-0810	CBD-S05-SS09-000H	CBD-S05-SB09-0810	CBD-S05-SS10-000H	CBD-S05-SB10-0810	CBD-S05-SS11-000H	CBD-S05-SB11-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name										
Chromium	NA									
Cobalt	NA									
Copper	NA									
Cyanide	NA									
Iron	NA									
Lead	NA									
Magnesium	NA									
Manganese	NA									
Mercury	NA									
Nickel	NA									
Potassium	NA									
Selenium	NA									
Silver	NA									
Sodium	NA									
Thallium	NA									
Vanadium	NA									
Zinc	NA									
Wet Chemistry										
pH (ph)	NA									
Total organic carbon (TOC) (mg/kg)	NA									

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site 5 Soil Analytical Data

04-4' ID	1	000 005 0040			000 005 0040		000.0	05.004	1 000 0	05.0045
Station ID Sample ID	CBD-S05-SS12-000H	CBD-S05-DP12 CBD-S05-SB12-0810	CBD-S05-SB12P-0810	CBD-S05-SS13-000H	CBD-S05-DP13 CBD-S05-SS13P-000H	CBD-S05-SB13-0810	CBD-S05-SS14-000H	05-DP14 CBD-S05-SB14-0810	CBD-S05-SS15-000H	05-DP15 CBD-S05-SB15-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name	04/00/10	04/00/10	0-1/00/10	0-1/00/10	0-1/00/10	04/00/10	0-1/00/10	04/00/10	04/00/10	04/00/10
Chomical Hamo										
Volatile Organic Compounds (UG/KG)										
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromo-3-chloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromoethane	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropane 1,3-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA
Acetone Benzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA
Bromomethane Carbon disulfide	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon tetrachloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloromethane cis-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
cis-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane (Freon-12) Ethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylcyclohexane Methylene chloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl-tert-butyl ether (MTBE)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
o-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene trans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane (Freon-11)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vinyl chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semivolatile Organic Compounds (UG/KG)										
1,1-Biphenyl	700 U	800 U	720 U	480 U	490 U	690 U	650 U	670 UJ	380 U	650 U
1,2,4,5-Tetrachlorobenzene	NA	NA and the	NA	NA 104 H	NA 104 H	NA	NA 242 LL	NA	NA 107 III	NA 0.17 LL
2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol	233 U NA	266 U NA	240 U NA	161 U NA	164 U NA	231 U NA	216 U NA	223 UJ NA	127 U NA	217 U NA
2,4,5-Trichlorophenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
2,4,6-Trichlorophenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
2,4-Dichlorophenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
2,4-Dimethylphenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	2,330 U 467 U	2,660 U 531 U	2,400 U 481 U	1,610 U 322 U	1,640 U 327 U	2,310 U 461 U	2,160 U 432 U	2,230 UJ 446 UJ	1,270 U 254 U	2,170 U 434 U
2,6-Dinitrotoluene	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
2-Chloronaphthalene	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
2-Chlorophenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
2-Methylnaphthalene 2-Methylphenol	2.4 U 233 U	2.6 U 266 U	2.7 U 240 U	2.3 U 161 U	2.4 U 164 U	2.4 U 231 U	2.1 U 216 U	2.2 U 223 U	59 J- 127 U	2.4 U 217 U
2-Nitroaniline	233 U 467 U	531 U	240 U 481 U	322 U	327 U	461 U	432 U	446 UJ	254 U	434 U
2-Nitrophenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 U	127 U	217 U
3,3'-Dichlorobenzidine	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
3-Nitroaniline	470 U	530 U	480 U	320 U	330 U	460 U	430 U	450 UJ	250 U	430 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	2,330 U 467 U	2,660 U 531 U	2,400 U 481 U	1,610 U 322 U	1,640 U 327 U	2,310 U 461 U	2,160 U 432 U	2,230 U 446 UJ	1,270 U 254 U	2,170 U 434 U
4-Bromopnenyi-pnenyietner 4-Chloro-3-methylphenol	233 U	266 U	240 U	322 U 161 U	327 U 164 U	231 U	432 U 216 U	223 U	254 U 127 U	217 U
4-Chloroaniline	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
4-Chlorophenyl-phenylether	467 U	531 U	481 U	322 U	327 U	461 U	432 U	446 UJ	254 U	434 U
4-Methylphenol	NA 222 LI	NA 200 H	NA 240 H	NA 404 H	NA 104 II	NA 224 H	NA 246 H	NA 202 III	NA 107 H	NA 247 H
4-Nitronhonel	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
4-Nitrophenol	470 U	530 U	480 U	320 U	330 U	460 U	430 U	450 U	250 U	430 U

Appendix D - Site 5 Soil Analytical Data

Station ID	1	ODD 005 DD40			ODD OOF DD40	ı	000.0	POE DD4E	000 000	DD45
Station ID Sample ID	CBD-S05-SS12-000H	CBD-S05-DP12 CBD-S05-SB12-0810	CBD-S05-SB12P-0810	CBD-S05-SS13-000H	CBD-S05-DP13 CBD-S05-SS13P-000H	CBD-S05-SB13-0810	CBD-S05-SS14-000H	05-DP15 CBD-S05-SB14-0810	CBD-S05- CBD-S05-SS15-000H	-DP15 CBD-S05-SB15-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name	04/00/10	04/03/10	04/03/10	04/00/10	04/00/10	04/03/10	04/03/10	04/03/10	04/00/10	04/03/10
Acenaphthene	15	1.4 U	1.4 U	1.2 U	1.3 U	1.3 U	1.1 U	1.2 U	190 J-	1.3 U
Acenaphthylene	2.7 J	1.4 U	1.4 U	1.6 J	1.3 U	1.3 U	1.1 U	1.2 U	15 J	1.3 U
Acetophenone	230 U	270 U	240 U	160 U	160 U	230 U	220 U		130 U	220 U
Anthracene	39	5.6 U	5.8 U	5 U	5.2 U		4.6 U		600 J	5.2 U
Atrazine Benzaldehyde	700 U 700 U	800 U 800 U	720 U 720 U	480 U 480 U	490 U 490 U	690 U 690 U	650 U 650 U		380 U 380 U	650 U 650 U
Benzo(a)anthracene	340	5.6 U	5.8 U	9.4 J	5.2 U		4.6 U		1,600	2.1 J
Benzo(a)pyrene	330	5.6 U	5.8 U	10 J	5.2 U		4.6 U		1,600	5.2 U
Benzo(b)fluoranthene	450	8.6 U	8.9 U	21	8 U	8.1 U	7 U		2,300	4.5 J
Benzo(g,h,i)perylene	230	8.6 U	8.9 U	8.6 J	8 U	8.1 U	7 U		890	2.8 J
Benzo(k)fluoranthene	160	5.6 U	5.8 U	6.5 J	5.2 U	5.3 U	4.6 U		800 J	3.6 J
bis(2-Chloroethoxy)methane	233 U	266 U	240 U 240 U	161 U	164 U	231 U	216 U		127 U 127 U	217 U
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	233 U 233 U	266 U 266 U	240 U	161 U 161 U	164 U 164 U	231 U 231 U	216 U 216 U		127 U	217 U 217 U
Butylbenzylphthalate	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
Caprolactam	5,800 U	6,600 U	6,000 U	4,000 U	4,100 U	5,800 U	5,400 U	5,600 UJ	3,200 U	5,400 U
Carbazole	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Chrysene	320	5.6 U	5.8 U	13	5.2 U	5.3 U	4.6 U		1,700	3.4 J
Dibenz(a,h)anthracene Dibenzofuran	56 233 U	8.6 U 266 U	8.9 U 240 U	7.7 U 161 U	8 U 164 U	8.1 U 231 U	7 U 216 U		270 J- 127 U	3.4 J 217 U
Diethylphthalate	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Dimethyl phthalate	470 U	530 U	480 U	320 U	330 U	460 U	430 U		250 U	430 U
Di-n-butylphthalate	233 U	266 U	240 U	161 U	164 U	231 U	216 U	223 UJ	127 U	217 U
Di-n-octylphthalate	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Fluoranthene	430	5.6 U	5.8 U	15	5.2 U	5.3 U	4.6 U		3,300	4.2 J
Fluorene Hexachlorobenzene	9.9 J 233 U	3.4 U 266 U	3.6 U 240 U	3.1 U 161 U	3.2 U 164 U	3.2 U 231 U	2.8 U 216 U		250 J- 127 U	1.1 J 217 U
Hexachlorobutadiene	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Hexachlorocyclopentadiene	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Hexachloroethane	233 U	266 U	240 U	161 U	164 U		216 U		127 U	217 U
Indeno(1,2,3-cd)pyrene	260	8.6 U	8.9 U	10 J	8 U		7 U		1,300	3.7 J
Isophorone	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Naphthalene	2.4 U 233 U	2.6 U 266 U	2.7 U 240 U	2.3 U 161 U	2.4 U 164 U	2.4 U 231 U	2.1 U 216 U		150 J- 127 U	0.89 J 217 U
n-Nitroso-di-n-propylamine n-Nitrosodiphenylamine	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Nitrobenzene	233 U	266 U	240 U	161 U	164 U		216 U		127 U	217 U
Pentachlorophenol	467 U	531 U	481 U	322 U	327 U	461 U	432 U	446 U	254 U	434 U
Phenanthrene	150	8.6 U	8.9 U	5.2 J	8 U		7 U		2,600	8.4 J
Phenol	233 U	266 U	240 U	161 U	164 U	231 U	216 U		127 U	217 U
Pyrene Total cresols	390 233 U	8.6 U 266 U	8.9 U 240 U	13 161 U	8 U 164 U	8.1 U 231 U	7 U 216 U		2,600 127 U	7.9 U 217 U
Total cresois	233 0	200 0	240 0	101 0	104 0	231 0	210 0	223 0	127 0	217 0
Pesticide/Polychlorinated Biphenyls (UG/KG)										
4,4'-DDD	0.691	0.272 U	0.26 U	0.14 U	0.137 U	0.243 U	0.204 U	0.237 U	0.123 U	0.224 U
4,4'-DDE	0.154 U	0.272 U	0.26 U	1.12 J	2.72 J	0.243 U	0.204 U		0.123 U	0.224 U
4,4'-DDT	0.308 U	0.543 U	0.519 U	0.281 UJ	1.47 J	0.487 U	0.409 U		0.246 U	0.447 U
Aldrin alpha-BHC	0.154 U 0.154 U	0.876 J 0.272 U	0.26 UJ 0.26 U	0.14 U 0.14 U	0.137 U 0.137 U	0.243 U 0.243 U	0.204 U 0.204 U	0.237 U 0.237 U	0.123 U 0.123 U	0.224 U 0.224 U
alpha-Chlordane	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U	0.243 U	0.204 U		0.123 U	0.224 U
Aroclor-1016	7.7 UJ	14 U	13 U	7 U	6.8 U	12 U	10 U		6.2 U	11 U
Aroclor-1221	7.7 UJ	14 U	13 U	7 U	6.8 U		10 U		6.2 U	11 U
Aroclor-1232	7.7 UJ	14 U	13 U	7 U	6.8 U	12 U	10 U	12 U	6.2 U	11 U
Aroclor-1242	7.7 UJ 7.7 UJ	14 U 14 U	13 U 13 U	7 U 7 U	6.8 U 6.8 U		10 U 10 U		6.2 U 6.2 U	11 U 11 U
Aroclor-1248 Aroclor-1254	7.7 UJ 7.7 UJ	14 U	13 U	7 U	6.8 U		10 U		6.2 U	11 U 11 U
Aroclor-1260	7.7 UJ	14 U	13 U	7 U	6.8 U		10 U		6.2 U	11 U
Aroclor-1262	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1268	NA 0.454 H	NA 0.070 H	NA 0.00 H	NA 0.44 LL	NA 0.407.11	NA 0.040 LI	NA 0.004 H	NA 0.007.11	NA 0.400.11	NA 2.224 H
beta-BHC delta-BHC	0.154 U 0.154 U	0.272 U	0.26 U	0.14 U	0.137 U	0.243 U	0.204 U		0.123 U	0.224 U
Dieldrin	0.154 U 0.154 U	0.272 U 0.272 U	0.26 U 0.26 U	0.14 U 0.14 U	0.137 U 0.137 U		0.204 U 0.204 U		0.123 U 0.123 U	0.224 U 0.224 U
Endosulfan I	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U		0.204 U		0.123 U	0.224 U
Endosulfan II	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U		0.204 U		0.123 U	0.268 J
Endosulfan sulfate	0.308 U	0.543 U	0.519 U	0.281 U	0.273 U	0.487 U	0.409 U	0.474 U	0.246 U	0.447 U
Endrin	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U		0.204 U		0.123 U	0.224 U
Endrin aldehyde Endrin ketone	0.154 U 0.308 U	0.272 U 0.543 U	0.26 U 0.519 U	0.14 U 0.281 U	0.137 U 0.273 U		0.204 U 0.409 U		0.123 U 0.246 U	0.224 U 0.447 U
gamma-BHC (Lindane)	0.308 U 0.154 U	0.543 U 0.272 U	0.519 U 0.26 U	0.281 U 0.14 U	0.273 U 0.137 U		0.409 U 0.204 U		0.246 U 0.123 U	0.447 U 0.224 U
Heptachlor	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U		0.204 U		0.123 U	0.224 U
Heptachlor epoxide	0.154 U	0.272 U	0.26 U	0.14 U	0.137 U		0.204 U		0.123 U	0.224 U
Methoxychlor	0.308 U	0.543 U	0.519 U	0.281 U	0.273 U	0.487 U	0.409 U	0.474 U	0.246 U	0.447 U
Toxaphene	15.4 U	27.2 U	26 U	14 U	13.7 U	24.3 U	20.4 U	23.7 U	12.3 U	22.4 U
Total Motale (MC/KC)										
Total Metals (MG/KG) Aluminum	9,200	12,000	13,000	8,700	9,000	14,000	3,300	11,000	4,300	15,000
Antimony	9,200 0.18 U	0.16 U	0.17 U	0.16 U	9,000 0.16 U	0.17 U	0.14 U		4,300 0.056 J	0.15 U
Arsenic	3.9	5 J	9.7 J	5.2	6	5.8	0.99	6.4	1.3	6.3
Barium	32	13	12	12	13	9.4	8.5	49	15	19
Beryllium	0.63 J	0.21 J	0.26 J	0.27 J	0.24 J	0.29 J	0.21 J	0.37 J	0.4 J	0.44 J
Cadmium	0.24 J	0.16 U	0.17 U	0.16 U	0.1 J	0.17 U	0.14 U		0.14 U	0.15 U
Calcium Chromium (hoxavalent)	3,280	47.1	44.6	577	714 NA	115 NA	94	237	48.2 NA	45.8 NA
Chromium (hexavalent)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Appendix D - Site 5 Soil Analytical Data

Station ID		CBD-S05-DP12	_		CBD-S05-DP13		CBD-S0	05-DP14	CBD-S0	05-DP15
Sample ID	CBD-S05-SS12-000H	CBD-S05-SB12-0810	CBD-S05-SB12P-0810	CBD-S05-SS13-000H	CBD-S05-SS13P-000H	CBD-S05-SB13-0810	CBD-S05-SS14-000H	CBD-S05-SB14-0810	CBD-S05-SS15-000H	CBD-S05-SB15-0810
Sample Date	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18	04/05/18
Chemical Name										
Chromium	21	23	30	18	15	26	4.4	16	5	24
Cobalt	3.2	0.6	0.77	1.3 J	0.95 J	1.1	1.4	1.5	1.6	1.6
Copper	6.4	6.5	8.5	9.9	12	6.3	1.7	3	2.1	6.7
Cyanide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	18,000	15,000 J	29,000 J	16,000	13,000	30,000	4,000	12,000	3,800	22,000
Lead	10	9.8	11	7.1	8.4	7.3	2.9	8.3	3.3	9.1
Magnesium	1,540	1,070	1,210	1,200	1,020	1,600	238	2,100	329	1,920
Manganese	80	5	4.4	20 J	6.2 J	6	32	10	51	14
Mercury	0.18 U	0.16 U	0.17 U	0.16 U	0.28 J	0.17 U	0.14 U	0.16 U	0.14 U	0.15 l
Nickel	8.1	1.1	1.2	3.3	3.2	1.7	1.9	2.8	3.3	2.7
Potassium	902	791	839	923	793	1,040	180	1,370	255	965
Selenium	0.97	0.65	0.97	0.98	1.5	1.1	0.28 U	1.3	0.71	0.99
Silver	0.15 J	0.16 U	0.17 U	0.13 J	0.35	0.17 U	0.081 J	0.069 J	0.11 J	0.15 l
Sodium	16.3 J+	31.1 J+	31 J+	12.5 U	12 U	14.5 J+	4.7 U	38.4 J+	5 U	43.6 .
Thallium	0.18 J	0.092 J	0.092 J	0.16 J	0.12 J	0.14 J	0.14 U	0.19 J	0.077 J	0.17 、
Vanadium	19	15 J	23 J	15	14	24	6	14	6.5	17
Zinc	45	6.7 J	10 J	33	26	16	7.3	21	11	17
Wet Chemistry										
pH (ph)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

- Notes:

 Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

inaccurate
MG/KG - Milligrams per kilogram

PH - pH units UG/KG - Micrograms per kilogram

Appendix D - Site 5 Soil Analytical Data	05	DE DD40	000 005 0000	ODD 005 0015	005 515	20040	000 005 0040	ODD 005 0000	000 005 0004	000 005 0000	ODD 005 0000
Station ID Sample ID	CBD-S05-SS16-000H	05-DP16 CBD-S05-SB16-0810	CBD-S05-SO06 CBD-S05-SS06-1012	CBD-S05-SS17 CBD-S05-SS17-000H	CBD-S05 CBD-S05-SS18-000H	S-SS18 CBD-S05-SS18P-000H	CBD-S05-SS19 CBD-S05-SS19-000H	CBD-S05-SS20 CBD-S05-SS20-000H	CBD-S05-SS21 CBD-S05-SS21-000H	CBD-S05-SS22 CBD-S05-SS22-000H	CBD-S05-SS23 CBD-S05-SS23-000H
Sample Date	04/05/18	04/05/18	10/19/12	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18
Chemical Name	2 ., 30/ 10	3 30/10	107.107.12	0 ., 30/ 10	5 5 5/10	3 7 3 3 7 3	3 ., 33/10	3 1, 30/10	3 1, 30/10	3 1, 30/10	5 55/10
Volatile Organic Compounds (UG/KG)	\$1A	N/A	0.04 ::	***		A.I.A	***	***	***	***	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	NA NA	NA NA	0.64 U 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	NA	NA	0.64 U	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	NA NA	NA NA	0.32 U	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
1,1-Dichloroethene 1,2,3-Trichlorobenzene	NA NA	NA NA	0.64 U 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trichlorobenzene	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromo-3-chloropropane	NA	NA	0.64 U	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	NA NA	NA NA	0.64 U	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA
1,2-Dichlorobenzene 1,2-Dichloroethane	NA NA	NA NA	0.64 U 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloropropane	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3-Dichlorobenzene	NA	NA	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	NA NA	NA NA	0.32 U 6.9 B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone 2-Hexanone	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methyl-2-pentanone	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Acetone	NA	NA	160	NA	NA	NA	NA	NA	NA	NA	NA
Benzene Bromochloromethane	NA NA	NA NA	0.32 J 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromocniorometnane Bromodichloromethane	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromoform	NA	NA	0.32 U	NA	NA	NA NA	NA	NA	NA	NA	NA
Bromomethane	NA	NA	0.64 U	NA	NA	NA	NA	NA	NA	NA	NA
Carbon disulfide Carbon tetrachloride	NA NA	NA NA	0.59 B 0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon tetrachionide Chlorobenzene	NA NA	NA NA	0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroethane	NA NA	NA NA	0.64 U	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA
Chloroform	NA	NA	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane cis-1,2-Dichloroethene	NA NA	NA NA	0.64 U 0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
cis-1,3-Dichloropropene	NA NA	NA NA	0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyclohexane	NA	NA	0.64 U	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	NA NA	NA	0.64 U	NA	NA NA	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane (Freon-12) Ethylbenzene	NA NA	NA NA	0.64 U 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isopropylbenzene	NA NA	NA NA	0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene	NA	NA	0.64 U	NA	NA	NA	NA	NA	NA	NA	NA
Methyl acetate	NA NA	NA NA	2.8 B 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methylcyclohexane Methylene chloride	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl-tert-butyl ether (MTBE)	NA NA	NA NA	0.64 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
o-Xylene	NA	NA	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA
Styrene Tetrachloroethene	NA NA	NA NA	0.32 U 0.64 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	NA NA	NA NA	0.46 J	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,2-Dichloroethene	NA	NA	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichloropropene	NA NA	NA NA	0.64 U	NA	NA NA	NA	NA	NA	NA	NA	NA
Trichloroethene Trichlorofluoromethane (Freon-11)	NA NA	NA NA	0.32 U 0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vinyl chloride	NA NA	NA NA	0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,											
Semivolatile Organic Compounds (UG/KG)	740.11	620 U	21 U	920 UJ	520 UJ	580 UJ	490 UJ	580 UJ	640 U	650 U	560 U
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	710 U NA	NA	2.1 U	920 03 NA	NA	NA	490 03 NA	NA	NA	NA	NA
2,2'-Oxybis(1-chloropropane)	237 U	206 U	4.3 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
2,3,4,6-Tetrachlorophenol	NA	NA	4.3 U	NA	NA 170 LL	NA 105 H	NA 100 H	NA	NA NA	NA 0.10 LL	NA 107 H
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	237 U 237 U	206 U 206 U	21 U 4.3 U	308 U 308 U	172 U 172 U	195 U 195 U	162 U 162 U	194 U 194 U	213 U 213 U	216 U 216 U	187 U 187 U
2,4-Dichlorophenol	237 U	200 U	4.2 U	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
2,4-Dimethylphenol	237 U	206 U	43 U	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
2,4-Dinitrophenol	2,370 U	2,060 U	210 U	3,080 U	1,720 U	1,950 U	1,620 U	1,940 U	2,130 U	2,160 U	1,870 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	474 U 237 U	412 U 206 U	21 U 4.3 U	615 UJ 308 UJ	343 UJ 172 UJ	389 UJ 195 UJ	324 UJ 162 UJ	388 UJ 194 UJ	425 U 213 U	433 U 216 U	374 U 187 U
2-Chloronaphthalene	237 U	206 U	4.3 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
2-Chlorophenol	237 U	206 U	4.3 U	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
2-Methylnaphthalene	2.4 U	7.9 U	13 J	2.9 U	2.5 U	2.3 U	2.2 U	2.9 U	14 U	2.9 U	2.4 U
2-Methylphenol 2-Nitroaniline	237 U 474 U	206 U 412 U	8.5 U 21 U	308 U 615 UJ	172 U 343 UJ	195 U 389 UJ	162 U 324 UJ	194 U 388 UJ	213 U 425 U	216 U 433 U	187 U 374 U
2-Nitrophenol	237 U	206 U	4.3 U	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
3,3'-Dichlorobenzidine	237 U	206 U	430 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
3-Nitroaniline	470 U	410 U	43 U	620 UJ	340 UJ	390 UJ	320 UJ	390 UJ	430 U	430 U	370 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	2,370 U 474 U	2,060 U 412 U	21 U 2.1 U	3,080 U 615 UJ	1,720 U 343 UJ	1,950 U 389 UJ	1,620 U 324 UJ	1,940 U 388 UJ	2,130 U 425 U	2,160 U 433 U	1,870 U 374 U
4-Chloro-3-methylphenol	237 U	206 U	8.5 U	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
4-Chloroaniline	237 U	206 U	21 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
4-Chlorophenyl-phenylether	474 U	412 U	2.1 U	615 UJ	343 UJ	389 UJ	324 UJ	388 UJ	425 U	433 U	374 U
4-Methylphenol 4-Nitroaniline	NA 237 U	NA 206 U	4.3 U 43 U	NA 308 UJ	NA 172 UJ	NA 195 UJ	NA 162 UJ	NA 194 UJ	NA 213 U	NA 216 U	NA 187 U
4-Nitrophenol	470 U	410 U	43 U		340 UJ	390 U	320 U	390 U	430 U	430 U	370 U
1			0		0.000	555.5	020 0	555 0	.000	.00 0	

Appendix D - Site 5 Soli Analytical Data											
Station ID	CBD-S05		CBD-S05-SO06	CBD-S05-SS17		605-SS18	CBD-S05-SS19	CBD-S05-SS20	CBD-S05-SS21	CBD-S05-SS22	CBD-S05-SS23
Sample ID	CBD-S05-SS16-000H	CBD-S05-SB16-0810	CBD-S05-SS06-1012	CBD-S05-SS17-000H	CBD-S05-SS18-000H	CBD-S05-SS18P-000H	CBD-S05-SS19-000H	CBD-S05-SS20-000H	CBD-S05-SS21-000H	CBD-S05-SS22-000H	CBD-S05-SS23-000H
Sample Date	04/05/18	04/05/18	10/19/12	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18
Chemical Name											
Acenaphthene	15	1.2 U	70	1.5 U	4 J	1.2 U	0.95 J	1.8 J	37	6.6 J	8.3 J
Acetaphanana	0.83 J 240 U	1.2 U 210 U	1.3 J	1.5 U 310 UJ	4 J 170 UJ	2.2 J 190 UJ	2 J 160 UJ	2.3 J 190 UJ	14 J 210 U	1.8 J 220 U	1.7 J 190 U
Acetophenone Anthracene	31	5 U	21 U 120	11 J	3.7 J	3.3 J	3.2 J	9.5 J	100	220 0	190 0
Atrazine	710 U	620 U	21 U	920 UJ	520 UJ	580 UJ	490 UJ	580 UJ	640 U	650 U	560 U
Benzaldehyde	710 U	620 U	21 R	920 UJ	520 UJ	580 UJ	490 UJ	580 UJ	640 U	650 U	560 U
Benzo(a)anthracene	81	5 U	290	26	14	12	20	92	560	160	89
Benzo(a)pyrene	74	5 U	200	18	20	17	26	94	630	200	99
Benzo(b)fluoranthene	97	7.7 U	370	50	44	37	43	140	870	280	140
Benzo(g,h,i)perylene	46	7.7 U	110	17	20	16	22	69	490	150	70
Benzo(k)fluoranthene	35	5 U 206 U	150	16 308 UJ	12 U 172 UJ	10 U 195 UJ	14	45 194 UJ	290 213 U	89	50 187 U
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	237 U 237 U	206 U	2.1 U 2.1 U	308 UJ	172 UJ	195 UJ	162 UJ 162 UJ	194 UJ	213 U	216 U 216 U	187 U
bis(2-Ethylhexyl)phthalate	237 U	200 U	26 B	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Butylbenzylphthalate	237 U	206 U	4.3 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Caprolactam	5,900 U	5,100 U	21 U	7,700 UJ	4,300 UJ	4,900 UJ	4,100 UJ	4,900 UJ	5,300 U	5,400 U	4,700 U
Carbazole	237 U	206 U	64 J	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Chrysene	77	5 U	260	35	22	19	24	93	550	170	98
Dibenz(a,h)anthracene	13	7.7 U	26	4.8 J	4.6 J	3.5 J	4.9 J	19	130	39	20
Dibenzofuran Diethylphthalate	237 U 237 U	206 U 206 U	39 4.3 U	308 UJ 308 UJ	172 UJ 172 UJ	195 UJ 195 UJ	162 UJ 162 UJ	194 UJ 194 UJ	213 U 213 U	216 U 216 U	187 U 187 U
Diethylphthalate Dimethyl phthalate	470 U	410 U	4.3 U	620 UJ	340 UJ	390 UJ	320 UJ	390 UJ	430 U	430 U	370 U
Di-n-butylphthalate	237 U	206 U	21 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	129 J	216 U	187 U
Di-n-octylphthalate	237 U	206 U	2.1 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Fluoranthene	150	5 U	430	38	20	19	31	110	790	210	150
Fluorene	12	3.1 U	60	12 J	5.1 J	3.3 J	1.7 J	5.1 J	46	15	9.7 J
Hexachlorobenzene	237 U	206 U	2.1 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Hexachlorobutadiene	237 U 237 U	206 U 206 U	2.1 U	308 UJ 308 UJ	172 UJ 172 UJ	195 UJ	162 UJ 162 UJ	194 UJ 194 UJ	213 U 213 U	216 U 216 U	187 U
Hexachlorocyclopentadiene Hexachloroethane	237 U	206 U	4.3 U 2.1 U	308 UJ	172 UJ 172 UJ	195 UJ 195 UJ	162 UJ	194 UJ 194 UJ	213 U 213 U	216 U 216 U	187 U 187 U
Indeno(1,2,3-cd)pyrene	59	7.7 U	110	22	23	195 03	26	86	600	170	87
Isophorone	237 U	206 U	2.1 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Naphthalene	4.3 U	2.3 U	27	2.9 U	2.5 U	2.3 U	2.2 U	2.9 U	21	3.8 U	2.4 U
n-Nitroso-di-n-propylamine	237 U	206 U	4.3 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
n-Nitrosodiphenylamine	237 U	206 U	2.1 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Nitrobenzene	237 U	206 U	2.1 U	308 UJ	172 UJ	195 UJ	162 UJ	194 UJ	213 U	216 U	187 U
Pentachlorophenol	474 U	412 U	43 U	615 U	343 U	389 U	324 U	388 U	425 U	433 U	374 U
Phenanthrene Phenol	130 237 U	7.7 U 206 U	510 4.2 U	13 J 308 U	9.9 J 172 U	8 J 195 U	12 162 U	32 194 U	390 213 U	89 216 U	86 187 U
Pyrene	120	7.7 U	550	29	172 0	195 U	27	98	680	190	130
Total cresols	237 U	206 U	NA	308 U	172 U	195 U	162 U	194 U	213 U	216 U	187 U
					-						
Pesticide/Polychlorinated Biphenyls (UG/KG)											
4,4'-DDD	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	1.19
4,4'-DDE 4,4'-DDT	0.244 U 0.488 U	0.148 U	NA NA	0.464 UJ 0.928 UJ	0.158 U	0.175 UJ 0.35 UJ	0.151 U	0.172 U	21.1 0.384 U	0.176 U 0.353 U	6.19 14.1
Aldrin	0.466 U 0.244 U	0.297 U 0.148 U	NA NA	0.926 UJ	0.316 U 0.158 U	0.35 UJ 0.175 UJ	0.303 U 0.151 U	0.345 U 0.172 U	0.364 U 0.192 U	0.353 U 0.176 U	0.17 U
alpha-BHC	0.244 U	0.148 U	NA NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
alpha-Chlordane	0.244 U	0.148 U	NA NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.616
Aroclor-1016	12 U	7.4 U	17 U	23 UJ	7.9 UJ	8.8 UJ	7.6 U	8.6 UJ	9.6 U	8.8 UJ	8.5 UJ
Aroclor-1221	12 U	7.4 U	17 U	23 UJ	7.9 UJ	8.8 UJ	7.6 U	8.6 UJ	9.6 U	8.8 UJ	8.5 UJ
Aroclor-1232	12 U	7.4 U	17 U	23 UJ	7.9 UJ	8.8 UJ	7.6 U	8.6 UJ	9.6 U	8.8 UJ	8.5 UJ
Aroclor-1242	12 U	7.4 U	17 U	23 UJ	7.9 UJ	8.8 UJ	7.6 U	8.6 UJ	9.6 U	8.8 UJ	8.5 UJ
Aroclor-1248 Aroclor-1254	12 U 12 U	7.4 U 7.4 U	17 U 32	23 UJ 23 UJ	7.9 UJ 7.9 UJ	8.8 UJ 8.8 UJ	7.6 U 7.6 U	8.6 UJ 8.6 UJ	9.6 U 9.6 U	8.8 UJ 8.8 UJ	8.5 UJ 8.5 UJ
Aroclor-1260	12 U	7.4 U	37	23 UJ	7.9 UJ	8.8 UJ	7.6 U	8.6 UJ	9.6 U	8.8 UJ	8.5 UJ
Aroclor-1260 Aroclor-1262	NA NA	NA	17 U	NA	7.9 03 NA	NA	NA	NA	NA	NA	NA
Aroclor-1268	NA	NA	17 U	NA	NA	NA NA	NA	NA	NA	NA	NA
beta-BHC	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
delta-BHC	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Dieldrin	0.244 U	0.148 U	NA NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Endosulfan I Endosulfan II	0.244 U 0.244 U	0.148 U 0.148 U	NA NA	0.464 UJ 0.464 UJ	0.158 U 0.158 U	0.175 UJ 0.175 UJ	0.151 U 0.151 U	0.172 U 0.172 U	0.192 U 0.192 U	0.176 U 0.176 U	0.17 U 0.17 U
Endosulfan II Endosulfan sulfate	0.244 U 0.488 U	0.148 U 0.297 U	NA NA	0.464 UJ 0.928 UJ	0.158 U 0.316 U	0.175 UJ 0.35 UJ	0.151 U 0.303 U	0.172 U 0.345 U	0.192 U 0.384 U	0.176 U 0.353 U	0.17 U 0.341 U
Endosulian sullate Endrin	0.466 U 0.244 U	0.297 U 0.148 U	NA NA	0.926 UJ	0.316 U	0.35 UJ 0.175 UJ	0.303 U 0.151 U	0.345 U 0.172 U	0.364 U 0.192 U	0.353 U 0.176 U	0.341 U 0.17 U
Endrin aldehyde	0.244 U	0.148 U	NA NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Endrin ketone	0.488 U	0.297 U	NA	0.928 UJ	0.316 U	0.35 UJ	0.303 U	0.345 U	0.384 U	0.353 U	0.341 U
gamma-BHC (Lindane)	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Heptachlor	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Heptachlor epoxide	0.244 U	0.148 U	NA	0.464 UJ	0.158 U	0.175 UJ	0.151 U	0.172 U	0.192 U	0.176 U	0.17 U
Methoxychlor	0.488 U	0.297 U	NA NA	0.928 UJ	0.316 U	0.35 UJ	0.303 U	0.345 U	0.384 U	0.353 U	0.341 U
Toxaphene	24.4 U	14.8 U	NA	46.4 UJ	15.8 U	17.5 UJ	15.1 U	17.2 U	19.2 U	17.6 U	17 U
Total Metals (MG/KG)	+										-
Aluminum	14,000	9,100	6,700	8,400	15,000 J	7,000 J	4,300	6,200	7,000	4,300	13,000
Antimony	0.17 U	0.15 U	2	0.22 J	0.13 J	0.14 J	0.16 U	0.2 U	0.74	0.22 J	0.18 U
Arsenic	4.9	13	3.6	5.3	4.3	3.3	1.7	3.5	5.7	2.4	5.7
Barium	28	8.3	26	56	35	28	14	34	76	28	31
Beryllium	0.37 J	0.25 J	1.4	0.54 J	0.37 J	0.28 J	0.32 U	0.55 J	0.36 J	0.25 J	0.42 J
Cadmium	0.17 U	0.15 U	0.39	0.51 J	0.26 J	0.26 J	0.18 J	0.66	1.2	0.37 J	0.13 J
Calcium Chromium (hoxovolont)	2,310	302 NA	1,300	4,490	1,460	1,520	580 NA	2,640	6,300	2,680	1,020
Chromium (hexavalent)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Appendix D - Site 5 Soil Analytical Data

Station ID	CBD-S0)5-DP16	CBD-S05-S006	CBD-S05-SS17	CBD-S	05-SS18	CBD-S05-SS19	CBD-S05-SS20	CBD-S05-SS21	CBD-S05-SS22	CBD-S05-SS23
Sample ID	CBD-S05-SS16-000H	CBD-S05-SB16-0810	CBD-S05-SS06-1012	CBD-S05-SS17-000H	CBD-S05-SS18-000H	CBD-S05-SS18P-000H	CBD-S05-SS19-000H	CBD-S05-SS20-000H	CBD-S05-SS21-000H	CBD-S05-SS22-000H	CBD-S05-SS23-000H
Sample Date	04/05/18	04/05/18	10/19/12	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18	04/06/18
Chemical Name											
Chromium	22	18	14	24	17	13	9.2	18	17	8.1	22
Cobalt	1.6	1.2	6.9	3.5	3.1	2.4	1.2	3.4	2.6	1.7	3.3
Copper	6.9	5.3	72	8.7	9.2	8.8	5.2	8.1	180	28	15
Cyanide	NA	NA	0.064 U	NA	NA	NA	NA	NA	NA	NA	NA
Iron	24,000	46,000	12,000	16,000	28,000 J	13,000 J	8,600	13,000	15,000	7,300	22,000
Lead	12	5.9	60	15	40	32	14	14	270	25	26
Magnesium	1,010	1,080	950	2,350	1,150	910	406	1,520	1,460	846	1,530
Manganese	30	6.9	100	230	140	130	41	100	290	160	70
Mercury	0.17 U	0.15 U	0.078	0.34 U	0.13 J	0.11 J	0.16 U	0.2 U	0.35 J	0.19 U	0.18 U
Nickel	4	1.8	15	8.3	26	26	5.7	7.6	11	5.5	9.2
Potassium	791	661	800	1,620	708	565	297	917	1,220	625	924
Selenium	0.66 J	0.86	0.47	1.4	0.7 J	0.57 J	0.32 U	1.2	1	0.56 J	0.61 J
Silver	0.21 J	0.15 U	0.68	0.24 J	1	0.92	0.078 J	0.17 J	0.54	0.19 J	0.69
Sodium	13.1 J+	21.3 J+	28 B	41.2 J+	19.3 J+	16 U	22.6 J+	14.8 U	24 J+	13.9 U	27.1 J+
Thallium	0.11 J	0.12 J	0.11	0.17 J	0.17 J	0.12 J	0.16 U	0.18 J	0.13 J	0.19 U	0.14 J
Vanadium	26	21	35	26	23	17	12	18	30	13	380
Zinc	18	13	96 B	69	45	38	29	81	280	59	39
Wet Chemistry											
pH (ph)	NA	NA	5.6	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	16,000	NA	NA	NA	NA	NA	NA	NA	NA

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J Analyte present, value may be biased low, actual value may be higher
 J + Analyte present, value may be biased high, actual value may be lower
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units UG/KG Micrograms per kilogram

Appendix D - Site / Soil Analytical Data Station ID		CBD-S07	7-DP01		CDU C	607-DP02	CBD 60	07-DP03	Cbu e	07-DP04
Sample ID	CBD-S07-SS01-1012	CBD-S07-SS01P-1012	CBD-S07-SB01-0608	CBD-S07-SB01P-0608	CBD-S07-SS02-1012	CBD-S07-SB02-0507	CBD-S07-SS03-1012	CBD-S07-SB03-0608	CBD-S07-SS04-1012	CBD-S07-SB04-0608
Sample Date	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12
Chemical Name										
Volatile Organic Compounds (UG/KG)										
1,1,1-Trichloroethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
1,1,2,2-Tetrachloroethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 1,1,2-Trichloroethane	0.51 U 0.51 U	0.58 U 0.58 U	0.49 UJ 0.49 UJ	0.53 U 0.53 U	0.43 U 0.43 U		0.49 U 0.49 U	0.52 U 0.52 U	0.7 U 0.7 U	0.52 U 0.52 U
1,1-Dichloroethane	0.25 U	0.29 U	0.49 UJ	0.33 U	0.43 U	0.43 U	0.49 U	0.32 U	0.7 U	0.26 U
1,1-Dichloroethene	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	0.51 U 0.51 U	0.58 U 0.58 U	0.49 UJ 0.49 UJ	0.53 U 0.53 U	0.43 U 0.43 U	0.49 U 0.49 U	0.49 U 0.49 U	0.52 U 0.52 U	0.7 U 0.7 U	0.52 U 0.52 U
1,2-Dibromo-3-chloropropane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
1,2-Dibromoethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
1,2-Dichlorobenzene 1,2-Dichloroethane	0.51 U 0.51 U	0.58 U 0.58 U	0.49 UJ 0.49 UJ	0.53 U 0.53 U	0.43 U 0.43 U		0.49 U 0.49 U	0.52 U 0.52 U	0.7 U 0.7 U	0.52 U 0.52 U
1,2-Dichloropropane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
1,3-Dichlorobenzene	0.25 U	0.29 U	0.24 UJ	0.27 U	0.21 U		0.25 U	0.26 U	0.35 U	0.26 U
1,4-Dichlorobenzene 2-Butanone	0.25 U 1.2 J	0.29 U 0.58 U	0.24 UJ 0.49 UJ	0.27 U 0.53 U	0.21 U 1 J	0.25 U 2.6 J	0.25 U 1.1 J	0.26 U 2.6 J	0.35 U 6.5 J	0.26 U 0.52 U
2-Hexanone	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
4-Methyl-2-pentanone	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
Acetone Benzene	48 J 0.51 U	17 J 0.58 U	4.9 UJ 170 J	5.3 U 0.32 J	35 J 0.43 U	4.9 UJ 11	12 J 0.49 U	5.2 U 21	190 J 0.7 U	5.2 UJ 0.52 U
Bromochloromethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
Bromodichloromethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
Bromoform Bromomethane	0.25 U 0.51 U	0.29 U 0.58 U	0.24 UJ 0.49 UJ	0.27 U 0.53 U	0.21 U 0.43 U		0.25 U 0.49 U	0.26 U 0.52 U	0.35 U 0.7 U	0.26 U 0.52 U
Carbon disulfide	0.41 B	0.31 B	15 B	0.55 O	0.43 O 0.46 B	0.49 O 0.99 B	2.3 B	1.8 B	0.7 G	0.21 B
Carbon tetrachloride	0.25 U	0.29 U	0.24 UJ	0.27 U	0.21 U	0.25 U	0.25 U	0.26 U	0.35 U	0.26 U
Chlorobenzene Chloroethane	0.25 U 0.51 U	0.29 U 0.58 U	0.24 UJ 0.49 UJ	0.27 U 0.53 U	0.21 U 0.43 U	0.25 U 0.49 U	0.25 U 0.49 U	0.26 U 0.52 U	0.35 U 0.7 U	0.26 U 0.52 U
Chloroform	0.51 G	0.30 O	0.49 UJ	0.24 B	0.45 B	0.49 U	0.49 O	0.32 U	0.7 G	0.32 G
Chloromethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.25 U 0.25 U	0.29 U 0.29 U	0.24 UJ 0.24 UJ	0.27 U 0.27 U	0.21 U 0.21 U	0.25 U 0.25 U	0.25 U 0.25 U	0.26 U 0.26 U	0.35 U 0.35 U	0.26 U 0.26 U
Cyclohexane	0.51 U	0.58 U	570 J	2.5 J	0.43 U		0.49 U	430	0.33 U	0.52 U
Dibromochloromethane	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
Dichlorodifluoromethane (Freon-12) Ethylbenzene	0.51 U 0.51 U	0.58 U 0.58 U	0.49 UJ 18 J	0.53 U 0.57 J	0.43 U 0.43 U	0.49 U 130	0.49 U 0.49 U	0.52 U 520	0.7 U 0.7 U	0.52 U 0.52 U
Isopropylbenzene	0.25 U	0.29 U	160 J	1.6	0.43 U	170	0.49 U	410	0.7 U	0.32 U
m- and p-Xylene	0.51 U	0.58 U	73 J	2.2	0.43 U	280	0.4 J	2,500	0.7 U	0.52 U
Methyl acetate Methylcyclohexane	2.6 B 0.51 U	1.2 B 0.58 U	20 J 950 J	0.82 B 5 J	1.1 B 0.43 U	2.4 B 1,200	2.2 B 0.49 U	9.5 850	5.1 B 0.7 U	1 B 0.52 U
Methylene chloride	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
Methyl-tert-butyl ether (MTBE)	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U		0.49 U	0.52 U	0.7 U	0.52 U
o-Xylene Styrene	0.25 U 0.25 U	0.29 U 0.29 U	41 J 0.24 UJ	1.9 0.27 U	0.21 U 0.21 U	82 0.25 U	0.15 J 0.25 U	660 0.26 U	0.35 U 0.35 U	0.26 U 0.26 U
Tetrachloroethene	0.51 U	0.58 U	0.49 UJ	0.53 U	0.43 U	0.49 U	0.49 U	0.52 U	0.7 U	0.52 U
Toluene	2.9	0.58 U	NA	0.47 B	0.43 U	4.3	0.43 B	40	0.49 B	0.52 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.25 U 0.51 U	0.29 U 0.58 U	0.24 UJ 0.49 UJ	0.27 U 0.53 U	0.21 U 0.43 U	0.25 U 0.49 U	0.25 U 0.49 U	0.26 U 0.52 U	0.35 U 0.7 U	0.26 U 0.52 U
Trichloroethene	0.25 U	0.29 U	0.24 UJ	0.27 U	0.21 U	0.25 U	0.25 U	0.26 U	0.35 U	0.26 U
Trichlorofluoromethane (Freon-11)	0.25 U	0.29 U	0.24 UJ	0.27 U	0.21 U		0.25 U	0.26 U	0.35 U	0.26 U
Vinyl chloride	0.25 U	0.29 U	0.24 UJ	0.27 U	0.21 U	0.25 U	0.25 U	0.26 U	0.35 U	0.26 U
Pesticide/Polychlorinated Biphenyls (UG/KG)										
Aroclor 1016	60 U	76 U	15 U	16 U	29 U		15 U	17 U	14 U	14 U
Aroclor-1221 Aroclor-1232	60 U 60 U	76 U 76 U	15 U 15 U	16 U	29 U 29 U		15 U 15 U	17 U 17 U	14 U 14 U	14 U 14 U
Aroclor-1242	60 U	76 U	15 U	16 U	29 U	16 U	15 U	17 U	14 U	14 U
Arcelor 1254	60 U	76 U	15 U	16 U	29 U		15 U	17 U	14 U	14 U
Aroclor-1254 Aroclor-1260	60 U 830	76 U 940	15 U 85	16 U	29 U 350	16 U 16 U	15 U 5.4 J	17 U 17 U	14 U 14 U	14 U 14 U
Aroclor-1262	60 U	76 U	15 U	16 U	29 U	16 U	15 U	17 U	14 U	14 U
Aroclor-1268	60 U	76 U	15 U	16 U	29 U	16 U	15 U	17 U	14 U	14 U
Total Metals (MG/KG)										
Aluminum	6,600	5,600	6,300	6,800	4,800	4,100	6,600	6,200	2,600	2,600
Antimony	0.17 J	0.13	0.13	0.14	0.23	0.074 J	0.13	0.12	0.077 J	0.076 J
Arsenic Barium	1.6 22 J	1.6 16 J	3.1 16	3.4 16	2 20	1.5 12	2.3 23	0.31 B 19	1.3 6.4	1.7 7.9
Beryllium	0.36	0.29	0.77	0.85	0.3	0.48	0.41	0.41	0.15	0.2
Cadmium	0.11	0.084	0.65	0.71	0.1	0.26	0.15	0.28	0.024 J	0.011 J
Calcium Chromium (hexavalent)	1,200 0.23 J	1,100 0.3 J	920 0.13 L	1,000 0.31 J	1,100 NA	430 NA	980 NA	1,000 NA	170 NA	180 NA
Chromium	21	21	28	27	11	12	17	2.4	5	4.5
Cobalt	2.2	2	4.6	5.2	1.9	1.7	2.6	0.54	0.94	0.77
Copper Cyanide	4.4 0.029 J	3.4 0.058 U	5.2 0.059 U	4.7 0.062 U	3.6 0.056 U	2.3 0.063 U	3.3 0.057 U	1.8 0.067 U	2.2 0.053 U	2.1 0.049 U
Iron	6,200	5,900	12,000	12,000	5,600	5,100	8,200	11,000	3,900	4,500
Lead	10	7.7	8.8 L	7.4	8.5	3.8	9.6	2.6	3.4	2.7
Magnesium	1,500 K	1,600	2,200 K	2,100	740	780	1,300	1,900	210	260
Manganese	33	30	36	31	41	18	42	32	16	17

Appendix D - Site 7 Soil Analytical Data

Station ID		CBD-S	07-DP01		CBD-S	07-DP02	CBD-S0	7-DP03	CBD-S	07-DP04
Sample ID	CBD-S07-SS01-1012	CBD-S07-SS01P-1012	CBD-S07-SB01-0608	CBD-S07-SB01P-0608	CBD-S07-SS02-1012	CBD-S07-SB02-0507	CBD-S07-SS03-1012	CBD-S07-SB03-0608	CBD-S07-SS04-1012	CBD-S07-SB04-0608
Sample Date	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12
Chemical Name										
Mercury	0.017 J	0.011 J	0.0096 J	0.012 J	0.016 J	0.017 U	0.014 J	0.017 J	0.017 U	0.0067 J
Nickel	13 L	12 J	20 K	13	6.4	3.3	12	0.86	1.2	1.2
Potassium	650	680	1,100	1,200	420	570	560	1,200	240	280
Selenium	0.26 B	0.18 B	0.41 B	0.39 B	0.11 B	0.09 B	0.32 B	0.1 B	0.068 B	0.078 B
Silver	0.048 J	0.043 J	0.043 J	0.039 J	0.036 J	0.026 J	0.033 J	0.01 U	0.022 J	0.02 J
Sodium	30 B	23 B	130	150	6.6 B	50 B	8 B	75	25 U	25 U
Thallium	0.2	0.18	0.43	0.47	0.17	0.35	0.19	0.1	0.042 J	0.048 J
Vanadium	14	12	16 L	16	9.5	9.3	11	1.3	7.1	6.5
Zinc	27	21	180	190	24	43	31	23	5.3	6.3 B
Wet Chemistry										
pH (ph)	6.8	NA	NA	NA	7.8	NA	7.9	NA	6.2	NA
Total organic carbon (TOC) (mg/kg)	6,500	NA	NA	NA	4,500	NA	2,300	NA	760 J	NA

\u00fcrionProj\u00fcLEANII\\u00dbASS\u00e4NavalResearchLab_ChesBayDetach\u00fcCTO_JU23_CLEAN 9000 (Basewide Expanded SI)\u00e2 deliverables\u00e4Expanded SI Report\u00e35. Final\u00e4Appendicies\u00e4Appendicies\u00e4Appendicie Data\u00e4\u00e4Appendix E - Validated Analytical Data\u00e4\u00e4Appendix E - Validated Data.xisx\u00e4, D'Onofrio, Jackie/WDC, 12/18/2018

- Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J- Analyte present, value may be biased low, actual value may be higher
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value
- may be lower
 L Analyte present, value may be biased low, actual value
 may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be

- inaccurate
 MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

7 Appendix B Cite 7 Con 7 than you and Batta												
Station ID	CBD-S	07-DP05	CBD-S	07-DP06	CBD-S0	07-DP07	CBD-S0	7-DP08	CBD-S0	07-DP09	CBD-S	07-DP10
Sample ID	CBD-S07-SS05-1012	CBD-S07-SB05-0608	CBD-S07-SS06-1012	CBD-S07-SB06-0608	CBD-S07-SS07-1012	CBD-S07-SB07-0608	CBD-S07-SS08-1012	CBD-S07-SB08-0608	CBD-S07-SS09-1012	CBD-S07-SB09-0608	CBD-S07-SB10-0204	CBD-S07-SB10P-0204
Sample Date	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/17/12	10/17/12
Chemical Name												
Volatile Organic Compounds (UG/KG)												
1,1,1-Trichloroethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,1,2,2-Tetrachloroethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,1,2-Trichloroethane 1,1-Dichloroethane	0.47 U 0.23 U	0.42 U 0.21 U	0.47 U 0.24 U	0.47 U 0.24 U	0.51 U 0.25 U	0.57 U 0.28 U	0.57 U 0.29 U	0.65 U 0.32 U	0.46 U 0.23 U	0.75 U 0.37 U	0.44 U 0.22 U	0.43 U 0.21 U
1,1-Dichloroethene	0.23 U	0.42 U	0.24 U	0.47 U	0.23 U	0.28 U	0.29 U	0.65 U	0.23 U	0.75 U	0.22 U 0.44 U	0.21 U
1,2,3-Trichlorobenzene	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2,4-Trichlorobenzene	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2-Dibromo-3-chloropropane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2-Dibromoethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2-Dichlorobenzene	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2-Dichloroethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,2-Dichloropropane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
1,3-Dichlorobenzene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
1,4-Dichlorobenzene 2-Butanone	0.23 U 7.8 J	0.21 U 0.42 U	0.24 U 6.8 J	0.24 U 0.47 U	0.25 U 5.1 J	0.28 U 0.57 U	0.29 U 8.7 J	0.32 U 1.1 J	0.23 U 1.4 J	0.37 U 4.1 J	0.22 U 0.44 U	0.21 U 0.43 U
2-Hexanone	0.55 J	0.42 U	0.6 J	0.47 U	0.51 U	0.57 U	0.7 J 0.57 U	0.65 U	0.46 U	0.75 U	0.44 UJ	0.43 UJ
4-Methyl-2-pentanone	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 UJ	0.43 UJ
Acetone	250 J	4.2 UJ	97 J	4.7 UJ	88 J	0.57 U		42 J	48 J	88 J	0.44 03 40 B	5.8 B
Benzene	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Bromochloromethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Bromodichloromethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Bromoform	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Bromomethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.64 J	0.44 U	0.43 U
Carbon disulfide	0.23 B 0.23 U	0.18 B 0.21 U	0.27 B 0.24 U	0.47 U 0.24 U	0.26 B 0.25 U	0.2 B 0.28 U	1.5 B 0.29 U	0.65 U 0.32 U	0.24 B 0.23 U	0.31 B 0.37 U	0.4 B 0.22 U	0.42 B 0.21 U
Carbon tetrachloride Chlorobenzene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Chloroethane	0.23 U	0.42 U	0.24 U	0.47 U	0.23 U	0.28 U	0.29 U	0.65 U	0.23 U	0.75 U	0.22 U 0.44 U	0.21 U
Chloroform	0.2 B	0.14 B	0.18 B	0.19 B	0.23 B	0.18 B	0.25 B	0.28 B	0.15 B	0.3 B	0.15 B	0.21 U
Chloromethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
cis-1,2-Dichloroethene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
cis-1,3-Dichloropropene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Cyclohexane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Dibromochloromethane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Dichlorodifluoromethane (Freon-12)	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U 0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Ethylbenzene	0.47 U 0.23 U	0.42 U 0.21 U	0.47 U 0.24 U	0.47 U 0.24 U	0.51 U 0.25 U	0.57 U 0.28 U	0.57 U 0.29 U	0.65 U 0.32 U	0.46 U 0.23 U	0.75 U 0.37 U	0.44 U 0.22 U	0.43 U 0.21 U
Isopropylbenzene m- and p-Xylene	0.23 U	0.42 U	0.24 U	0.47 U	0.23 U	0.28 U	0.29 U	0.65 U	0.23 U	0.75 U	0.22 U 0.44 U	0.21 U
Methyl acetate	8.1	0.93 B	3.1 B	1.2 B	1.3 B	1.4 B	2.5 B	2 B	5.8 B	2.3 B	1 B	0.83 B
Methylcyclohexane	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.15 J
Methylene chloride	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Methyl-tert-butyl ether (MTBE)	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
o-Xylene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Styrene	0.23 U	0.21 U	0.24 U 0.47 U	0.24 U	0.25 U	0.28 U 0.57 U	0.29 U 0.57 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Tetrachloroethene Toluene	0.47 U 0.27 B	0.42 U 0.42 U	0.47 U 0.34 B	0.47 U 0.47 U	0.51 U 0.51 U	0.57 U	0.57 U 0.87 B	0.65 U 0.65 U	0.46 U 0.46 U	0.75 U 0.75 U	0.44 U 0.44 U	0.43 U 0.43 U
trans-1,2-Dichloroethene	0.27 B	0.42 U	0.34 U	0.47 U	0.25 U	0.37 U	0.07 B	0.32 U	0.40 U	0.73 U	0.44 U 0.22 U	0.43 U
trans-1,3-Dichloropropene	0.47 U	0.42 U	0.47 U	0.47 U	0.51 U	0.57 U	0.57 U	0.65 U	0.46 U	0.75 U	0.44 U	0.43 U
Trichloroethene	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Trichlorofluoromethane (Freon-11)	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U		0.21 U
Vinyl chloride	0.23 U	0.21 U	0.24 U	0.24 U	0.25 U	0.28 U	0.29 U	0.32 U	0.23 U	0.37 U	0.22 U	0.21 U
Pesticide/Polychlorinated Biphenyls (UG/KG) Aroclor-1016	14 U	15 U	14 U	14 U	15 U	18 U	15 U	19 U	70 U	23 U	14 U	44.11
Aroclor-1016 Aroclor-1221	14 U	15 U	14 U	14 U	15 U			19 U	70 U	23 U	14 U	14 U 14 U
Aroclor-1221 Aroclor-1232	14 U	15 U	14 U	14 U	15 U			19 U	70 U	23 U	14 U	14 U
Aroclor-1242	14 U	15 U	14 U	14 U	15 U	18 U	15 U	19 U	70 U	23 U	14 U	14 U
Aroclor-1248	14 U	15 U	14 U	14 U	15 U	18 U	15 U	19 U	70 U	23 U	14 U	14 U
Aroclor-1254	14 U	15 U	14 U	14 U	50	18 U		19 U	70 U	23 U	14 U	14 U
Aroclor-1260	4.2 J	15 U	14 U	14 U	65	18 U		19 U	110	23 U	4.6 J	14 U
Aroclor-1262	14 U	15 U	14 U	14 U	15 U			19 U	70 U	23 U		14 U
Aroclor-1268	14 U	15 U	14 U	14 U	15 U	18 U	15 U	19 U	70 U	23 U	14 U	14 U
Total Metals (MG/KG)												
Aluminum	2,900	1,600	4,500	2,600	6,200	10,000	5,400	10,000	5,300	7,800	3,900	3,600
Antimony	0.11	0.063 J	0.12	0.11	0.4	0.19	0.33	0.21	0.31	0.18	0.082 J	0.058 J
Arsenic	1.4	1.3	2.1	2.7	3.5	3	2.7	3.2	2.5	5.5	1.7	1.9
Barium	6.8	6.5	19	8.3	33	26	24	27	24	20	23	26
Beryllium	0.18	0.13	0.33	0.21	0.45	0.44	0.36	0.65	0.4	0.35	0.4	0.4
Cadmium	0.025 J	0.0072 J	0.077	0.026 J	0.52	0.058	0.27	0.097	0.15	0.097	0.055	0.025 B
Calcium	150	120	360	180	16,000	2,000	1,200	1,600	1,700	680	410 J	280 J
Chromium (hexavalent)	NA 5.1	NA 3.8	NA 7.4	NA 6.1	NA 24	NA 27	NA 15	NA 24	NA 13	NA 44	NA 4.5	NA 4.9
Chromium Cobalt	5.1 1.1	3.8 0.35	7.1 1.8	6.1 1.3	21 2.6	37 1.8	15 2.2	21 1.9	13 2.1	41 3.8	4.5 1.9	4.8
Copper	2.7	1.5	3.1	2.1	9.9	3.3	6.7	3.4	4.9	3.5	2.2	2.3
Cyanide	0.053 U	0.056 U	0.027 J	0.053 U	0.32	0.069 U	0.21	0.072 U	0.068 J	0.065 J	0.046 J	0.033 J
Iron	4,300	3,300	5,900	5,200	15,000	18,000	9,000	20,000	8,800	21,000	5,100	5,800
Lead	3.8	2.2	7.1	3.3	62	6.9	64	7.6	25	6.5	7 J	4.1 J
Magnesium	230	160	430	310	4,300	2,500	960	2,500	1,200	2,400	360	370
Manganese	20	7.5	71	36	130	88	90	150	120	250	100	91

Appendix D - Site 7 Soil Analytical Data

Station ID	CBD-S	07-DP05	CBD-S0	7-DP06	CBD-S0	7-DP07	CBD-S0	7-DP08	CBD-S0	7-DP09	CBD-S	07-DP10
Sample ID	CBD-S07-SS05-1012	CBD-S07-SB05-0608	CBD-S07-SS06-1012	CBD-S07-SB06-0608	CBD-S07-SS07-1012	CBD-S07-SB07-0608	CBD-S07-SS08-1012	CBD-S07-SB08-0608	CBD-S07-SS09-1012	CBD-S07-SB09-0608	CBD-S07-SB10-0204	CBD-S07-SB10P-0204
Sample Date	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/22/12	10/17/12	10/17/12
Chemical Name												
Mercury	0.0062 J	0.017 U	0.012 J	0.017 U	0.047 J	0.027 J	0.033 J	0.028 J	0.022 J	0.024 J	0.0099 J	0.0067 J
Nickel	1.3	0.66	3.6	1.1	19	5.3	18	6.4	11	4.5	3.2	2.9
Potassium	270	200	300	350	1,000	1,500	460	1,400	720	1,400	230	250
Selenium	0.15 B	0.13 B	0.22 B	0.17 B	0.34	0.41 B	0.28 B	0.4 B	0.24 B	0.4 B	0.29	0.075 B
Silver	0.019 J	0.015 J	0.039 J	0.023 J	0.065	0.044 J	0.054	0.04 J	0.036 J	0.06	0.019 J	0.014 J
Sodium	9.5 B	9.8 B	8.6 B	8.4 B	46 B	920	50 B	900	110	380	280 J	460 J
Thallium	0.046 J	0.027 J	0.082	0.15	0.14	0.2	0.16	0.26	0.15	0.29	0.13	0.095
Vanadium	7.3	5.1	9.8	7.2	78	17	78	9.9	51	14	6.4	7.3
Zinc	5.9	3.7	19	7.8	260	35	150	25 B	80	32	14 B	11 B
Wet Chemistry												
pH (ph)	6	NA	6.5	NA	7.1	NA	7.6	NA	7.3	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	1,100	NA	4,200	NA	15,000	NA	9,900	NA	6,900	NA	NA	NA

\\orion\Proj\CLEANII\BASES\NavalResearchLab_ChesBayDetach\CTO JU2

- Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J- Analyte present, value may be biased low, actual value may be higher
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value
- may be lower
 L Analyte present, value may be biased low, actual value
 may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be

- inaccurate MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 7 Soil Analytical Data	<u> </u>				T					T	
Station ID	CBD-S07-DP11	CBD-S07-DP12	CBD-S07-DP13	CBD-S07-DP14	CBD-S07-DP15	CBD-S07-DP16	CBD-S07-DP17	CBD-S07-DP18	CBD-S07-DP24	CBD-S07	
Sample ID Sample Date	CBD-S07-SB11-0204	CBD-S07-SB12-0204	CBD-S07-SB13-0204	CBD-S07-SB14-0204	CBD-S07-SB15-0204	CBD-S07-SB16-0204	CBD-S07-SB17-0204	CBD-S07-SB18-0204	CBD-S07-SB19-0204	CBD-S07-SS20-000H	CBD-S07-SB20-0508
<u> </u>	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/19/12	10/19/12	10/19/12	10/19/12	04/03/18	04/03/18
Chemical Name											
Volatile Organic Compounds (UG/KG)											
1,1,1-Trichloroethane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
1,1,2,2-Tetrachloroethane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.42 U 0.42 U	0.41 U	0.44 U	0.4 U 0.4 U	0.46 U	0.5 U	0.53 U	0.5 U 0.5 U	0.53 U	NA NA	NA NA
1,1,2-Trichloroethane 1,1-Dichloroethane	0.42 U 0.21 U	0.41 U 0.2 U	0.44 U 0.22 U	0.4 U 0.2 U	0.46 U 0.23 U	0.5 U 0.25 U	0.53 U 0.27 U	0.5 U 0.25 U	0.53 U 0.26 U	NA NA	NA NA
1,1-Dichloroethane	0.42 U	0.2 U 0.41 U	0.22 U 0.44 U	0.2 U	0.25 U	0.5 U	0.53 U	0.25 U	0.53 U	NA NA	NA NA
1,2,3-Trichlorobenzene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA
1,2,4-Trichlorobenzene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
1,2-Dibromo-3-chloropropane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
1,2-Dibromoethane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA
1,2-Dichlorobenzene 1,2-Dichloroethane	0.42 U 0.42 U	0.41 U 0.41 U	0.44 U 0.44 U	0.4 U 0.4 U	0.46 U 0.46 U	0.5 U 0.5 U	0.53 U 0.53 U	0.5 U 0.5 U	0.53 U 0.53 U	NA NA	NA NA
1,2-Dichloropropane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
1,3-Dichlorobenzene	0.21 U	0.2 U	0.22 U	0.4 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA NA	NA NA
1,4-Dichlorobenzene	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
2-Butanone	0.46 B	3.2 B	0.44 U	0.4 U	12 B	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
2-Hexanone	0.42 UJ	0.41 UJ	0.44 UJ	0.4 UJ	0.69 J	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
4-Methyl-2-pentanone	0.42 UJ	0.41 UJ	0.44 UJ	0.4 UJ	0.46 UJ	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
Acetone Benzene	25 B 0.42 U	44 B 0.41 U	28 B 0.44 U	4 U 0.4 U	81 J 0.2 J	5 U 0.5 U	5.3 U 0.53 U	5 U 0.5 U	5.3 UJ 0.53 U	NA NA	NA NA
Bromochloromethane	0.42 U	0.41 U	0.44 U	0.4 U	0.2 J 0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
Bromodichloromethane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
Bromoform	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
Bromomethane	0.42 U	0.39 J	0.44 U	0.4 U	1.2 J	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
Carbon disulfide	0.68 B	0.45 B	0.43 B	0.51 B	0.41 B	0.38 B	0.39 B	0.42 B	0.25 J	NA NA	NA NA
Carbon tetrachloride Chlorobenzene	0.21 U 0.21 U	0.2 U 0.2 U	0.22 U 0.22 U	0.2 U 0.2 U	0.23 U 0.23 U	0.25 U 0.25 U	0.27 U 0.27 U	0.25 U 0.25 U	0.26 U 0.26 U	NA NA	NA NA
Chloroethane	0.21 U	0.2 U 0.41 U	0.22 U 0.44 U	0.2 U 0.4 U	0.23 U 0.46 U	0.25 U	0.27 U	0.25 U	0.26 U	NA NA	NA NA
Chloroform	0.15 B	0.2 U	0.22 U	0.4 U	0.18 B	0.16 B	0.27 U	0.25 U	0.13 B	NA NA	NA NA
Chloromethane	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
cis-1,2-Dichloroethene	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
cis-1,3-Dichloropropene	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
Cyclohexane Dibromochloromethane	0.13 J 0.42 U	0.41 U 0.41 U	0.44 U 0.44 U	0.4 U 0.4 U	0.46 U 0.46 U	0.5 U 0.5 U	0.53 U 0.53 U	0.5 U 0.5 U	0.53 U 0.53 U	NA NA	NA NA
Dichlorodifluoromethane (Freon-12)	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
Ethylbenzene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
Isopropylbenzene	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA NA	NA
m- and p-Xylene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
Methyl acetate	0.93 B	0.73 B	0.87 B	0.85 B	0.95 B	1.2 B	1.5 B	1.2 B	1.6 B	NA	NA
Methylcyclohexane	0.28 J 0.42 U	0.41 U 0.41 U	0.44 U 0.44 U	0.4 U 0.4 U	0.46 U 0.46 U	0.21 J 0.5 U	0.53 U 0.53 U	0.5 U 0.5 U	0.53 U 0.53 U	NA NA	NA NA
Methylene chloride Methyl-tert-butyl ether (MTBE)	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA NA	NA NA
o-Xylene	0.42 U	0.41 U	0.44 U	0.4 U	0.40 U	0.25 U	0.27 U	0.25 U	0.26 U	NA NA	NA NA
Styrene	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
Tetrachloroethene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
Toluene	0.42 U	0.41 U	0.44 U	0.4 U	0.46 U	0.5 U	0.53 U	0.5 U	0.53 U	NA	NA
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.21 U 0.42 U	0.2 U 0.41 U	0.22 U 0.44 U	0.2 U 0.4 U	0.23 U 0.46 U	0.25 U 0.5 U	0.27 U 0.53 U	0.25 U 0.5 U	0.26 U 0.53 U	NA NA	NA NA
Trichloroethene	0.42 U	0.41 U	0.44 U 0.22 U	0.4 U	0.46 U 0.23 U	0.5 U	0.53 U	0.5 U	0.55 U 0.26 U	NA NA	NA NA
Trichlorofluoromethane (Freon-11)	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA NA	NA NA
Vinyl chloride	0.21 U	0.2 U	0.22 U	0.2 U	0.23 U	0.25 U	0.27 U	0.25 U	0.26 U	NA	NA
Pesticide/Polychlorinated Biphenyls (UG/KG)		44.11	45.11			44.11	44.11	44.11	4=	2.5.111	0.011
Aroclor-1016 Aroclor-1221	14 U 14 U	14 U 14 U	15 U 15 U	14 U 14 U	15 U 15 U	6.5 UJ 6.5 UJ	6.6 U 6.6 U				
Aroclor-1221 Aroclor-1232	14 U	14 U	15 U	14 U	15 U	6.5 UJ	6.6 U				
Aroclor-1242	14 U	14 U	15 U	14 U	15 U	6.5 UJ	6.6 U				
Aroclor-1248	14 U	14 U	15 U	14 U	15 U	6.5 UJ	6.6 U				
Aroclor-1254	14 U	14 U	15 U	14 U	15 U	6.5 UJ	6.6 U				
Arcelor 1363	4.8 J	14 U	15 U	14 U	15 U	110 J-	54				
Aroclor-1262 Aroclor-1268	14 U 14 U	14 U 14 U	15 U 15 U	14 U 14 U	15 U 15 U	NA NA	NA NA				
V 11-0001-1200	14 0	14 U	10 0	14 0	14 0	14 0	14 U	14 0	10 0	INA	HVI
Total Metals (MG/KG)											
Aluminum	4,400	4,400	7,200	9,000	5,900	2,200	5,200	5,100	3,100	5,400	4,800
Antimony	0.06 J	0.086 J	0.16	0.14	0.19	0.062 J	0.19	0.17	0.086 J	0.13 J	0.068 J
Arsenic	2.2	3.5	4	4.6	4.2	1	2.6	3.1	1.1	2.6	1.4
Barium	26 0.36	38 0.69	14 0.27	33 0.36	19 0.51	16 1.1	28 0.61	23 0.5	8.8 0.22	16 0.3 J	16 0.24 J
Beryllium Cadmium	0.36 0.042 J	0.69	0.27 0.034 J	0.36	0.51 0.028 J	0.1	0.63	0.5	0.22 0.02 J	0.3 J 0.14 U	0.24 J 0.15 U
Calcium	4,300	540	580	700	950	1,900	3,700	1,400	3,400	341	417
Chromium (hexavalent)	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
Chromium	4.8	5.9	13	13	8.2	8.2	7.8	9.5	8.7	26	14
Cobalt	1.7	3.3	2.1	2	2.8	0.53	3.5	2.2	0.67	1.4	1.2
Copper	2.3	2.8	4.4	4.3	3.1	1.5	2.9	2.1	1.2	4.8	2.7
Cyanide Iron	0.053 U 7,200	0.053 U 9,600	0.058 U 11,000	0.053 U 13,000	0.054 U 14,000	0.054 U 11,000	0.04 J 9,100	0.054 U 8,400	0.057 U 3,500	NA 9,100	NA 4,700
Lead	3.3	9,000	5.5	6.6	3.7	2.4	3.2	3.9	3,500	9,100	4,700
Magnesium	640	370	790	790	500	580	610	700	1,000	494	576
Manganese	71	110	60	68	62	76	210	130	15	40	20

Appendix D - Site 7 Soil Analytical Data

Station ID	CBD-S07-DP11	CBD-S07-DP12	CBD-S07-DP13	CBD-S07-DP14	CBD-S07-DP15	CBD-S07-DP16	CBD-S07-DP17	CBD-S07-DP18	CBD-S07-DP19	CBD-S0	7-DP20
Sample ID	CBD-S07-SB11-0204	CBD-S07-SB12-0204	CBD-S07-SB13-0204	CBD-S07-SB14-0204	CBD-S07-SB15-0204	CBD-S07-SB16-0204	CBD-S07-SB17-0204	CBD-S07-SB18-0204	CBD-S07-SB19-0204	CBD-S07-SS20-000H	CBD-S07-SB20-0508
Sample Date	10/17/12	10/17/12	10/17/12	10/17/12	10/17/12	10/19/12	10/19/12	10/19/12	10/19/12	04/03/18	04/03/18
Chemical Name											
Mercury	0.017 U	0.017 U	0.017 U	0.015 J	0.017 U	0.017 U	0.0073 J	0.016 U	0.017 U	0.14 U	0.15 U
Nickel	2.8	2.3	4	4.5	2.3	1.3	3.2	3.7	1.2	3.4	3.1
Potassium	330	380	540	600	470	440	430	550	440	308	382
Selenium	0.2 B	0.3	0.3	0.29	0.45	0.26	0.27	0.13	0.13	0.57	0.89
Silver	0.017 B	0.023 B	0.029 J	0.032 J	0.028 J	0.025 J	0.025 J	0.028 J	0.036 J	0.14 J	0.15 U
Sodium	340	460	450	770	560	610	200	380	410	8.8 J+	7.2 U
Thallium	0.1	0.098	0.12	0.15	0.11	0.076	0.17	0.19	0.14	0.11 J	0.19 J
Vanadium	8.6	9.4	17	21	15	7.3	9.4	8.9	4.3	11	9.5
Zinc	10 B	11 B	15 B	16 B	11 B	13 B	13 B	18 B	7.6 L	15	11
Wet Chemistry											
pH (ph)	NA										
Total organic carbon (TOC) (mg/kg)	NA										

\\orion\\Proj\CLEANII\\BASES\\NavalResearchLab_ChesBayDetach\CTO JU2

- Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J- Analyte present, value may be biased low, actual value may be higher
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value
- may be lower
 L Analyte present, value may be biased low, actual value
 may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be

- inaccurate MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 7 Soil Analytical Data

Second State	Otation ID		000 007 057			07 DD00	A=2 -	7. DD00		7.0004
March Marc	Station ID	ODD 007 0004 0004	CBD-S07-DP21	ODD 007 0001 0501						
Committee Comm	•									
Mail Company Company (1998) Mail Company	•	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18
After the first attach	Chemical Name									
After the first attach	Volatile Organic Compounds (HG/KG)									
1.50		NA	NA	NA	NA	NA	NA	NA	NA	NA
13 - Standarden	1,1,2,2-Tetrachloroethane									NA
1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1 1 1 1 1 1 1 1 1	1,1,2-Trichloroethane									NA
2.3 Temperatures	•									NA
140 150	•									
2. (200000000000000000000000000000000000										NA NA
2-000 2-00										NA NA
2.6 2.6	1,2-Dibromoethane									NA
2.60 1.60	1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Add Decompose	1,2-Dichloroethane									NA
MA										NA
Additional Add	•									
No.										NA NA
March Marc										NA NA
Information MA	4-Methyl-2-pentanone									NA
Interest 10	Acetone									NA
Non-configuration	Benzene									NA
Description	Bromochloromethane									NA
	Bromodichloromethane									NA NA
Section of Section 1997 No. No										NA NA
Part										NA NA
NA										NA NA
No.	Chlorobenzene									NA
Decomposition Decompositio	Chloroethane									NA
In J.	Chloroform			NA		NA	NA		NA	NA
18.4 3.0	Chloromethane									NA
No.										NA
NA										
No.	,									
Employagement NA NA NA NA NA NA NA N										NA NA
NA										NA NA
March Marc	Isopropylbenzene									NA
NA	m- and p-Xylene									NA
Maintain	Methyl acetate									NA
New York										NA
NA										
Name										NA NA
Petrolicordenee NA NA NA NA NA NA NA										NA NA
NA	Tetrachloroethene									NA
NA NA NA NA NA NA NA NA	Toluene	NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	trans-1,2-Dichloroethene									NA
Initial Confession NA										NA
Pesticide NA										
Pesticide/Polychlorinated Biphenyis (UG/KG)	Vinyl chloride									NA NA
Accident 15	vinyi omonuo	INA	INU	IVA	IVA	INA	INA	INA	IVA	IVA
Accident 15	Pesticide/Polychlorinated Biphenyls (UG/KG)									
15 15 15 15 16 15 16 17 17 18 15 16 18 17 18 18 18 18 18 18	Aroclor-1016	7.3 U	7.3 U	15 U	6.8 U	13 U	6.7 U	7.4 U	6 U	7 U
Name	Aroclor-1221									7 U
Name										7 U
Avacidar-1264 7.3 U										7 U 7 U
Aground Agro										7 U
Name										7 U
Name	Aroclor-1260 Aroclor-1262									NA
Total Metals (MG/KG) Cotal Metals (MG/KG)	Aroclor-1268									NA NA
Aluminum										
Antimony Ant	Total Metals (MG/KG)									
Arsenic Assenic 2.5	Aluminum									6,100
Sarium										0.14 U
Seryllium										2.8
Cadmium 0.18 J 0.19 J 0.49 0.17 J 0.16 U 0.19 U 0.18 J 0.16 U 0.14 J Calcium 2,010 1,980 1,340 515 674 361 929 171,000 330,000 Chromium (hexavalent) NA NA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.31 J</td></td<>										0.31 J
Calcium 2,010 1,980 1,340 515 674 361 929 171,000 330,000 Chromium (hexavalent) NA <	Cadmium									0.31 J
Chromium (hexavalent) NA NA </td <td>Calcium</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>330,000</td>	Calcium									330,000
Cobalt 2.5 2.8 3.6 1.6 0.92 2.4 3.1 1.1 1.6 Copper 15 J 9.7 J 7 2.6 2.4 3.6 25 J 2.6 5.9 Cyanide NA	Chromium (hexavalent)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper 15 J 9.7 J 7 2.6 2.4 3.6 25 J 2.6 5.5 Cyanide NA 2.0 A 2.0 2.0	Chromium									9.7
Cyanide NA NA <t< td=""><td>Cobalt</td><td></td><td></td><td>3.6</td><td></td><td></td><td></td><td></td><td></td><td>1.6</td></t<>	Cobalt			3.6						1.6
ron 8,300 8,800 23,000 7,400 11,000 8,300 12,000 5,200 8,400 Lead 11 11 8.5 4 6.5 6.4 21 2.7 6.3 Magnesium 721 J 1,220 J 2,110 476 1,200 498 946 276,000 528,000				7						5.9
Lead 11 11 8.5 4 6.5 6.4 21 2.7 6.3 Magnesium 721 J 1,220 J 2,110 476 1,200 498 946 276,000 528,000										
Magnesium 721 J 1,220 J 2,110 476 1,200 498 946 276,000 528,000	Lead									6.3
	Magnesium									528,000
	Manganese									57

Appendix D - Site 7 Soil Analytical Data

Station ID		CBD-S07-DP21		CBD-S)7-DP22	CBD-S)7-DP23	CBD-S0	7-DP24
Sample ID	CBD-S07-SS21-000H	CBD-S07-SS21P-000H	CBD-S07-SB21-0508	CBD-S07-SS22-000H	CBD-S07-SB22-0508	CBD-S07-SS23-000H	CBD-S07-SB23-0508	CBD-S07-SS24-000H	CBD-S07-SB24-0508
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18
Chemical Name									
Mercury	0.18 U	0.19 U	0.19 U	0.14 U	0.16 U	0.19 U	0.16 U	0.16 U	0.14 U
Nickel	8.7	11	7.6	2.5	2.1	2.8	6.3	1.7	3.2
Potassium	488	605	1,240	379	811	499	576	259,000	399,000
Selenium	0.85	1	1.5	0.46 J	0.56 J	0.62 J	1.3	0.35 J	0.72
Silver	0.18 U	0.19 U	0.19 U	0.063 J	0.16 U	0.19 U	0.16 J	0.16 U	0.14 U
Sodium	19.9 J+	18.5 J+	216	5.9 U	13.8 J+	6.5 U	13.7 J+	4,310	6,640
Thallium	0.16 J	0.24 J	0.58	0.088 J	0.13 J	0.19 U	0.18 J	0.16 U	0.09 J
Vanadium	13	15	21	7.1	9.8	12	17	6.9	12
Zinc	31	34	120	16	17	34	36	5.8	13
Wet Chemistry									
pH (ph)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA

\\orion\\Proj\CLEANII\\BASES\\NavalResearchLab_ChesBayDetach\CTO JU2

- Notes:

 Shading indicates detections

 NA Not analyzed

 B Analyte not detected above the level reported in blanks

 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J- Analyte present, value may be biased low, actual value may be higher
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value

- may be lower
 L Analyte present, value may be biased low, actual value
 may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be

- inaccurate MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 7 Soil Analytical Data

Station ID	000 000 1	CBD-S07-DP25	000 00	CBD-S0		CBD-S0	<u> </u>
Sample ID	CBD-S07-SS25-000H	CBD-S07-SB25-0508	CBD-S07-SB25P-0508	CBD-S07-SS26-000H	CBD-S07-SB26-0508	CBD-S07-SS27-000H	CBD-S07-SB27-0508
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18	04/04/18
Chemical Name							
(-1-(1-0)							
Volatile Organic Compounds (UG/KG) 1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1.1-Dichloroethene	NA NA	NA	NA NA	NA	NA	NA	NA NA
1,2,3-Trichlorobenzene	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	NA	NA	NA	NA	NA	NA	NA
1,2-Dibromoethane	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,4-Dichlorobenzene 2-Butanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
z-butarione 2-Hexanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
z-нехапопе 4-Methyl-2-pentanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromodichloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromoform	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
Bromomethane	NA	NA	NA	NA	NA	NA	NA
Carbon disulfide	NA	NA	NA	NA	NA	NA	NA
Carbon tetrachloride	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	NA	NA	NA	NA	NA	NA	NA
Chloroethane	NA	NA	NA	NA	NA	NA	NA
Chloroform	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA NA	NA	NA	NA NA	NA	NA	NA
cis-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyclohexane Dibromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dichlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl acetate	NA NA	NA	NA NA	NA	NA	NA NA	NA NA
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	NA	NA	NA	NA	NA	NA	NA
Methyl-tert-butyl ether (MTBE)	NA	NA	NA	NA	NA	NA	NA
o-Xylene	NA	NA	NA	NA	NA	NA	NA
Styrene	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA
Toluene	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Trichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Trichloroethene Trichlorofluoromethane (Freon-11)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vinyl chloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
y	197	11/7	14/1	11/4	14/3	17.1	IVA
Pesticide/Polychlorinated Biphenyls (UG/KG)							
Aroclor-1016	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1221	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1232	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1242	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1248	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1254	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	7 UJ	12
Aroclor-1260	6.5 U	6.3 U	6.5 UJ	6.5 U	6.3 U	260 J	12
Aroclor-1262	NA	NA	NA	NA	NA	NA	NA
Aroclor-1268	NA	NA	NA	NA	NA	NA	NA
Fatal Matala (MO/KO)							
Total Metals (MG/KG)	2.000	F 000	4.500	4.200	2.700	F 700	0.000
Aluminum Antimony	3,000 0.13 U	5,200 0.13 U	4,500 0.15 U	4,300 0.15 U	3,700 0.14 U	5,700 0.14 U	9,300 0.088
Antimony Arsenic	2.2	0.13 U 5.5 J	0.15 U 2.3 J	2.6	2.9	3.5	0.088
Arsenic Barium	12	28	2.3 J 21	2.0	2.9	3.5 27	51
Beryllium	0.25 J	0.89	0.42 J	0.4 J	0.39 J	0.38 J	0.83
Cadmium	0.23 J 0.13 U	0.18 J	0.42 J 0.15 U	0.4 J	0.39 J	0.30 0	0.03
Calcium	89,000	390,000 J	116,000 J	397,000	531,000	5,870	847
Chromium (hexavalent)	NA	NA	NA	NA	NA	NA	NA
Chromium	5.9	9.4	12	9.2	7.2	21	14
Cobalt	0.93	2	2.1	2.4	1.8	2.2	4
Copper	2.4	2.9	3.1	2.8	3.3	8.3	1.5
Cyanide	NA	NA	NA	NA	NA	NA	NA
Iron	4,400	11,000 J	6,900 J	7,500	7,400	13,000	9,800
Lead	10	3.4 J	5.5 J	7.1	8.7	47	4.6
Magnesium	357,000	641,000	480,000	626,000	494,000	3,020	1,100
Manganese	34	74 J	130 J	94	73	73	190

Appendix D - Site 7 Soil Analytical Data

Station ID		CBD-S07-DP25		CBD-S0	7-DP26	CBD-S07	7-DP27
Sample ID	CBD-S07-SS25-000H	CBD-S07-SB25-0508	CBD-S07-SB25P-0508	CBD-S07-SS26-000H	CBD-S07-SB26-0508	CBD-S07-SS27-000H	CBD-S07-SB27-0508
Sample Date	04/03/18	04/03/18	04/03/18	04/03/18	04/03/18	04/04/18	04/04/18
Chemical Name							
Mercury	0.13 U	0.13 U	0.15 U	0.15 U	0.14 U	0.14 U	0.16 U
Nickel	2.6	6.2 J	4.3 J	6.4	3.8	24	11
Potassium	273,000	349,000	292,000	431,000	315,000	916	554
Selenium	0.49 J	1.1	0.93	0.78	0.7	1	1.7
Silver	0.13 U	0.13 U	0.15 U	0.15 U	0.14 U	0.14 U	0.077 J
Sodium	2,710	4,830	6,630	4,880	4,410	58.4 J+	138
Thallium	0.093 J	0.13 J	0.1 J	0.12 J	0.1 J	0.11 J	0.21 J
Vanadium	10	12	9.7	28	9.3	120	13
Zinc	16	22	18	19	18	220	40
Wet Chemistry		_		· ·	· ·		
pH (ph)	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA	NA	NA	NA	NA

\\orion\\Proj\\CLEANII\\BASES\\NavaiResearchLab_ChesBayDetach\\CTO JU2

- Notes:
 Shading indicates detections
 NA Not analyzed
 B Analyte not detected above the level reported in blanks
 J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J- Analyte present, value may be biased low, actual value may be higher
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value

- may be lower
 L Analyte present, value may be biased low, actual value
 may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be

- inaccurate MG/KG Milligrams per kilogram

PH - pH units
UG/KG - Micrograms per kilogram

Station ID	1	CBD-S09-DP01		CBD-S(09-DP02	CBD-S(09-DP03	CBD-S0	9-DP04	CBD-S09	-DP05
Sample ID	CBD-S09-SS01-1012	CBD-S09-SS01P-1012	CBD-S09-SB01-1315	CBD-S09-SS02-1012	CBD-S09-SB02-1315	CBD-S09-SS03-1012	CBD-S09-SB03-1315	CBD-S09-SS04-1012	CBD-S09-SB04-1315	CBD-S09-SS05-000H	CBD-S09-SB05-0810
Sample Date	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	04/04/18	04/04/18
Chemical Name											
Volatile Organic Compounds (UG/KG)											
1,1,1-Trichloroethane	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
1,1,2,2-Tetrachloroethane	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 1,1,2-Trichloroethane	0.63 UL	0.53 U 0.53 U	0.77 U 0.77 U	0.47 U 0.47 U	0.82 U 0.82 U	0.53 U 0.53 U	0.87 U 0.87 U	0.66 U 0.66 U	0.89 U 0.89 U	NA NA	NA NA
1,1,2-1 richioroethane	0.63 UL 0.32 UL	0.53 U 0.27 U	0.77 U 0.38 U	0.47 U 0.23 U	0.82 U 0.41 U	0.53 U 0.26 U	0.87 U 0.43 U	0.88 U	0.89 U 0.44 U	NA NA	NA NA
1,1-Dichloroethene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.40 U	0.66 U	0.89 U	NA NA	NA
1,2,3-Trichlorobenzene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
1,2,4-Trichlorobenzene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.63 UL 0.63 UL	0.53 U 0.53 U	0.77 U 0.77 U	0.47 U 0.47 U	0.82 U 0.82 U	0.53 U 0.53 U	0.87 U 0.87 U	0.66 U 0.66 U	0.89 U 0.89 U	NA NA	NA NA
1,2-Dichlorobenzene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA NA	NA NA
1,2-Dichloroethane	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA NA	NA
1,2-Dichloropropane	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
1,3-Dichlorobenzene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
1,4-Dichlorobenzene 2-Butanone	0.32 UL 8.1 L	0.27 U 4.5 J	0.38 U 11 J	0.23 U 4 J	0.41 U 0.82 U	0.26 U 7 J	0.43 U 2.1 J	0.33 U 8.1 J	0.44 U 0.89 U	NA NA	NA NA
2-Butanone 2-Hexanone	7.4 L	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.1 J 0.66 U	0.89 U	NA NA	NA NA
4-Methyl-2-pentanone	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA NA	NA
Acetone	53 J	30 J	140	35	14 J	55	8.7 U	67	8.9 U	NA	NA
Benzene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.21 J	0.87 U	4.3	0.89 U	NA	NA
Bromochloromethane	0.63 UL	0.53 U 0.53 U	0.77 U 0.77 U	0.47 U	0.82 U 0.82 U	0.53 U 0.53 U	0.87 U	0.66 U 0.66 U	0.89 U 0.89 U	NA NA	NA NA
Bromodichloromethane Bromoform	0.63 UL 0.32 UL	0.53 U 0.27 U	0.77 U 0.38 U	0.47 U 0.23 U	0.82 U 0.41 U	0.53 U 0.26 U	0.87 U 0.43 U	0.66 U 0.33 U	0.89 U 0.44 U	NA NA	NA NA
Bromomethane	0.63 UL	0.27 U	0.36 U 0.77 U	0.23 U 0.47 U	0.41 U 0.82 U	0.53 U	0.43 U	0.33 U 0.66 U	0.44 U 0.89 U	NA NA	NA NA
Carbon disulfide	1.2 B	0.79 B	13 J	0.26 B	0.38 B	8.4 J	0.4 B	1.1 J	0.41 B	NA	NA
Carbon tetrachloride	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
Chlorobenzene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA NA	NA NA
Chloroethane Chloroform	0.63 UL 0.29 B	0.53 U 0.21 B	0.77 U 0.32 B	0.47 U 0.19 B	0.82 U 0.53 B	0.53 U 0.18 B	0.87 U 0.43 U	0.66 U 0.26 B	0.89 U 0.41 B	NA NA	NA NA
Chloromethane	0.29 B 0.63 UL	0.53 U	0.32 B 0.77 U	0.19 B 0.47 U	0.82 U	0.18 B	0.43 U	0.26 U	0.41 B	NA NA	NA NA
cis-1,2-Dichloroethene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
cis-1,3-Dichloropropene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
Cyclohexane	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	3.4 J	0.89 U	NA NA	NA
Dibromochloromethane Dichlorodifluoromethane (Freon-12)	0.63 UL 0.63 UL	0.53 U 0.53 U	0.77 U 0.77 U	0.47 U 0.47 U	0.82 U 0.82 U	0.53 U 0.53 U	0.87 U 0.87 U	0.66 U 0.66 U	0.89 U 0.89 U	NA NA	NA NA
Ethylbenzene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	1.7	0.89 U	NA NA	NA NA
Isopropylbenzene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	1.1 J	0.44 U	NA NA	NA NA
m- and p-Xylene	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	4.3	0.89 U	NA	NA
Methyl acetate	1.5 B	1.3 B	1.2 B	1.1 B	2.4 B	1.3 B	2.5 B	4.1 B	1.5 B	NA	NA
Methylcyclohexane Methylene chloride	0.63 UL 0.63 UL	0.53 U 0.53 U	0.77 U 0.77 U	0.47 U 0.47 U	0.82 U 0.82 U	0.53 U 0.53 U	0.87 U 0.87 U	6.5 J 0.66 U	0.89 U 0.89 U	NA NA	NA NA
Methyl-tert-butyl ether (MTBE)	0.63 UL	0.53 U	0.77 U	0.47 U	0.82 U	0.53 U	0.87 U	0.66 U	0.89 U	NA NA	NA NA
o-Xylene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	2.9	0.44 U	NA NA	NA
Styrene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	1.8	0.44 U	NA	NA
Tetrachloroethene	0.63 UL	0.53 U	0.77 U	0.47 U	1.3 J	0.53 U	0.87 U	0.66 U	0.89 U	NA	NA
Toluene	0.34 B	0.53 U 0.27 U	0.44 B 0.38 U	0.47 U	0.82 U 0.41 U	0.28 B 0.26 U	0.87 U	8.6	0.42 B 0.44 U	NA NA	NA NA
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.32 UL 0.63 UL	0.27 U 0.53 U	0.38 U 0.77 U	0.23 U 0.47 U	0.41 U 0.82 U	0.26 U 0.53 U	0.43 U 0.87 U	0.33 U 0.66 U	0.44 U 0.89 U	NA NA	NA NA
Trichloroethene	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA NA	NA NA
Trichlorofluoromethane (Freon-11)	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
Vinyl chloride	0.32 UL	0.27 U	0.38 U	0.23 U	0.41 U	0.26 U	0.43 U	0.33 U	0.44 U	NA	NA
Semivolatile Organic Compounds (UG/KG)											
1,1-Biphenyl	35 U	36 U	51 U	39 U	30 U	35 U	29 U	78 U	30 U	420 U	720 U
1,2,4,5-Tetrachlorobenzene	3.5 U	3.6 U	5.1 U	3.9 U	3 U	3.5 U	2.9 U	7.8 U	3 U	NA 100 H	NA
2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol	7.1 U 7.1 U	7.1 U 7.1 U	10 U 10 U	7.7 U 7.7 U	5.9 U 5.9 U	7.1 U 7.1 U	5.8 U 5.8 U	15 U 15 U	5.9 U 5.9 U	139 U NA	239 U NA
2,3,4,6-1 etracniorophenol 2,4,5-Trichlorophenol	7.1 U 35 U	7.1 U 36 U	10 U 51 U	7.7 U 39 U	5.9 U 30 U	7.1 U 35 U	5.8 U 29 U	15 U 78 U	5.9 U	139 U	239 U
2,4,6-Trichlorophenol	7.1 U	7.1 U	10 U	7.7 U	5.9 U	7.1 U	5.8 U	15 U	5.9 U	139 U	239 U
2,4-Dichlorophenol	7 U	7.1 U	10 U	7.6 U	5.9 U	7 U	5.7 U	15 U	5.9 U	139 U	239 U
2,4-Dimethylphenol	71 U	71 U	100 U	77 U	59 U	71 U	58 U	150 U	59 U	139 U	239 U
2,4-Dinitrophenol	350 U	360 U	510 U	390 U	300 U	350 U	290 U	780 U	300 U	1,390 U	2,390 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	35 U 7.1 U	36 U 7.1 U	51 U 10 U	39 U 7.7 U	30 U 5.9 U	35 U 7.1 U	29 U 5.8 U	78 U 15 U	30 U 5.9 U	277 U 139 U	478 U 239 U
2-Chloronaphthalene	7.1 U	7.1 U	10 U	7.7 U	5.9 U	7.1 U	5.8 U	15 U	5.9 U	139 U	239 U
2-Chlorophenol	7.1 U	7.1 U	10 U	7.7 U	5.9 U	7.1 U	5.8 U	15 U	5.9 U	139 U	239 U
2-Methylnaphthalene	3.5 U	3.6 U	5.1 U	3.9 U	3 U	3.5 U	2.9 U	7.8 U	3 U	2.6 U	3.4 U
2-Methylphenol	14 U	14 U	20 U	15 U	12 U	14 U	11 U	31 U	12 U	139 U	239 U
2-Nitroaniline 2-Nitrophenol	35 U 7.1 U	36 U 7.1 U	51 U 10 U	39 U 7.7 U	30 U 5.9 U	35 U 7.1 U	29 U 5.8 U	78 U 15 U	30 U 5.9 U	277 U 139 U	478 U 239 U
2-Nitrophenoi 3,3'-Dichlorobenzidine	7.1 U 710 U	7.1 U 710 U	1,000 U	7.7 U	5.9 U	7.1 U 710 U	5.8 U 580 U	1,500 U	5.9 U 590 U	139 U	239 U
3-Nitroaniline	71 U	71 U	1,000 U	77 U	59 U	71 U	58 U	150 U	59 U	280 U	480 L
4,6-Dinitro-2-methylphenol	35 U	36 U	51 U	39 U	30 U	35 U	35 J	78 U	30 U	1,390 U	2,390 L
4-Bromophenyl-phenylether	3.5 U	3.6 U	5.1 U	3.9 U	3 U	3.5 U	2.9 U	7.8 U	3 U	277 U	478 U
4-Chloro-3-methylphenol	14 U	14 U	20 U	15 U	12 U	14 U	11 U	31 U	12 U	139 U	239 U
4-Chloroaniline 4-Chlorophenyl-phenylether	35 U 3.5 U	36 U 3.6 U	51 U 5.1 U	39 U 3.9 U	30 U 3 U	35 U 3.5 U	29 U 2.9 U	78 U 7.8 U	30 U 3 U	139 U 277 U	239 U 478 U
4-Chlorophenyl-phenylether 4-Methylphenol	7.1 U	7.1 U	5.1 U 10 U	3.9 U 7.7 U	5.9 U	3.5 U 7.1 U	2.9 U	7.8 U 15 U	5.9 U	NA	478 U NA
4-Nitroaniline	7.1 U	7.1 U	100 U	77 U	59 U	7.1 U	58 U	150 U	5.5 U	139 U	239 U
4-Nitrophenol	71 U	71 U	100 U	77 U	59 U	71 U	58 U	150 U	59 U	280 U	480 U

Appendix D - Site 9 Soil Analytical Data

Semple 10	Otation ID		000 000 0001		25	00 BB00	05- 0	00 BB00	005.00	0.0004	05	O DDOS
Semple			CBD-S09-DP01									
Control Cont												CBD-S09-SB05-0810
Company		10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	04/04/18	04/04/18
Comments	Chemical Name											
Scholarion 300 300 300 300 300 300 300 3	Acenaphthene	3.5 U	3.6 U	5.1 U	3.9 U	3 U	3.5 U	2.9 U	7.8 U	3 U	1.4 U	1.8 U
Standard	Acenaphthylene			5.1 U								1.8 U
Section Sect	Acetophenone										140 U	240 U
Secretary St. 1	Anthracene			5.1 U	3.9 U	3 U	2.2 J		12 J		2 J	7.3 U
Company	Atrazine			51 U		30 U	35 U			30 U	420 U	720 U
The content of the co	Benzaldehyde		36 UL	51 UL	39 UL	30 UL	35 UL	29 UL	78 UL	30 UL	420 U	720 U
Score	Benzo(a)anthracene	3.5 U	3.6 U	5.1 U	10 J	3 U		2.9 U	150 J	3 U	11 U	7.3 U
Seeding	Benzo(a)pyrene		29 U	10 U	31 U	1.2 U	18 J	1.2 U		1.2 U	15 J	7.3 U
Secondary	Benzo(b)fluoranthene	4.3 B		10 U	16 J	5.9 U	20 J	5.8 U	370 J	5.9 U	27 U	11 U
Section conference	Benzo(g,h,i)perylene	11 B	3.6 U	5.1 U	7.8 B	3 U	12 B	2.9 U	91 J	3 U	14 J	11 U
Solid Content of the Content of th	Benzo(k)fluoranthene	7.1 UL	7.1 U	10 U	5.4 B	5.9 U	8 B	5.8 U	91 J	5.9 U	8.7 U	7.3 U
10.2784_adaptination		3.5 U	3.6 U	5.1 U	3.9 U	3 U	3.5 U	2.9 U	7.8 U	3 U	139 U	239 U
Department	pis(2-Chloroethyl)ether											239 U
September Sept							9.4 B					239 U
Separate	Butylbenzylphthalate	7.1 U	7.1 U	10 U	7.7 U	5.9 U	7.1 U	5.8 U	15 U	5.9 U	139 U	239 U
Property	Caprolactam	35 U	36 U			30 U	35 U				3,500 U	6,000 U
Deben promotive 14 U 20 30 31 U 12 U 71 U 12 U 32 U 12 U 37 U	Carbazole											239 U
Decordary												7.3 U
Company Comp												11 U
Depend provides												239 U
Develop physiolate	Diethylphthalate											239 U
Descriptopholates												480 U
Processive 383 38												239 U
Placement 3.5 U												239 U
Heast-Invasionation												7.3 U
Proceedings 15 U 38 U 51 U 39 U 77 U 10 U 77 U 70 U				5.1 U		3 U	3.5 U					4.5 U
Peachforespicage 7.1 U												239 U
Househoutedwing	Hexachlorobutadiene					3 U	3.5 U				139 U	239 U
Indeed (2) 2-19 3.5 U	Hexachlorocyclopentadiene			10 U		5.9 U	7.1 U		15 U	5.9 U	139 U	239 U
Importance 35 U 35 U 35 U 39 U 3							3.5 U					239 U
No.	ndeno(1,2,3-cd)pyrene					5.9 U				5.9 U		11 U
The Conting of Conti	sophorone											239 U
nAffordipherplanme												3.4 U
Norderwine	n-Nitroso-di-n-propylamine											239 U
Percatificoptement	n-Nitrosodiphenylamine											239 U
Present Pres	Nitrobenzene						3.5 U					239 U
Prenefor 7 U 7.1 U 10 U 7.6 U 5.9 U 7 U 5.7 U 5.7 U 5.9 U 139 U 7 U 5.9 U 7 U 5.7 U 3.0 U 139 U 7 U 5.7 U 3.0 U 1.0 U 7.5 U 5.9 U 7 U 5.7 U 3.0 U 7 U	Pentachlorophenol									59 U	277 U	478 U
Prome	Phenanthrene					3 U						11 U
Total Medias (MOKG) Total Med	Phenol											239 U
Total Metals (MG/KG) Alminum 3.390 3.200 7,100 4.200 8.200 4.700 7,800 2,800 5.000 2,900 Adminum 0.13 B 0.13 B 0.14 B 0.15 B 0.15 B 0.15 B 0.15 B 0.16 B 0.17 B 0.18 B 0.17 B 0.18 B 0.18 B 0.18 B 0.18 B 0.28 B 0.3 B 0.88 B 0.22 B 0.06 B 0.06 B 0.14 B 0.15 B 0.16 B 0.17 J 0.18 B 0.18 B 0.28 B 0.29 B 0.28 B 0.29 B 0.28 B 0.38 B 0.28 B 0.3 B 0.38 B 0.	Pyrene											11 U
Aliminum	Total cresols	NA	NA	NA	NA	NA	NA	NA	NA	NA	139 U	239 U
Aliminum												
Arismory Ari	,											
Arsenic 0.62												5,300
Barlum												0.17 U
Beryllium												4.6
Cadmitm 0.076 0.05 1.5 0.29 0.23 0.16 0.37 0.03 J 0.37 0.14 J Calcium 900 840 3.500 1.100 1.000 2.900 1.400 7.900 1.600 2.130 Chromium 0.6 0.19 J 0.31 U 0.15 J 0.89 0.5 0.98 1.05 0.29 J NA Chording 12 12 12 28 18 22 15 25 9.1 28 9.7 Cobalt 0.64 0.52 2.2 2.1 44 1.9 3.6 0.88 0.76 1.4 2.0 2.0 1.4 2.0 3.3 3.7 3.7 13 3.9 4.2 4.6 1.8 3 8.2 2.0 2.0 1.4 4.0 1.4 4.0 1.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4												10
Calcium 900												0.5 J
Chromium (hexavalent) 0.6 0.19 0.31 0.15 0.89 0.5 0.98 1.05 0.29 NA Chromium 12 12 12 28 18 22 15 25 9.1 28 9.7												0.21 J
12												1,680
Cobalt 0.64 0.52 2.2 2.1 44 1.9 3.6 0.68 0.76 1.4 Copper 3.1 3.7 3.7 13 3.9 4.2 4.6 1.8 3 8.2 Cyanide 0.053 U 0.053 U 0.053 U 0.058 U 0.059 U 0.053 U 0.057 U 0.069 U 0.059 U Icon 3.200 2.900 13.000 9.100 10.000 11.000 17.000 3.500 9.300 3.90 Lead 3.6 J 2.9 J 5 28 5 11 4.9 1.9 4.9 3.7 Magnesium 750 750 750 3.50 1.800 2.300 1.300 2.600 K 810 4.9 4.9 3.7 Margainese 15 J 7.2 J 40 54 260 61 44 29 3.8 39 Mecury 0.041 J 0.039 J 0.017 U 0.047 J 0.015 J 0.012 J	a `	10	10	00	10				2.4			NA
Capper 3.1 3.7 3.7 3.7 1.3 3.9 4.2 4.6 1.8 3 8.2												23
Cyanide 0.053 U 0.053 U 0.057 U 0.058 U 0.089 U 0.053 U 0.067 U 0.057 U 0.089 U NA										0.76		5.7
Incolumn	Copper									3		3.3
Lead 3.6 J 2.9 J 5 28 5 11 4.9 1.9 4.9 37 Magnesium 750 750 3,500 1,800 2,300 1,300 2,600 K 810 1,400 999 Marganese 15 J 7.2 J 40 54 260 61 34 29 3.8 39 Mercury 0.041 J 0.039 J 0.017 U 0.047 J 0.015 J 0.012 J 0.065 J 0.017 U 0.0082 J 0.11 J Nickel 1.1 J 0.89 J 9.8 9 6.5 5 5.2 1.5 2 6.6 Potassium 530 530 1.900 620 1.300 670 1.700 470 1.100 419 Selenium 0.25 0.22 0.59 0.25 0.36 B 0.5 0.3 B 0.067 B 1.100 419 Silver 2.7 J 3.9 J 0.096 0.081 0.055 0.043 J 0.055 <th></th> <th>NA</th>												NA
Magnesium 750 750 3,500 1,800 2,300 1,300 2,600 K 810 1,400 999 Marganese 15 J 7.2 J 40 54 260 61 34 29 38 39 Mercury 0.041 J 0.039 J 0.017 U 0.047 J 0.015 J 0.012 J 0.0065 J 0.017 U 0.0082 J 0.11 J Nickel 1.1 J 0.89 J 9.8 9 6.5 5 5.2 1.5 2 6.6 Potassium 530 530 1,900 620 1,300 670 1,700 470 1,100 419 Selenium 0.025 0.22 0.59 0.25 0.36 B 0.5 0.3 B 0.087 B 1 B 0.97 Silver 2.7 J 3.9 J 0.096 0.081 B 0.055 0.043 J 0.055 0.041 J 0.064 1.3 Sodium 2.8 B 21 B 89 B 57 B 120 2.5 B <th></th> <th>18,000</th>												18,000
Marganese 15 J 7.2 J 40 54 260 61 34 29 3.8 39 Mercury 0.041 J 0.039 J 0.017 U 0.047 J 0.015 J 0.012 J 0.0065 J 0.017 U 0.082 J 0.11 J Nickel 1.1 J 0.89 J 9.8 9 6.5 5 5.2 0.15 D 0.017 U 0.0082 J 0.11 J Potassium 530 530 1,900 620 1,300 670 1,700 470 1,100 419 Selenium 0.25 0.22 0.59 0.25 0.38 B 0.5 0.3 B 0.087 B 1 B 0.97 Silver 2.7 J 3.9 J 0.096 0.081 0.055 0.043 J 0.055 0.041 J 0.064 1.3 Sodium 2.8 B 21 B 89 B 57 B 120 25 B 100 B 25 U 98 B 143 Thallium 0.15 0.13 0.2 0.15 0.25 0.059 B 0.2 0.15 0.2 0.078 J Vanadium 6.4 6.9 14 12 7.5 17 13 K 4.7 15 9.5 Wet Chemistry 0.15												3.7
Mercury												2,380
Nickel												200
Potassium S30												0.17 U
Selenium												9.8
Silver 2.7 J 3.9 J 0.096 0.081 0.055 0.043 J 0.055 0.041 J 0.064 1.3 Sodium 28 B 21 B 89 B 57 B 120 25 B 100 B 25 U 98 B 143 Thallium 0.15 0.13 0.2 0.15 0.25 0.059 B 0.2 0.15 0.2 0.078 J Vanadium 6.4 6.9 14 12 7.5 17 13 K 4.7 15 9.5 Zinc 15 B 15 B 59 47 80 20 150 8.2 55 37 Wet Chemistry pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												1,300
Sodium 28 B 21 B 89 B 57 B 120 25 B 100 B 25 U 98 B 143 Thallium 0.15 0.13 0.2 0.15 0.25 0.059 B 0.2 0.15 0.2 0.078 J Vanadium 6.4 6.9 14 12 7.5 17 13 K 4.7 15 9.5 Zinc 15 B 15 B 59 47 80 20 150 8.2 55 37 Wet Chemistry pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												0.4 J
Thallium 0.15 0.13 0.2 0.15 0.25 0.059 B 0.2 0.15 0.2 0.078 J Vanadium 6.4 6.9 14 12 7.5 17 13 K 4.7 15 9.5 Zinc 15 B 15 B 59 47 80 20 150 8.2 55 37 Wet Chemistry pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												0.17 U
Vanadium 6.4 6.9 14 12 7.5 17 13 K 4.7 15 9.5 Zinc 15 B 15 B 59 47 80 20 150 8.2 55 37 Wet Chemistry pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												92.5
Zinc 15 B 15 B 59 47 80 20 150 8.2 55 37 Wet Chemistry pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												0.34 J
Wet Chemistry PH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												12
pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA	Zinc	15 B	15 B	59	47	80	20	150	8.2	55	37	63
pH (ph) 7.6 NA NA 8.4 NA 8.7 NA 12 NA NA												
Hotel graphic corbon (TOC) (malka) 940 940 NA 4000 NA 40	pH (ph)											NA
10tal organic Carbon (1OC) (mg/kg)	Total organic carbon (TOC) (mg/kg)	840 J	NA	NA	760 J	NA	4,400	NA	1,000 J	NA	NA	NA

Appendix D - Site 9 Soil Analytical Data

Station ID		CBD-S09-DP01		CBD-S0	09-DP02	CBD-S0	9-DP03	CBD-S0	9-DP04	CBD-S	09-DP05
Sample ID	CBD-S09-SS01-1012	CBD-S09-SS01P-1012	CBD-S09-SB01-1315		CBD-S09-SB02-1315	CBD-S09-SS03-1012	CBD-S09-SB03-1315	CBD-S09-SS04-1012	CBD-S09-SB04-1315	CBD-S09-SS05-000H	CBD-S09-SB05-0810
Sample Date	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	10/12/12	04/04/18	04/04/18
Chemical Name											

Notes:
Shading indicates detections
NA - Not analyzed

- B Analyte not detected above the level reported in blanks
- J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 UL Analyte not detected, quantitation limit may be
- higher MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 9 Soil Analytical Data

Ctation ID	i	000 000 000		000.00	00 0007	000.00	00 P.D00	000 00	00 DD00
Station ID Sample ID	000 000 0000 0001	CBD-S09-DP06	000 000 0000 0040		09-DP07		09-DP08	CBD-S0	
Sample Date	CBD-S09-SS06-000H 04/04/18	CBD-S09-SS06P-000H 04/04/18	CBD-S09-SB06-0810 04/04/18	CBD-S09-SS07-000H 04/04/18	CBD-S09-SB07-0810 04/04/18	CBD-S09-SS08-000H 04/04/18	CBD-S09-SB08-0810 04/04/18	CBD-S09-SS09-000H 04/04/18	CBD-S09-SB09-0810 04/04/18
Chemical Name	04/04/10	04/04/18	04/04/10	04/04/10	04/04/16	04/04/10	04/04/10	04/04/10	04/04/16
Chemical Name									
Volatile Organic Compounds (UG/KG)									
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethene 1.2.3-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromo-3-chloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromoethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone 2-Hexanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
4-Methyl-2-pentanone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acetone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Bromochloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromoform	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Bromomethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon disulfide Carbon tetrachloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroform	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexane	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA
Dibromochloromethane Dichlorodifluoromethane (Freon-12)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Isopropylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
m- and p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl-tert-butyl ether (MTBE)	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
o-Xylene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Styrene Tetrachloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,2-Dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane (Freon-11)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seminaletile Organia Compounda (HC/KC)									
Semivolatile Organic Compounds (UG/KG) 1,1-Biphenyl	480 U	470 U	550 UJ	360 UJ	530 UJ	470 U	610 U	420 U	560 U.
1,2,4,5-Tetrachlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,2'-Oxybis(1-chloropropane)	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 U.
2,3,4,6-Tetrachlorophenol	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
2,4,6-Trichlorophenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
2,4-Dichlorophenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
2,4-Dimethylphenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U 1,860 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	1,610 U 321 U	1,560 U 313 U	1,850 U 369 UJ	1,210 UJ 243 UJ	1,780 R 355 UJ	1,570 U 315 U	2,020 U 404 U	1,400 U 280 U	371 U.
2,6-Dinitrotoluene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 U.
2-Chloronaphthalene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 U.
2-Chlorophenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
2-Methylnaphthalene	26 U	24 U	2.6 U	21 U	2.3 U	2.2 U	2.6 U	84 U	2.6 U
2-Methylphenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
2-Nitroaniline	321 U	313 U	369 UJ	243 UJ	355 UJ	315 U	404 U	280 U	371 U.
2-Nitrophenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
3,3'-Dichlorobenzidine 3-Nitroaniline	161 U 320 U	156 U 310 U	185 UJ 370 UJ	121 UJ 240 UJ	178 UJ 360 UJ	157 U 310 U	202 U 400 U	140 U 280 U	186 U. 370 U.
4,6-Dinitro-2-methylphenol	1,610 U	1,560 U	1,850 U	1,210 UJ	1,780 UJ	1,570 U	2,020 U	1,400 U	1,860 U
4-Bromophenyl-phenylether	321 U	313 U	369 UJ	243 UJ	355 UJ	315 U	404 U	280 U	371 U.
4-Chloro-3-methylphenol	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
4-Chloroaniline	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 U
4-Chlorophenyl-phenylether	321 U	313 U	369 UJ	243 UJ	355 UJ	315 U	404 U	280 U	371 U.
4-Methylphenol	NA 104 H	NA 450 H	NA 105 III	NA 104 III	NA 470 LLL	NA NA	NA 200 H	NA 440 H	NA 100 H
4-Nitroaniline	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
4-Nitrophenol	320 U	310 U	370 U	240 UJ	360 U	310 U	400 U	280 U	370 U

Appendix D - Site 9 Soil Analytical Data

Appendix D - Oite 9 Ooil Arialytical Data	1	ODD 000 DD00		000 00	0 DD07	000.00	00 BB00	000.00	00 BB00
Station ID Sample ID	CBD-S09-SS06-000H	CBD-S09-DP06 CBD-S09-SS06P-000H	CBD-S09-SB06-0810	CBD-S0 CBD-S09-SS07-000H	9-DP07 CBD-S09-SB07-0810	CBD-S09-SS08-000H	09-DP08 CBD-S09-SB08-0810	CBD-S09-SS09-000H	09-DP09 CBD-S09-SB09-0810
Sample Date	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18
Chemical Name	04/04/10	04/04/10	04/04/10	04/04/10	04/04/10	04/04/10	04/04/10	04/04/10	04/04/10
Acenaphthene	14 U	13 U	1.4 U	11 U	1.2 U	0.6 J	1.4 U	45 U	1.4 U
Acenaphthylene	14 U	13 U	1.4 U	3.6 J	1.2 U	2.6 J	1.4 U	45 U	1.4 U
Acetophenone	160 U	160 U	180 UJ	120 UJ	180 UJ	160 U	200 U	140 U	190 UJ
Anthracene	56 U	52 U	5.6 U	46 U	5.1 U	2.6 J	5.6 U	180 U	5.7 U
Atrazine	480 U	470 U	550 UJ	360 UJ	530 UJ	470 U	610 U	420 U	560 UJ
Benzaldehyde	480 UJ	470 UJ	550 UJ	360 UJ	530 UJ	470 UJ	610 UJ	420 UJ	560 UJ
Benzo(a)anthracene Benzo(a)pyrene	56 U 32 J	52 U 52 U	5.6 U 5.6 U	46 U 33 J	5.1 U 5.1 U	11 16	5.6 U 5.6 U	180 U 180 U	5.7 U 5.7 U
Benzo(b)fluoranthene	87 U	80 U	8.6 U	70 U	7.8 U	21	8.7 U	280 U	8.8 U
Benzo(g,h,i)perylene	32 J	80 U	8.6 U	35 J	7.8 U	16	8.7 U	280 U	8.8 U
Benzo(k)fluoranthene	56 U	52 U	5.6 U	46 U	5.1 U	6.8 U	5.6 U	180 U	5.7 U
bis(2-Chloroethoxy)methane	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
bis(2-Chloroethyl)ether	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
bis(2-Ethylhexyl)phthalate	764 U	804 U	953 UJ	554 UJ	907 UJ	798 U	1,160 U	725 U	1,090 UJ
Butylbenzylphthalate Caprolactam	161 U 4,000 UJ	156 U 3,900 UJ	185 UJ 4,600 UJ	121 UJ 3,000 UJ	178 UJ 4,400 UJ	157 U 3,900 UJ	202 U 5,000 UJ	140 U 3,500 UJ	186 UJ 4,600 UJ
Carbazole	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Chrysene	56 U	52 U	5.6 U	46 U	5.1 U	12	5.6 U	180 U	5.7 U
Dibenz(a,h)anthracene	87 U	80 U	8.6 U	70 U	7.8 U	3.1 J	8.7 U	280 U	8.8 U
Dibenzofuran	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Diethylphthalate	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Dimethyl phthalate	320 U	310 U	370 UJ	240 UJ	360 UJ	310 U	400 U	280 U	370 UJ
Di-n-butylphthalate Di-n-octylphthalate	161 U 161 U	156 U 156 U	185 UJ 185 UJ	121 UJ 121 UJ	178 UJ 178 UJ	157 U 157 U	202 U 202 U	140 U 140 U	186 UJ 186 UJ
Fluoranthene	56 U	52 U	5.6 U	46 U	5.1 U	157	5.6 U	180 U	5.7 U
Fluorene	35 U	32 U	3.4 U	28 U	3.1 U	3 U	3.5 U	110 U	3.5 U
Hexachlorobenzene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Hexachlorobutadiene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Hexachlorocyclopentadiene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Hexachloroethane Indeno(1,2,3-cd)pyrene	161 U 87 U	156 U 80 U	185 UJ 8.6 U	121 UJ 29 J	178 UJ 7.8 U	157 U 17	202 U 8.7 U	140 U 280 U	186 UJ 8.8 U
Isophorone	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Naphthalene	26 U	24 U	2.6 U	21 U	2.3 U	2.2 U	2.6 U	84 U	2.6 U
n-Nitroso-di-n-propylamine	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
n-Nitrosodiphenylamine	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Nitrobenzene	161 U	156 U	185 UJ	121 UJ	178 UJ	157 U	202 U	140 U	186 UJ
Pentachlorophenol	321 U	313 U	369 U	243 UJ	355 U	315 U	404 U	280 U	371 U
Phenanthrene Phenol	87 U 161 U	80 U 156 U	8.6 U 185 U	70 U 121 UJ	7.8 U 178 U	6.3 J 157 U	6 J 202 U	280 U 140 U	8.8 U 186 U
Pyrene	43 J	80 U	8.6 U	40 J	7.8 U	14	8.7 U	280 U	8.8 U
Total cresols	161 U	156 U	185 U	121 UJ	178 U	157 U	202 U	140 U	186 U
Total Metals (MG/KG)	0.400	2.22		0.000	0.400	0.700	45.000	0.700	5.500
Aluminum Antimony	8,100 0.1 J	6,200 0.12 J	3,900 0.17 U	6,600 0.15 U	3,100 0.097 J	6,700 0.098 J	15,000 0.17 U	3,700 0.14 U	5,500 0.2 U
Arsenic	2.9	2.4	3.2	2.1	0.097 3	0.096 J	0.17 0	1.2	4.4
Barium	60 J	39 J	9.1	25	4.9	42	14	11	6.5
Beryllium	0.5 J	0.41 J	0.33 J	0.22 J	0.36 U	0.45 J	0.72	0.27 U	0.4 J
Cadmium	0.34	0.3 J	0.3 J	0.11 J	0.18 U	0.17 J	0.14 J	0.14 U	0.15 J
Calcium	3,870	2,600	1,090	2,470	1,100	3,230	1,140	7,110	1,460
Chromium (hexavalent)	NA 20	NA 16	NA 24	NA 12	NA 10	NA 20	NA 07	NA 7.0	NA 22
Chromium Cobalt	20 6.1	16 5.1	21 2.1	13 1.9	16 0.49	20 5.7	27 2.7	7.8 0.71	23 3.5
Copper	13	11	3.1	4.8	1.7	16	3.6	3.2	3.1
Cyanide	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Iron	15,000 J	12,000 J	13,000	15,000	4,300	16,000	10,000	5,800	16,000
Lead	20	18	3	7	2	17	3.6	2.9	3.1
Magnesium	2,950	2,200	1,650	951	1,120	2,900	2,110	674	2,180
Manganese	230	170	18	65	2	170	14	29	31
Mercury Nickel	0.14 J 22	0.16 U 19	0.17 U 5.6	0.15 U 6.7	0.18 U 1.1	0.17 U 23	0.17 U 12	0.14 U 2.9	0.2 U 11
Potassium	1,320	1,210	1,120	516	606	1,460	1,120	2.9	1,220
Selenium	1,320	0.96	1,120	0.49 J	0.49 J	0.98	1,120	0.31 J	0.44 J
Silver	0.079 J	0.075 J	0.17 U	0.45 U	0.18 U	0.30 0.11 J	0.17 U	0.14 U	0.44 J
Sodium	49.1 J	28.9 J	71.3 J+	23.2 J+	78.2	22.4 J+	120	20.2 J+	66.5 J+
Thallium	0.095 J	0.083 J	0.29 J	0.15 U	0.079 J	0.077 J	0.31 J	0.14 U	0.23 J
Vanadium	24	18	8.9	19	6.6	23	10	11	12
Zinc	51	48	53	16	14	38	82	6.1	100
Wet Chemistry									
pH (ph)	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA

Appendix D - Site 9 Soil Analytical Data

Station ID	CBD-S09-DP06		CBD-S0	CBD-S09-DP07		CBD-S09-DP08		CBD-S09-DP09	
Sample ID	CBD-S09-SS06-000H	CBD-S09-SS06P-000H	CBD-S09-SB06-0810	CBD-S09-SS07-000H	CBD-S09-SB07-0810	CBD-S09-SS08-000H	CBD-S09-SB08-0810	CBD-S09-SS09-000H	CBD-S09-SB09-0810
Sample Date	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18
Chemical Name									
Notes:	_								
Shading indicates detections									
NA - Not analyzed									

- B Analyte not detected above the level reported in blanks
- J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 UL Analyte not detected, quantitation limit may be
- higher MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Appendix D - Site 9 Soil Analytical Data

Station ID	ODD C00 CC40 000H	CBD-S09-DP10	CBD-S09-SB10P-0810	
Sample ID	CBD-S09-SS10-000H	CBD-S09-SB10-0810		
Sample Date	04/04/18	04/04/18	04/04/18	
Chemical Name				
Volatile Organic Compounds (UG/KG)				
1,1,1-Trichloroethane	NA	NA	NA	
1,1,2,2-Tetrachloroethane	NA	NA	NA	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	NA	NA	NA	
1,1,2-Trichloroethane	NA NA	NA NA	NA NA	
I,1-Dichloroethane I,1-Dichloroethene	NA NA	NA NA	NA NA	
1.2.3-Trichlorobenzene	NA NA	NA NA	NA NA	
1,2,4-Trichlorobenzene	NA NA	NA NA	NA NA	
I,2-Dibromo-3-chloropropane	NA	NA	NA	
1,2-Dibromoethane	NA	NA	NA	
1,2-Dichlorobenzene	NA	NA	NA	
,2-Dichloroethane	NA NA	NA	NA	
,2-Dichloropropane ,3-Dichlorobenzene	NA NA	NA NA	NA NA	
,4-Dichlorobenzene	NA NA	NA NA	NA NA	
2-Butanone	NA NA	NA NA	NA NA	
2-Hexanone	NA	NA	NA	
I-Methyl-2-pentanone	NA	NA	NA	
Acetone	NA	NA	NA	
Senzene Senzene	NA NA	NA NA	NA NA	
Bromochloromethane Bromodichloromethane	NA NA	NA NA	NA NA	
romodicniorometnane Bromoform	NA NA	NA NA	NA NA	
Bromomethane	NA NA	NA NA	N/	
Carbon disulfide	NA NA	NA NA	N/	
Carbon tetrachloride	NA	NA	N/	
Chlorobenzene	NA	NA	N/	
Chloroethane	NA	NA	N/	
Chloroform	NA NA	NA NA	N/	
Chloromethane is-1,2-Dichloroethene	NA NA	NA NA	N/ N/	
is-1,3-Dichloropropene	NA NA	NA NA	N/	
Cyclohexane	NA NA	NA NA	N/	
Dibromochloromethane	NA	NA	N/	
ichlorodifluoromethane (Freon-12)	NA	NA	N/	
thylbenzene	NA	NA	N/	
sopropylbenzene	NA NA	NA	N/	
n- and p-Xylene flethyl acetate	NA NA	NA NA	N/ N/	
Methylcyclohexane	NA NA	NA NA	N/	
Methylene chloride	NA	NA	N/	
Methyl-tert-butyl ether (MTBE)	NA	NA	N/	
-Xylene	NA	NA	N/	
styrene	NA	NA	N/	
etrachloroethene	NA NA	NA NA	N.	
oluene rans-1,2-Dichloroethene	NA NA	NA NA	N.	
rans-1,3-Dichloropropene	NA NA	NA NA	N.	
richloroethene	NA NA	NA NA	N.	
richlorofluoromethane (Freon-11)	NA	NA	N.	
'inyl chloride	NA	NA	N.	
Semivolatile Organic Compounds (UG/KG)	400 11	540.11	00	
,1-Biphenyl ,2,4,5-Tetrachlorobenzene	430 U NA	540 U NA	83 N	
,2'-Oxybis(1-chloropropane)	145 U	178 U	27	
,3,4,6-Tetrachlorophenol	NA NA	NA NA	N/	
,4,5-Trichlorophenol	145 U	178 U	27	
,4,6-Trichlorophenol	145 U	178 U	27	
,4-Dichlorophenol	145 U	178 U	27	
,4-Dimethylphenol	145 U	178 U	27	
,4-Dinitrophenol ,4-Dinitrotoluene	1,450 U 289 U	1,780 U 357 U	2,75 55	
,6-Dinitrotoluene	145 U	178 U	27	
-Chloronaphthalene	145 U	178 U	27	
-Chlorophenol	145 U	178 U	27	
-Methylnaphthalene	2.1 U	2.8 U	2.	
-Methylphenol	145 U	178 U	27	
-Nitroaniline	289 U	357 U	55	
-Nitrophenol ,3'-Dichlorobenzidine	145 U	178 U	27	
-Nitroaniline	145 U 290 U	178 U 360 U	27 55	
,6-Dinitro-2-methylphenol	1,450 U	1,780 U	2,75	
-Bromophenyl-phenylether	289 U	357 U	55	
-Chloro-3-methylphenol	145 U	178 U	27	
-Chloroaniline	145 U	178 U	27	
-Chlorophenyl-phenylether	289 U	357 U	55	
-Methylphenol	NA 145 H	NA 170 II	N/	
-Nitroaniline	145 U	178 U 360 U	27 55	

Appendix D - Site 9 Soil Analytical Data

Station ID	CDD 800 DD40		
Station ID Sample ID	CBD-S09-SS10-000H	CBD-S09-DP10 CBD-S09-SB10-0810	CBD-S09-SB10P-0810
Sample Date	04/04/18	04/04/18	04/04/18
Chemical Name	0 1/0 1/10	0 1/0 1/ 10	0 110 11 10
Acenaphthene	1.1 U	1.5 U	1.4 U
Acenaphthylene	1.1 U	1.5 U	1.4 U
Acetophenone	140 U	180 U	280 UJ
Anthracene	4.6 U	6.1 U	5.6 U
Atrazine	430 U	540 U 540 UJ	830 UJ
Benzaldehyde Benzo(a)anthracene	430 UJ 4.6 U	6.1 U	830 UJ 5.6 U
Benzo(a)pyrene	1.8 J	6.1 U	5.6 U
Benzo(b)fluoranthene	7.1 U	9.4 U	8.6 U
Benzo(g,h,i)perylene	7.1 U	9.4 U	8.6 U
Benzo(k)fluoranthene	4.6 U	6.1 U	5.6 U
bis(2-Chloroethoxy)methane	145 U	178 U	275 UJ
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	145 U 727 U	178 U 794 U	275 UJ 1,220 UJ
Butylbenzylphthalate	145 U	178 U	275 UJ
Caprolactam	3,600 UJ	4,500 UJ	6,900 UJ
Carbazole	145 U	178 U	275 UJ
Chrysene	4.6 U	6.1 U	5.6 U
Dibenz(a,h)anthracene	7.1 U	9.4 U	8.6 U
Dibenzofuran Diethylphthalate	145 U 145 U	178 U 178 U	275 UJ 275 UJ
Direthylphthalate Dimethyl phthalate	145 U 290 U	178 U 360 U	275 UJ 550 UJ
Di-n-butylphthalate	145 U	178 U	275 UJ
Di-n-octylphthalate	145 U	178 U	275 UJ
Fluoranthene	4.6 U	6.1 U	5.6 U
Fluorene	2.9 U	3.7 U	3.4 U
Hexachlorobenzene Hexachlorobutadiene	145 U 145 U	178 U 178 U	275 UJ
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	145 U	178 U	275 UJ 275 UJ
Hexachloroethane	145 U	178 U	275 UJ
Indeno(1,2,3-cd)pyrene	7.1 U	9.4 U	8.6 U
Isophorone	145 U	178 U	275 UJ
Naphthalene	2.1 U	2.8 U	2.6 U
n-Nitroso-di-n-propylamine	145 U	178 U	275 UJ
n-Nitrosodiphenylamine Nitrobenzene	145 U 145 U	178 U 178 U	275 UJ 275 UJ
Pentachlorophenol	289 U	357 U	550 U
Phenanthrene	7.1 U	9.4 U	8.6 U
Phenol	145 U	178 U	275 U
Pyrene	7.1 U	9.4 U	8.6 U
Total cresols	145 U	178 U	275 U
Total Metals (MG/KG)			
Aluminum	3,000	6,200	6,300
Antimony	0.17 U	0.19 U	0.18 U
Arsenic	1	5.8 J	3.2 J
Barium	8.9	8.5 J	53 J
Beryllium	0.35 U	0.46 J	0.53 J
Cadmium Calcium	0.16 J 7,340	0.19 U 1,320	0.18 U 1,430
Chromium (hexavalent)	7,340 NA	1,320 NA	1,430 NA
Chromium	8.2	24	24
Cobalt	0.72	3.7	3.3
Copper	3.7	3	2.9
Cyanide	NA	NA	NA
Iron	4,900	15,000 J	11,000 J
Lead Magnesium	7.7 606	4.1 J 2,120	9.2 J 2,200
Manganese	21	40	40
Mercury	0.17 U	0.19 U	0.18 U
Nickel	2.6	5.9	6.1
Potassium	309	1,140	1,320
Selenium	0.34 J	1.4 J	2.3 J
Silver Sodium	0.16 J 17.6 J+	0.19 U 69.1 J+	0.18 U 73.9
Sodium Thallium	17.6 J+ 0.17 U	0.17 J	73.9 0.31 J
Vanadium	8.9	13	12
Zinc	27	62	65
Mad Chamistry			
Wet Chemistry pH (ph)	NA	NA	NA
Total organic carbon (TOC) (mg/kg)	NA NA	NA NA	NA NA
\\orion\\Proj\CLEANII\BASES\\NavalResearchLab ChesBayDetach\CTO JL			

\\orion\Proj\CLEANII\BASES\NavalResearchLab_ChesBayDetach\CTO

Appendix D - Site 9 Soil Analytical Data

Station ID	CBD-S09-DP10					
Sample ID	CBD-S09-SS10-000H	CBD-S09-SB10-0810	CBD-S09-SB10P-0810			
Sample Date	04/04/18	04/04/18	04/04/18			
Chemical Name						

Notes:
Shading indicates detections
NA - Not analyzed

- B Analyte not detected above the level reported in blanks
- J Analyte present, value may or may not be accurate or
- J Analyte present, value may or may not be accurate or precise
 J+ Analyte present, value may be biased high, actual value may be lower
 K Analyte present, value may be biased high, actual value may be lower
 L Analyte present, value may be biased low, actual value may be higher
 R Unreliable Result
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be inaccurate

- inaccurate
 UL Analyte not detected, quantitation limit may be
- higher MG/KG Milligrams per kilogram
- PH pH units
 UG/KG Micrograms per kilogram

Page 9 of 9

Appendix D - AOC D Soil Analytical Data

Station ID	CBD-AC	DD-DP05	CBD-AC	D-DP07	CBD-AC	D-DP10	CBD-AOD-DF		DD-DP11	-DP11	
Sample ID	CBD-AOD-SS05-000H	CBD-AOD-SB05-1H02	CBD-AOD-SS07-000H	CBD-AOD-SB07-1H02	CBD-AOD-SS10-000H	CBD-AOD-SB10-1H02	CBD-AOD-SS11-000H	CBD-AOD-SS11P-000H	CBD-AOD-SB11-1H02	CBD-AOD-SB11P-1H02	
Sample Date	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	
Chemical Name											
Total Metals (MG/KG)										1	
Lead	300	100	1,300	24	250	19	220	170	77 J	35 J	

\\form\Proj\CLEANII\BASES\\NavalResearchLab_ChesBayDetach\CTO JU23 CLEAN 9000 (Basewide Expanded SI)\2 deliverables\Expanded SI Report\5. Finaf\Appendicies\Appendix E - Validated Analytical Data\[Appendix E - Validated Data.xisx\], D'Onofrio, Jackier\WDC, 12/18/2018

Notes:
Shading indicates
detections
NA - Not analyzed
J - Analyte present, value
may or may not be
accurate or precise
MG/KG - Milligrams per
kilogram

Appendix D - AOC D Soil Analytical Data

Station ID	CBD-AOD-DP12				CBD-AOD-DP13			CBD-AOD-DP18		CBD-AOD-DP19		
Sample ID	CBD-AOD-SS12-000H	CBD-AOD-SS12P-000H	CBD-AOD-SB12-1H02	CBD-AOD-SB12P-1H02	CBD-AOD-SS13-000H	CBD-AOD-SS13P-000H	CBD-AOD-SB13-1H02	CBD-AOD-SB13P-1H02	CBD-AOD-SS18-000H	CBD-AOD-SB18-1H02	CBD-AOD-SS19-000H	CBD-AOD-SB19-1H02
Sample Date	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18	04/11/18
Chemical Name												
Total Metals (MG/KG)												
Lead	1,300	1,300	160 J	41 J	2,800	2,800	42	41	2,000	140	370	7.8

Notes:
Shading indicates
detections
NA - Not analyzed
J - Analyte present, value
may or may not be
accurate or precise
MG/KG - Milligrams per
kilogram

Appendix D - AOC D Soil Analytical Data

Station ID	CBD-AC	CBD-AOD-DP21 CBD-AOD-DP25		CBD-A	OD-SO01	CBD-AOD-SO02	CBD-AOD-SO03	CBD-AOD-SO04	
Sample ID	CBD-AOD-SS21-000H	CBD-AOD-SB21-1H02	CBD-AOD-SS25-000H	CBD-AOD-SB25-1H02	CBD-AOD-SS01-1012	CBD-AOD-SS01P-1012	CBD-AOD-SS02-1012	CBD-AOD-SS03-1012	CBD-AOD-SS04-1012
Sample Date	04/11/18	04/11/18	04/11/18	04/11/18	10/15/12	10/15/12	10/15/12	10/15/12	10/15/12
Chemical Name									
Total Metals (MG/KG)									
Lead	440	63	100	130	2,100	2,000	3,000	2,900	1,200
\\orion\Proj\CLEANII\BASES\NavaIR	,								

Notes:

Shading indicates
detections

NA - Not analyzed
J - Analyte present, value
may or may not be
accurate or precise
MG/KG - Milligrams per
kilogram

Station ID	CBD-S03-MW01	CBD-S03-MW02	CBD-S03-MW03
Sample ID	CBD-S03-GW01-0418	CBD-S03-GW02-0518	CBD-S03-GW03-0418
Sample Date	04/25/18	05/03/18	04/25/18
Chemical Name			
Volatile Organic Compounds (UG/L)			
1,1,1-Trichloroethane	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.8 U 1 U	0.8 U 1 U	0.8 U 1 U
1,1,2-Trichloroethane	1 U	1 U	1 U
1,1-Dichloroethane	0.8 U	0.8 U	0.8 U
1,1-Dichloroethene	1 U	1 U	1 U
1,2,4-Trichlorobenzene	0.8 U	0.8 U	0.8 U
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane	0.8 U	0.8 U	0.8 U
1,2-Discribertarie 1,2-Discribertarie	0.8 U 0.4 U	0.8 U 0.4 U	0.8 U 0.4 U
1,2-Dichloroethane	0.4 U	0.4 U	0.4 U
1,2-Dichloropropane	0.4 U	0.4 U	0.4 U
1,3-Dichlorobenzene	0.8 U	0.8 U	0.8 U
1,4-Dichlorobenzene	0.8 U	0.8 U	0.8 U
2-Butanone	5 U	5 U	5 U 2 U
2-Hexanone 4-Methyl-2-pentanone	2 U 0.8 U	2 U 0.8 U	0.8 U
Acetone	0.8 U	0.8 U	0.8 U
Benzene	0.4 U	0.4 U	0.4 U
Bromodichloromethane	0.4 U	0.4 U	0.4 U
Bromoform	0.8 U	0.8 U	0.8 U
Bromomethane	2 UJ	2 UJ	2 UJ
Carbon disulfide Carbon tetrachloride	1 U 0.8 U	1 U 0.8 U	1 U 0.8 U
Chlorobenzene	0.8 U	0.8 U	0.8 U
Chloroethane	0.8 U	0.8 U	0.8 U
Chloroform	0.8 U	0.8 U	0.8 U
Chloromethane	1 U	1 U	1 U
cis-1,2-Dichloroethene	0.8 U	0.8 U	0.8 U
cis-1,3-Dichloropropene Cyclohexane	0.4 U 1 U	0.4 U 1 U	0.4 U 1 U
Dibromochloromethane	0.8 U	0.8 U	0.8 U
Dichlorodifluoromethane (Freon-12)	0.8 U	0.8 U	0.8 U
Ethylbenzene	0.8 U	0.8 U	0.8 U
Isopropylbenzene	0.8 U	0.8 U	0.8 U
Methyl acetate	1 U	1 U	1 U
Methylcyclohexane Methylene chloride	1 U 1 U	1 U 1 U	1 U 1 U
Methyl-tert-butyl ether (MTBE)	1.5 U	1.5 U	1.5 U
Styrene	0.4 U	0.4 U	0.4 U
Tetrachloroethene	0.8 U	0.8 U	0.8 U
Toluene	0.4 U	0.4 U	1.34 J
trans-1,2-Dichloroethene	1 U	1 U	1 U
trans-1,3-Dichloropropene Trichloroethene	0.4 U 0.8 U	0.4 U 0.8 U	0.4 U 0.8 U
Trichlorofluoromethane (Freon-11)	1.5 U	1.5 U	1.5 U
Vinyl chloride	0.8 U	0.8 U	0.8 U
Xylene, total	1.8 U	1.8 U	1.8 U
Semivolatile Organic Compounds (UG/L)	0011	F 7 11	F 0 11
1,1-Biphenyl 2,2'-Oxybis(1-chloropropane)	6.3 U 2.11 U	5.7 U 1.89 U	5.8 U 1.92 U
2,4,5-Trichlorophenol	4.21 U	3.77 U	3.85 U
2,4,6-Trichlorophenol	4.21 U	3.77 U	3.85 U
2,4-Dichlorophenol	4.21 U	3.77 U	3.85 U
2,4-Dimethylphenol	4.21 U	3.77 U	3.85 U
2,4-Dinitrophenol	8.42 U	7.55 UJ	7.69 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	8.42 U 4.21 U	7.55 UJ 3.77 U	7.69 U 3.85 U
2-Chloronaphthalene	2.11 U	1.89 U	1.92 U
2-Chlorophenol	2.11 U	1.89 U	1.92 U
2-Methylnaphthalene	0.014 U	0.01 J	0.012 U
2-Methylphenol	4.21 U	3.77 U	3.85 U
2-Nitroaniline	4.21 U	3.77 U	3.85 U

Appendix D - Site 3 Groundwater Analytic Station ID	CBD-S03-MW01	CBD-S03-MW02	CBD-S03-MW03
Sample ID	CBD-S03-GW01-0418	CBD-S03-GW02-0518	CBD-S03-GW03-0418
Sample Date	04/25/18	05/03/18	04/25/18
Chemical Name			
2-Nitrophenol	4.21 U	3.77 U	3.85 U
3,3'-Dichlorobenzidine	4.21 U	3.77 U	3.85 U
3-Nitroaniline	4.2 U 4.21 U	3.8 U	3.8 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	4.21 U	3.77 U 1.89 U	3.85 U 1.92 U
4-Chloro-3-methylphenol	4.21 U	3.77 UJ	3.85 U
4-Chloroaniline	4.21 U	3.77 UJ	3.85 U
4-Chlorophenyl-phenylether	2.11 U	1.89 U	1.92 U
4-Nitroaniline	4.21 U	3.77 U	3.85 U
4-Nitrophenol Acenaphthene	8.4 U 0.034 U	7.5 UJ 0.031 U	7.7 U 0.03 U
Acenaphthylene	0.034 U	0.031 U	0.03 U
Acetophenone	6.3 U	5.7 U	5.8 U
Anthracene	0.023 U	0.021 U	0.02 U
Atrazine	6.3 U	5.7 UJ	5.8 U
Benzaldehyde Benzo(a)anthracene	6.3 U 0.014 U	5.7 U 0.0059 J	5.8 U 0.026 J
Benzo(a)pyrene	0.014 U	0.0059 J 0.013 U	0.026 J 0.015 J
Benzo(b)fluoranthene	0.014 U	0.013 U	0.03 J
Benzo(g,h,i)perylene	0.014 U	0.013 U	0.019 J
Benzo(k)fluoranthene	0.014 U	0.013 U	0.037 J
bis(2-Chloroethoxy)methane	2.11 U	1.89 U	1.92 U
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	2.11 U 6.32 U	1.89 U 5.66 U	1.92 U 5.77 U
Butylbenzylphthalate	2.11 U	1.89 U	1.92 U
Caprolactam	53 U	47 U	48 U
Carbazole	2.11 U	1.89 U	1.92 U
Chrysene	0.0075 J	0.0042 J	0.035 J
Dibenz(a,h)anthracene Dibenzofuran	0.014 U 2.11 U	0.013 U 1.89 U	0.012 U 1.92 U
Diethylphthalate	2.11 U	1.89 UJ	1.92 U
Dimethyl phthalate	2.1 U	1.9 U	1.9 U
Di-n-butylphthalate	2.11 U	1.89 U	1.92 U
Di-n-octylphthalate	2.11 U	1.89 UJ	1.92 U
Fluoranthene Fluorene	0.0052 J 0.023 U	0.0076 J 0.021 U	0.023 J 0.02 U
Hexachlorobenzene	2.11 U	1.89 U	1.92 U
Hexachlorobutadiene	2.11 U	1.89 U	1.92 U
Hexachlorocyclopentadiene	4.21 U	3.77 U	3.85 U
Hexachloroethane	4.21 U	3.77 U	3.85 U
Indeno(1,2,3-cd)pyrene Isophorone	0.023 U 2.11 U	0.021 U 1.89 U	0.022 J 1.92 U
Naphthalene	0.014 U	0.018 J	0.012 U
n-Nitroso-di-n-propylamine	4.21 U	3.77 U	3.85 U
n-Nitrosodiphenylamine	4.21 U	3.77 U	3.85 U
Nitrobenzene	2.11 U	1.89 U	1.92 U
Pentachlorophenol Phenanthrene	4.21 U 0.023 U	3.77 U 0.03 J	3.85 U 0.013 J
Phenol	4.21 U	3.77 U	3.85 U
Pyrene	0.023 U	0.021 U	0.023 J
Total cresols	4.21 U	3.77 UJ	3.85 U
Booticide (Bobyehlerineted Bircheryde (UC/L)	-		
Pesticide/Polychlorinated Biphenyls (UG/L) 4,4'-DDD	0.0011 U	0.00105 U	1.00E-03 U
4,4'-DDE	0.0018 U	0.00168 U	0.0016 U
4,4'-DDT	0.0012 U	0.00116 U	0.0011 U
Aldrin	0.0011 U	0.00105 U	1.00E-03 U
alpha-BHC	0.0017 U	0.00158 U	0.0015 U
alpha-Chlordane Aroclor-1016	0.0011 U 0.11 UJ	0.00105 U 0.11 U	1.00E-03 U 0.1 U
Aroclor-1010 Aroclor-1221	0.11 UJ	0.11 U	0.1 U
Aroclor-1232	0.11 UJ	0.11 U	0.1 U
Aroclor-1242	0.11 UJ	0.11 U	0.1 U
Arcelor 4054	0.11 UJ	0.11 U	0.1 U
Aroclor-1254 Aroclor-1260	0.11 UJ	0.11 U 0.11 U	0.1 U
ATUGIOI-1200	0.11 UJ	U.11 U	0.1 U

Appendix D - Site 3 Groundwater Analytical Data

Station ID	CBD-S03-MW01	CBD-S03-MW02	CBD-S03-MW03
Sample ID	CBD-S03-GW01-0418	CBD-S03-GW02-0518	CBD-S03-GW03-0418
Sample Date	04/25/18	05/03/18	04/25/18
Chemical Name			
beta-BHC	0.0017 U	0.00158 U	0.0015 U
delta-BHC	0.0013 U	0.00126 U	0.0012 U
Dieldrin Endosulfan I	0.0011 U 0.0013 U	0.00105 U 0.00126 U	1.00E-03 U 0.0012 U
Endosulfan II	0.0013 U	0.00126 U	1.00E-03 U
Endosulfan sulfate	0.0011 U	0.00105 U	1.00E-03 U
Endrin	0.0011 U	0.00105 U	1.00E-03 U
Endrin aldehyde	0.0011 U	0.00105 U	1.00E-03 U
Endrin ketone	0.0011 U	0.00105 U	1.00E-03 U
gamma-BHC (Lindane) Heptachlor	0.0011 UJ 0.0011 U	0.00105 U 0.00105 U	1.00E-03 UJ 1.00E-03 U
Heptachlor epoxide	0.0011 U	0.00168 U	0.0016 U
Methoxychlor	0.0014 U	0.00137 U	0.0013 U
Toxaphene	0.11 U	0.105 U	0.1 U
T-4-1 M-4-1- (110/1)			
Total Metals (UG/L) Aluminum	5,400	160	270
Antimony	0.5 U	0.5 U	0.5 U
Arsenic	0.23 J	0.59	0.51
Barium	16	16	34
Beryllium	0.45 J	0.13 U	0.96
Cadmium	3.2	0.15 J	0.420
Calcium Chromium	6,000 3.4	50,900 0.63	9,420 0.15 U
Cobalt	1.8	0.63 0.49 J	6.8
Copper	1.5	0.29 U	0.07 J
Iron	770	260	7,700
Lead	2.4	0.13 U	0.1 J
Magnesium	3,380	25,500	4,670
Manganese Mercury	20 0.13 U	48 0.13 U	90 0.13 U
Nickel	5.7	3.2	21
Potassium	2,100	1,800	3,140
Selenium	1.1	0.5 U	0.5 U
Silver	0.13 U	0.13 U	0.13 U
Sodium	21,100	5,520	9,860
Thallium Vanadium	0.28 J 2.1	0.5 U 1.5	0.5 U 0.25 J
Zinc	31	3.1 J+	280

Dissolved Metals (UG/L)			
Aluminum, Dissolved	53 0.5 U	9.9	240
Antimony, Dissolved Arsenic, Dissolved	0.5 U 0.13 U	0.5 U 0.52	0.5 U 0.56
Barium, Dissolved	11	15	34
Beryllium, Dissolved	0.35 J	0.13 U	2.2
Cadmium, Dissolved	2.9	0.14 J	1.1
Calcium, Dissolved	6,050	49,400	9,960
Chromium, Dissolved Cobalt, Dissolved	0.43 J 1.5	0.13 U 0.41 J	0.11 J 6.9
Copper, Dissolved	1.3	0.41 J	1.3
Iron, Dissolved	13	22	7,400
Lead, Dissolved	0.37 J	0.13 U	0.11 J
Magnesium, Dissolved	2,820	25,200	4,510
Manganese, Dissolved	14	44	88
Mercury, Dissolved Nickel, Dissolved	0.11 J 4.5	0.13 U 3.7	0.16 J 21
Potassium, Dissolved	1,740	1,710	3,030
Selenium, Dissolved	0.5 U	0.5 U	0.5 U
Silver, Dissolved	0.13 U	0.13 U	0.13 U
Sodium, Dissolved	20,200	5,370	9,600
Thallium, Dissolved	0.23 J	0.5 U	0.5 U
Vanadium, Dissolved Zinc, Dissolved	0.13 U 26	1.1 3.1	0.15 J 280
\\orion\Proj\CLEANII\BASES\NavalResearchLab_ChesBayDetach\CTO			

\\orion\Proj\CLEANII\BASES\NavalResearchLab_ChesBayDetach\CTO JU23 CLEAN 9000 (Basewide Expanded SI)\2 deliverables\Expanded SI Report\5. Final\Appendicies\Appendix E - Validated Analytical Data\[Appendix E - Validated Data.xlsx], D'Onofrio, Jackie/WDC, 12/18/2018

Appendix D - Site 3 Groundwater Analytical Data

Station ID	CBD-S03-MW01	CBD-S03-MW02	CBD-S03-MW03
Sample ID	CBD-S03-GW01-0418	CBD-S03-GW02-0518	CBD-S03-GW03-0418
Sample Date	04/25/18	05/03/18	04/25/18
Chemical Name			

Notes:

Shading indicates detections

NA - Not analyzed

- J Analyte present, value may or may not be accurate or precise
- J+ Analyte present, value may be biased high, actual value may be lower
- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate
- UG/L Micrograms per liter

Appendix D - Site 4 Groundwater Analytical Data

Station ID	CBD-S04-DP02	CBD-S04-DP03	CBD-S04-MW01	CRD-SC	04-MW02	CBD-S04-MW03
Sample ID	CBD-S04-DF02 CBD-S04-GW02-1012	CBD-S04-DF03	CBD-S04-WW01	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-WW03-0518
Sample Date	10/19/12	10/19/12	05/03/18	05/03/18	05/03/18	05/03/18
•	10/19/12	10/19/12	03/03/18	05/05/18	05/03/16	05/03/18
Chemical Name						
Valatila Comania Comanava da (UC/L)						
Volatile Organic Compounds (UG/L) 1,1,1-Trichloroethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.5 U	0.5 U	0.8 U	0.6 U	0.6 U	0.8 U
1,1,2-Trichloroethane	0.5 U	0.5 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1-Dichloroethane	0.5 U	0.5 U	0.0 U	0.0 U	0.5 G	1 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	NA NA	NA NA	NA NA	NA NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dibromoethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
1,2-Dichloroethane	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
1,2-Dichloropropane	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
2-Butanone	1 U	1 U	5 U	5 U	5 U	5 U
2-Hexanone	1 U	1 U	2 U	2 U	2 U	2 U
4-Methyl-2-pentanone	1 U	1 U	0.8 U	0.8 U	0.8 U	0.8 U
Acetone	2 U	2 U	1 U	1 U	1 U	1 U
Benzene	0.2 U	0.2 U	0.4 U	0.4 U	0.4 U	0.4 U
Bromochloromethane	0.5 U	0.5 U	NA	NA	NA	NA
Bromodichloromethane	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
Bromoform	1 U	1 U	0.8 U	0.8 U	0.8 U	0.8 U
Bromomethane	0.57 B	0.56 B	2 UJ	2 UJ	2 UJ	2 UJ
Carbon disulfide	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Chlorobenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloroethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Chloroform	0.2 U	0.1 B	0.8 U	0.8 U	0.8 U	0.8 U
Chloromethane	0.3 B	0.36 B	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
Cyclohexane	0.5 U	0.5 U	1 U	1 U	1 U	1 U
Dibromochloromethane	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Dichlorodifluoromethane (Freon-12)	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Ethylbenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
Isopropylbenzene	0.5 U	0.5 U	0.8 U	0.8 U	0.8 U	0.8 U
m- and p-Xylene	1 U	1 U	NA	NA	NA	NA
Methyl acetate	1.7 B	1.8 B	1 U	1 U	1 U	1 U
Methylcyclohexane	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	1 U	1 U	1 U	1 U	1 U	1 U
Methyl-tert-butyl ether (MTBE)	0.5 U	0.5 U	1.5 U	1.5 U	1.5 U	1.5 U
o-Xylene	0.2 U	0.2 U	NA	NA 0.4.11	NA	NA 0.4.11
Styrene	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U	0.4 U
Tetrachloroethene Toluene	0.5 U 0.5 U	0.5 U	0.8 U	0.8 U 0.4 U	0.8 U 0.4 U	0.8 U 0.4 U
		0.5 U	0.4 U			
trans-1,2-Dichloroethene	0.5 U	0.5 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.4 U	0.4 U	0.4 U 0.8 U	0.4 U
Trichloroethene	0.5 U	0.5 U	0.8 U	0.8 U		0.8 U
Trichlorofluoromethane (Freon-11)	0.5 U	0.5 U 0.5 U	1.5 U 0.8 U	1.5 U 0.8 U	1.5 U 0.8 U	1.5 U 0.8 U
Vinyl oblorido						
Vinyl chloride Xylene, total	0.5 U NA	NA	1.8 U	1.8 U	1.8 U	1.8 U

Appendix D - Site 4 Groundwater Analytical Data

Station ID	CBD-S04-DP02	CBD-S04-DP03	CBD-S04-MW01	CBD-S0	04-MW02	CBD-S04-MW03
Sample ID	CBD-S04-GW02-1012	CBD-S04-GW03-1012	CBD-S04-GW01-0518	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-GW03-0518
Sample Date	10/19/12	10/19/12	05/03/18	05/03/18	05/03/18	05/03/18
Chemical Name	10/13/12	10/13/12	03/03/10	03/03/10	03/03/10	00/00/10
Semivolatile Organic Compounds (UG/L)						
1,1-Biphenyl	0.1 U	0.1 UL	6 UJ	5.9 U	6 U	6.3 U
1,2,4,5-Tetrachlorobenzene	0.1 U	0.1 UL	NA	5.9 U NA	NA	0.3 U NA
2,2'-Oxybis(1-chloropropane)	0.1 U	0.1 UL	2 UJ	1.96 U	NA 2 U	2.11 U
2,3,4,6-Tetrachlorophenol	0.1 U 0.5 U	0.1 UL	NA	1.96 U NA	NA	2.11 U NA
2,4,5-Trichlorophenol	0.5 U	0.5 UL	4 U	3.92 U	4 U	4.21 U
2.4.6-Trichlorophenol	0.5 U	0.5 UL	4 UJ	3.92 U	4 U	4.21 U
2,4-Dichlorophenol	0.5 U	0.5 UL	4 UJ	3.92 U	4 U	4.21 U
2,4-Dimethylphenol	0.25 U	0.25 UL	4 UJ	3.92 U	4 U	4.21 U
2,4-Dinitrophenol	0.5 U	5 UL	8 UJ	7.84 UJ	8 UJ	8.42 UJ
2,4-Dinitrotoluene	0.1 U	0.1 UL	8 UJ	7.84 UJ	8 UJ	8.42 UJ
2,6-Dinitrotoluene	0.1 U	0.1 UL	4 U	3.92 U	4 U	4.21 U
2-Chloronaphthalene	0.23 U	0.23 UL	2 UJ	1.96 U	2 U	2.11 U
2-Chlorophenol	0.1 U	0.1 UL	2 U	1.96 U	2 U	2.11 U
2-Methylnaphthalene	0.1 U	0.1 UL	0.014 U	0.0054 J	0.012 U	0.013 U
2-Methylphenol	0.1 U	0.1 UL	4 U	3.92 U	4 U	4.21 U
2-Nitroaniline	0.1 U	0.1 UL	4 UJ	3.92 U	4 U	4.21 U
2-Nitrophenol	0.25 U	0.25 UL	4 U	3.92 U	4 U	4.21 U
3.3'-Dichlorobenzidine	10 U	10 UL	4 UJ	3.92 U	4 U	4.21 U
3-Nitroaniline	0.5 U	0.5 UL	4 U	3.9 U	4 U	4.2 U
4,6-Dinitro-2-methylphenol	1 U	1 UL	4 UJ	3.92 U	4 U	4.21 U
4-Bromophenyl-phenylether	0.1 U	0.1 UL	2 U	1.96 U	2 U	2.11 U
4-Chloro-3-methylphenol	0.5 U	0.5 UL	4 UJ	3.92 UJ	4 UJ	4.21 UJ
4-Chloroaniline	0.5 U	0.5 UL	4 UJ	3.92 UJ	4 UJ	4.21 UJ
4-Chlorophenyl-phenylether	0.05 U	0.05 UL	2 UJ	1.96 U	2 U	2.11 U
4-Methylphenol	0.5 U	0.16 L	NA	NA	NA NA	NA NA
4-Nitroaniline	0.5 U	0.5 UL	4 U	3.92 U	4 U	4.21 U
4-Nitrophenol	2 U	2 UL	8 UJ	7.8 UJ	8 UJ	8.4 UJ
Acenaphthene	0.032 J	0.05 UL	0.034 U	0.03 U	0.029 U	0.032 U
Acenaphthylene	0.05 U	0.05 UL	0.014 U	0.012 U	0.012 U	0.013 U
Acetophenone	0.2 J	0.15 L	6 UJ	5.9 U	6 U	6.3 U
Anthracene	0.05 U	0.05 UL	0.023 U	0.02 U	0.02 U	0.021 U
Atrazine	0.1 U	0.1 UL	6 UJ	5.9 UJ	6 UJ	6.3 UJ
Benzaldehyde	0.12 J	0.25 UL	6 U	5.9 U	6 U	6.3 U
Benzo(a)anthracene	0.02 U	0.022 UL	0.014 UJ	0.012 U	0.0032 J	0.013 U
Benzo(a)pyrene	0.02 U	0.022 UL	0.014 UJ	0.012 U	0.012 U	0.013 U
Benzo(b)fluoranthene	0.02 U	0.022 UL	0.014 UJ	0.012 U	0.012 U	0.013 U
Benzo(g,h,i)perylene	0.1 U	0.1 UL	0.014 UJ	0.012 U	0.012 U	0.013 U
Benzo(k)fluoranthene	0.02 U	0.022 UL	0.021 J	0.012 U	0.012 U	0.013 U
bis(2-Chloroethoxy)methane	0.05 U	0.05 UL	2 U	1.96 U	2 U	2.11 U
bis(2-Chloroethyl)ether	0.1 U	0.1 UL	2 UJ	1.96 U	2 U	2.11 U
bis(2-Ethylhexyl)phthalate	0.5 U	0.5 UL	6 UJ	5.88 U	6 U	6.32 U
Butylbenzylphthalate	0.5 U	0.5 UL	2 U	1.96 U	2 U	2.11 U
Caprolactam	1 UL	1 UL	50 U	49 U	50 U	53 U
Carbazole	0.5 U	0.5 UL	2 UJ	1.96 U	2 U	2.11 U
Chrysene	0.1 U	0.1 UL	0.004 J	0.0061 J	0.004 J	0.013 U
Dibenz(a,h)anthracene	0.02 U	0.022 UL	0.014 UJ	0.012 U	0.012 U	0.013 U
Dibenzofuran	0.1 U	0.031 L	2 UJ	1.96 U	2 U	2.11 U
Diethylphthalate	1.9	0.082 B	2 UJ	1.96 UJ	2 UJ	2.11 UJ
Dimethyl phthalate	0.26 J	0.25 UL	2 U	2 U	2 U	2.1 U
Di-n-butylphthalate	0.73 J	0.5 UL	2 U	1.96 U	2 U	2.11 U
Di-n-octylphthalate	0.5 U	0.5 UL	2 UJ	1.96 UJ	2 UJ	2.11 UJ
Fluoranthene	0.05 U	0.052 L	0.0062 J	0.0054 J	0.0045 J	0.013 U
Fluorene	0.05 U	0.05 UL	0.023 U	0.02 U	0.02 U	0.021 U
Hexachlorobenzene	0.1 U	0.1 UL	2 UJ	1.96 U	2 U	2.11 U
Hexachlorobutadiene	0.05 U	0.05 UL	2 U	1.96 U	2 U	2.11 U

Appendix D - Site 4 Groundwater Analytical Data

Sample Dt	Station ID	CBD-S04-DP02	CBD-S04-DP03	CBD-S04-MW01	CBD-SC	04-MW02	CBD-S04-MW03
Sample Date 101812							
Chamical Name		1					
International Content	•	10/19/12	10/19/12	05/03/16	05/03/16	05/03/16	05/03/16
		0.4.11	0.4.111	4.11	2.00.11	4.11	4.04.11
Company							
Description							
No.							
Non-confidency personne 0.1 U							
Introduceme							
Personatrophenol 0.5 U 0.5 U 0.5 U 3.92 U 4 U 4.21 U 1.00							
New Properties							
March Marc							
Name							
Value Valu							
A4-DDD	l otal cresols	NA	NA	4 UJ	3.92 UJ	4 UJ	4.21 UJ
A4-DDD	Description of the second of t						
AP-DDE		ļ		0.005		0.405	0.0045
AF-DDT							
Main NA							
php-BHC							
piphe-Chridarie							
NA							
NA		II I					
NA							
NA							
NA							
NA 0.08 U 0.098 UJ 0.1 U 0.094 U 0.11 U 0.094 U 0.11 U 0.096 U 0.11 U 0.096 U 0.11 U 0.096 U 0.11 U 0.096 U 0.11 U 0.097 U 0.01 S U 0.007 S U							
NA 0.08 U 0.098 U 0.10 U 0.094 U 0.11 U 0.094 U 0.11 U 0.001 U 0.11 U 0.001 U 0.11 U 0.001		1					
NA		1					
NA							
NA							
Pella-BHC							
NA		II I					
Indosulfan NA		1					
Indesulfan							
Section Sect							
Second NA							
Indrin aldehyde							
NA NA 9.80E-04 U 1.00E-03 U 9.43E-04 U 0.00105 U		II I					
NA NA 9.80E-04 UJ 1.00E-03 U 9.43E-04 U 0.00105 U eptachlor NA NA 9.80E-04 UJ 1.00E-03 U 9.43E-04 U 0.00105 U eptachlor epoxide NA NA 0.00157 U 0.0016 U 0.00151 U 0.00168 U dethoxychlor NA NA 0.00127 U 0.0016 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0018 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0012 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0012 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0012 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0013 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0016 U 0.00123 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0012 U 0.0012 U 0.00123 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0016 U 0.0012 U 0.00123 U 0.00123 U 0.00137 U foxaphene NA NA 0.00127 U 0.0016 U 0.0016 U 0.00123 U 0.00123 U 0.00123 U 0.00137 U 0.00137 U 0.00137 U foxaphene NA NA 0.00127 U 0.0016 U 0.0012 U 0.00137 U							
NA							
NA							
Methoxychlor NA							
Oxaphene NA NA 0.098 U 0.1 U 0.0943 U 0.105 U Otal Metals (UG/L) Cotal Metals (UG/L)							
Interview Section (UG/L) Section (UG/		1					
Aluminum 24 J 9,900 13,000 30 31 44 Autimony 0.5 U 0.5 U 0.5 UJ 0.5 U 0.5 U 0.5 U Arenic 0.5 U 17 1.5 0.13 U 0.13 U 0.21 J Barium 81 130 41 34 34 40 Beryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Cadrium 3.5 0.68 2.9 0.62 0.62 0.51 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 Cobalt 11 12 9.8 2.2 2.2 2.2 5	Toxaphene	NA	NA	0.098 U	0.1 U	0.0943 U	0.105 U
Aluminum 24 J 9,900 13,000 30 31 44 Autimony 0.5 U 0.5 U 0.5 UJ 0.5 U 0.5 U 0.5 U Arenic 0.5 U 17 1.5 0.13 U 0.13 U 0.21 J Barium 81 130 41 34 34 40 Beryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Cadrium 3.5 0.68 2.9 0.62 0.62 0.51 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 Cobalt 11 12 9.8 2.2 2.2 2.2 5							
Intimony 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U Arsenic 0.5 U 17 1.5 0.13 U 0.13 U 0.21 J Barium 81 130 41 34 34 40 Beryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Cadmium 3.5 0.68 2.9 0.62 0.62 0.62 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 5			0.000	40.000	22		
Arsenic 0.5 U 17 1.5 0.13 U 0.13 U 0.21 J Sarium 81 130 41 34 34 40 Beryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Cadmium 3.5 0.68 2.9 0.62 0.62 0.51 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 2.2 5							
Barium 81 130 41 34 34 40 Jeryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Jadmium 3.5 0.68 2.9 0.62 0.62 0.51 Jackbium 3.800 9,500 4,250 8,780 8,770 22,301 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 2.2 5							
Beryllium 0.46 J 0.84 J 0.79 J- 0.43 J 0.42 J 0.13 U Cadnium 3.5 0.68 2.9 0.62 0.62 0.51 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 Cobalt 11 12 9.8 2.2 2.2 2.2 5							
Cadmium 3.5 0.68 2.9 0.62 0.62 0.51 Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 5							
Calcium 3,800 9,500 4,250 8,780 8,770 22,300 Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 5							
Chromium 0.47 J 92 5.7 0.85 0.87 0.24 J Cobalt 11 12 9.8 2.2 2.2 5							
Cobalt 11 12 9.8 2.2 2.2 5							
Copper 2.5 B 8.7 6.9 0.42 U 0.42 U 0.42 U 0.72							
	Copper	2.5 B	8.7	6.9	0.42 U	0.42 U	0.72

Appendix D - Site 4 Groundwater Analytical Data

Station ID	CBD-S04-DP02	CBD-S04-DP03	CBD-S04-MW01	CBD-S0	04-MW02	CBD-S04-MW03
Sample ID	CBD-S04-GW02-1012	CBD-S04-GW03-1012	CBD-S04-GW01-0518	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-GW03-0518
Sample Date	10/19/12	10/19/12	05/03/18	05/03/18	05/03/18	05/03/18
Chemical Name						
Cyanide	4 U	4 U	NA	NA	NA	NA
Iron	2,200	23,000	2,800	9 U	7.8 U	260
Lead	0.74 J	18	1.8 J-	0.13 U	0.13 U	0.13 U
Magnesium	3,000	6,900	3,560	2,570	2,560	10,400
Manganese	130	220	74	13	13	120
Mercury	0.2	0.1 U	0.13 R	0.13 U	0.13 U	0.13 U
Nickel	16	27	13	7.9	8	8.8
Potassium	2,500	4,600	2,840	2,240	2,260	2,840
Selenium	1 U	2.5 B	0.54 U	0.5 U	0.5 U	0.77 U
Silver	0.1 U	0.061 J	0.13 UJ	0.13 U	0.13 U	0.13 U
Sodium	14,000	8,700	5,490	7,910	7,890	13,000
Thallium	0.26 J	1.5	0.54 J	0.5 U	0.5 U	0.2 J
Vanadium	0.2 U	43	4.6	0.059 J	0.061 J	0.17 J
Zinc	55	99	120	25	25	23
Discolused Matela (UC/L)						
Dissolved Metals (UG/L)	50.11	50.11	100	24	40	25
Aluminum, Dissolved	50 U 0.48 B	50 U 0.7 B	100 0.5 U	21 0.5 U	19 0.5 U	35 0.5 U
Antimony, Dissolved						
Arsenic, Dissolved	0.21 J 76	0.19 J 46	1.1 12	0.13 U 33	0.13 U 32	0.2 J 37
Barium, Dissolved	0.54 J	0.4 U	0.35 J	0.56	0.5	0.14 J
Beryllium, Dissolved		0.4 0	0.35 J 1.1	0.56	0.5	0.14 J 0.78
Cadmium, Dissolved Calcium, Dissolved	3,800	8,400	6,750	8,420	8,520	24,500
	3,800 10 R	8,400 NA	6,750 5 U	8,420 5 U	8,520 5 U	24,500 5 U
Chromium (hexavalent), Dissolved						
Chromium, Dissolved Cobalt, Dissolved	0.44 J 11	0.79 J 7.4	0.13 U 5.9	0.83	0.84	0.12 J 5.9
Copper, Dissolved	2.5 B	1.4 1.2 B	0.13 U	0.89	1.3	0.13 U
Iron, Dissolved	2,100	1.2 B	960	0.69 5 U	4.8 J	190
Lead, Dissolved	2,100 0.65 J	0.5 U	0.13 U	0.13 U	0.13 U	0.13 U
Magnesium, Dissolved	3,100	4,000	3,360	2,450	2,420	8,120
Manganese, Dissolved	130	230	5,300	2,430	2,420	100
Mercury, Dissolved	0.19 J	0.1 U	0.13 R	0.13 U	0.13 U	0.13 U
Nickel, Dissolved	16	16	8.6	8.1	9.5	9.9
Potassium, Dissolved	2,300	2,100	1,870	2,110	2,120	2,790
Selenium, Dissolved	2,300 1 U	2,100 1 U	0.5 U	0.29 J	0.4 J	0.72 J
Silver, Dissolved	0.1 U	0.1 U	0.5 U 0.13 UJ	0.29 J 0.13 U	0.4 J 0.13 U	0.72 J 0.13 U
Sodium, Dissolved	14,000	9,400	6,690	7,640	7,660	15,200
Thallium, Dissolved	0.25 J	9,400 0.19 J	0,090 0.22 J	7,040 0.5 U	0.5 U	0.37 J
Vanadium, Dissolved	0.25 J 0.2 U	0.19 J	0.22 J 0.12 J	0.053 J	0.3 U	0.081 J
Zinc, Dissolved	55	57	42	26	26	31
\\orion\Proj\CLEANII\BASES\NavalResearchLab ChesBayDetach\CTO JU					·	

\lorioniProjiCLEANIIiBASESINavaiResearchLab_ChesBayDetachiCTO JU23 CLEAN 9000 (Basewide Expanded SI)\2 deliverables\Expanded SI Report\5. Final\Appendicies\Appendix E - Validated Analytical Data\[Appendix E - Validated Data xixx], D'Onofrio, Jackie/WDC, 12/18/2018

Appendix D - Site 4 Groundwater Analytical Data

Station ID	CBD-S04-DP02	CBD-S04-DP03	CBD-S04-MW01	CBD-S0	04-MW02	CBD-S04-MW03
Sample ID	CBD-S04-GW02-1012	CBD-S04-GW03-1012	CBD-S04-GW01-0518	CBD-S04-GW02-0518	CBD-S04-GW02P-0518	CBD-S04-GW03-0518
Sample Date	10/19/12	10/19/12	05/03/18	05/03/18	05/03/18	05/03/18
Chemical Name				_	-	

Notes:

Shading indicates detections

NA - Not analyzed

- B Analyte not detected above the level reported in blanks
- J Analyte present, value may or may not be accurate or
- J- Analyte present, value may be biased low, actual value
- may be higher

 L Analyte present, value may be biased low, actual value may be higher

R - Unreliable Result

- U The material was analyzed for, but not detected
- UJ Analyte not detected, quantitation limit may be inaccurate
- UL Analyte not detected, quantitation limit is probably

UG/L - Micrograms per liter

Station ID	CBD-S05-MW01	CBD-S05-MW02	CBD-S05-MW03
Sample ID Sample Date	CBD-S05-GW01-0418 04/25/18	CBD-S05-GW02-0418 04/25/18	CBD-S05-GW03-0418 04/25/18
•	04/25/18	04/25/18	04/25/18
Chemical Name			
Volatile Organic Compounds (UG/L)			
1,1,1-Trichloroethane	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	0.8 U	0.8 U	0.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	1 U	1 U	1 U
1,1,2-Trichloroethane 1.1-Dichloroethane	1 U 0.8 U	1 U 0.8 U	1 U 0.8 U
1.1-Dichloroethene	1 U	0.8 U	0.0 U
1,2,4-Trichlorobenzene	0.8 U	0.8 U	0.8 U
1,2-Dibromo-3-chloropropane	0.8 U	0.8 U	0.8 U
1,2-Dibromoethane	0.8 U	0.8 U	0.8 U
1,2-Dichlorobenzene 1,2-Dichloroethane	0.4 U 0.4 U	0.4 U 0.4 U	0.4 U 0.4 U
1,2-Dichloropropane	0.4 U	0.4 U	0.4 U
1,3-Dichlorobenzene	0.8 U	0.8 U	0.8 U
1,4-Dichlorobenzene	0.8 U	0.8 U	0.8 U
2-Butanone	5 U	5 U	5 U
2-Hexanone	2 U	2 U	2 U 0.8 U
4-Methyl-2-pentanone Acetone	0.8 U 1 U	0.8 U 1 U	0.8 U
Benzene	0.4 U	0.4 U	0.4 U
Bromodichloromethane	0.4 U	0.4 U	0.4 U
Bromoform	0.8 U	0.8 U	0.8 U
Bromomethane Carbon disulfide	2 UJ	2 UJ	2 UJ
Carbon disulfide Carbon tetrachloride	1.04 0.8 U	1 U 0.8 U	1.53 0.8 U
Chlorobenzene	0.8 U	0.8 U	0.8 U
Chloroethane	0.8 U	0.8 U	0.8 U
Chloroform	0.8 U	0.8 U	0.8 U
Chloromethane	1 U	1 U	1 U
cis-1,2-Dichloroethene	0.8 U 0.4 U	0.8 U 0.4 U	0.8 U 0.4 U
cis-1,3-Dichloropropene Cyclohexane	0.4 U	0.4 U	0.4 U
Dibromochloromethane	0.8 U	0.8 U	0.8 U
Dichlorodifluoromethane (Freon-12)	0.8 U	0.8 U	0.8 U
Ethylbenzene	0.8 U	0.8 U	0.8 U
Isopropylbenzene	0.8 U	0.8 U	0.8 U
Methyl acetate Methylcyclohexane	1 U	1 U 1 U	1 U 1 U
Methylene chloride	1 U	1 U	1 U
Methyl-tert-butyl ether (MTBE)	1.5 U	1.5 U	1.5 U
Styrene	0.4 U	0.4 U	0.4 U
Tetrachloroethene	0.8 U	0.8 U	0.8 U
Toluene trans-1.2-Dichloroethene	0.4 U 1 U	0.4 U 1 U	0.4 U 1 U
trans-1,3-Dichloropropene	0.4 U	0.4 U	0.4 U
Trichloroethene	0.8 U	0.8 U	0.8 U
Trichlorofluoromethane (Freon-11)	1.5 U	1.5 U	1.5 U
Vinyl chloride	0.8 U	0.8 U	0.8 U
Xylene, total	1.8 U	1.8 U	1.8 U
Semivolatile Organic Compounds (UG/L)			
1,1-Biphenyl	5.9 U	6.7 U	5.8 U
2,2'-Oxybis(1-chloropropane)	1.96 U	2.22 U	1.92 U
2,4,5-Trichlorophenol	3.92 U	4.44 U	3.85 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	3.92 U 3.92 U	4.44 U 4.44 U	3.85 U 3.85 U
2,4-Dichlorophenol	3.92 U	4.44 U 4.44 U	3.85 U
2,4-Dinitrophenol	7.84 U	8.89 U	7.69 U
2,4-Dinitrotoluene	7.84 U	8.89 U	7.69 U
2,6-Dinitrotoluene	3.92 U	4.44 U	3.85 U
2-Chloronaphthalene	1.96 U	2.22 U	1.92 U
2-Chlorophenol 2-Methylnaphthalene	1.96 U 0.012 U	2.22 U 0.012 U	1.92 U 0.012 U
2-Methylphenol	3.92 U	0.012 U 4.44 U	3.85 U
2-Nitroaniline	3.92 U	4.44 U	3.85 U
2-Nitrophenol	3.92 U	4.44 U	3.85 U
3,3'-Dichlorobenzidine	3.92 U	4.44 U	3.85 U
3-Nitroaniline	3.9 U	4.4 U	3.8 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	3.92 U 1.96 U	4.44 U 2.22 U	3.85 U 1.92 U
4-Bromophenyi-phenyiether 4-Chloro-3-methylphenol	3.92 U	2.22 U 4.44 U	3.85 U
4-Chloroaniline	3.92 U	4.44 U	3.85 U
4-Chlorophenyl-phenylether	1.96 U	2.22 U	1.92 U

Station ID	CBD-S05-MW01	CBD-S05-MW02	CBD-S05-MW03
Sample ID	CBD-S05-GW01-0418	CBD-S05-GW02-0418	CBD-S05-GW03-0418
Sample Date	04/25/18	04/25/18	04/25/18
Chemical Name 4-Nitroaniline	3.02.11	4 44 11	2.05.11
4-Nitroaniline 4-Nitrophenol	3.92 U 7.8 U	4.44 U 8.9 U	3.85 U 7.7 U
Acenaphthene	0.031 U	0.03 U	0.029 U
Acenaphthylene	0.012 U	0.012 U	0.012 U
Acetophenone	5.9 U	6.7 U	5.8 U
Anthracene	0.02 U	0.02 U	0.019 U
Atrazine Benzaldehyde	5.9 U 5.9 U	6.7 U 6.7 U	5.8 U 5.8 U
Benzo(a)anthracene	0.012 U	0.009 J	0.0046 J
Benzo(a)pyrene	0.012 U	0.012 U	0.012 U
Benzo(b)fluoranthene	0.012 U	0.012 U	0.012 U
Benzo(g,h,i)perylene	0.012 U	0.012 U	0.012 U
Benzo(k)fluoranthene bis(2-Chloroethoxy)methane	0.012 U 1.96 U	0.012 U 2.22 U	0.012 U 1.92 U
bis(2-Chloroethyl)ether	1.96 U	2.22 U	1.92 U
bis(2-Ethylhexyl)phthalate	5.88 U	6.67 U	5.77 U
Butylbenzylphthalate	1.96 U	2.22 U	1.92 U
Caprolactam	49 U	56 U	48 U
Carbazole Chrysene	1.96 U 0.012 U	2.22 U 0.0095 J	1.92 U 0.0065 J
Dibenz(a,h)anthracene	0.012 U	0.0095 J 0.012 U	0.0065 J 0.012 U
Dibenzofuran	1.96 U	2.22 U	1.92 U
Diethylphthalate	1.96 U	2.22 U	1.92 U
Dimethyl phthalate	2 U	2.2 U	1.9 U
Di-n-butylphthalate Di-n-octylphthalate	1.96 U 1.96 U	2.22 U 2.22 U	1.92 U 1.92 U
Fluoranthene	0.0053 J	0.0085 J	0.0051 J
Fluorene	0.02 U	0.02 U	0.019 U
Hexachlorobenzene	1.96 U	2.22 U	1.92 U
Hexachlorobutadiene	1.96 U	2.22 U	1.92 U
Hexachlorocyclopentadiene	3.92 U	4.44 U 4.44 U	3.85 U
Hexachloroethane Indeno(1,2,3-cd)pyrene	3.92 U 0.02 U	4.44 U 0.02 U	3.85 U 0.019 U
Isophorone	1.96 U	2.22 U	1.92 U
Naphthalene	0.012 U	0.012 U	0.012 U
n-Nitroso-di-n-propylamine	3.92 U	4.44 U	3.85 U
n-Nitrosodiphenylamine	3.92 U	4.44 U	3.85 U
Nitrobenzene Pentachlorophenol	1.96 U 3.92 U	2.22 U 4.44 U	1.92 U 3.85 U
Phenanthrene	0.02 U	0.02 U	0.019 U
Phenol	3.92 U	4.44 U	3.85 U
Pyrene	0.02 U	0.02 U	0.019 U
Total cresols	3.92 U	4.44 U	3.85 U
Pesticide/Polychlorinated Biphenyls (UG/L)			
4,4'-DDD	9.40E-04 U	1.00E-03 U	9.80E-04 U
4,4'-DDE	0.0015 U	0.0016 U	0.0016 U
4,4'-DDT	1.00E-03 U	0.0011 U	0.0011 U
Aldrin	9.40E-04 U	1.00E-03 U	9.80E-04 U
alpha-BHC alpha-Chlordane	0.0014 U 9.40E-04 U	0.0015 U 1.00E-03 U	0.0015 U 9.80E-04 U
aipna-Chiordane Aroclor-1016	9.40E-04 U 0.094 UJ	1.00E-03 U 0.1 U	9.80E-04 U 0.098 UJ
Aroclor-1221	0.094 UJ	0.1 U	0.098 UJ
Aroclor-1232	0.094 UJ	0.1 U	0.098 UJ
Aroclor-1242	0.094 UJ	0.1 U	0.098 UJ
Aroclor-1248 Aroclor-1254	0.094 UJ 0.094 UJ	0.1 U 0.1 U	0.098 UJ 0.098 UJ
Aroclor-1260	0.094 UJ	0.1 U	0.098 UJ
beta-BHC	0.0014 U	0.0015 U	0.0015 U
delta-BHC	0.0011 U	0.0012 U	0.0012 U
Dieldrin	9.40E-04 U	1.00E-03 U	9.80E-04 U
Endosulfan I Endosulfan II	0.0011 U	0.0012 U	0.0012 U
Endosulfan II Endosulfan sulfate	9.40E-04 U 9.40E-04 U	1.00E-03 U 1.00E-03 U	9.80E-04 U 9.80E-04 U
Endrin	9.40E-04 U	1.00E-03 U	9.80E-04 U
Endrin aldehyde	9.40E-04 U	1.00E-03 U	9.80E-04 U
Endrin ketone	9.40E-04 U	1.00E-03 U	9.80E-04 U
gamma-BHC (Lindane)	9.40E-04 UJ	1.00E-03 UJ	9.80E-04 UJ
Heptachlor Heptachlor epoxide	9.40E-04 U 0.0015 U	1.00E-03 U 0.0016 U	9.80E-04 U 0.0016 U
Methoxychlor	0.0013 U	0.0018 U	0.0018 U
Toxaphene	0.094 U	0.1 U	0.098 U
·			
Total Metals (UG/L)			

Appendix D - Site 5 Groundwater Analytical Data

Station ID	CBD-S05-MW01	CBD-S05-MW02	CBD-S05-MW03
Sample ID	CBD-S05-GW01-0418	CBD-S05-GW02-0418	CBD-S05-GW03-0418
Sample Date	04/25/18	04/25/18	04/25/18
Chemical Name			
Aluminum	26 J+	430	35 J+
Antimony	0.5 U	0.5 U	0.5 U
Arsenic	0.33 J	0.77	0.16 J
Barium	29	60	36
Beryllium	0.13 U	0.15 J	0.13 U
Cadmium	0.5	0.79	0.81
Calcium	155,000	106,000	61,900
Chromium	0.3 U	1.1	0.52
Cobalt	1	4.9	6.5
Copper	0.13 U	0.82	0.33 J
Iron	83	480	48
Lead	0.13 U	0.42 J	0.13 U
Magnesium	2,730	5,060	7,780
Manganese	29	56	44
Mercury	0.13 U	0.13 U	0.13 U
Nickel	4.4	8.8	21
Potassium	1,240	1,420	2,430
Selenium	0.61 U	0.75 U	0.88 U
Silver	0.13 U	0.13 U	0.13 U
Sodium	5,740	6,680	5,730
Thallium	0.5 U	0.5 U	0.16 J
Vanadium	0.59	1.5	0.47 J
Zinc	3 J+	15	30
Dissolved Metals (UG/L)			
Aluminum, Dissolved	4.2 J+	38	11 J+
Antimony, Dissolved	0.5 U	0.5 U	0.5 U
Arsenic, Dissolved	0.35 J	0.44 J	0.25 J
Barium, Dissolved	28	59	44
Beryllium, Dissolved	0.13 U	0.13 U	0.13 U
Cadmium, Dissolved	0.48 J	0.74	0.4 J
Calcium, Dissolved	149,000	117,000	74,200
Chromium, Dissolved	0.14 J	0.2 J	0.11 J
Cobalt, Dissolved	0.95 J	3.6	2
Copper, Dissolved	0.49 U	0.28 U	1.2
Iron, Dissolved	53	72	30
Lead, Dissolved	0.13 U	0.13 U	0.13 U
Magnesium, Dissolved	2,600	4,380	5,800
Manganese, Dissolved	27	50	42
Mercury, Dissolved	0.13 U	0.13 U	0.09 J
Nickel, Dissolved	4.4	7.3	6.6
Potassium, Dissolved	1,180	1,310	2,520
Selenium, Dissolved	0.5 U	0.29 J	0.75 J
Silver, Dissolved	0.13 U	0.13 U	0.13 U
Sodium, Dissolved Thallium. Dissolved	5,550	6,110 0.5 U	5,390 0.5 U
Vanadium, Dissolved	0.5 U 0.52		
Vanadium, Dissolved Zinc, Dissolved	4.4	0.76 8.3	0.34 J 7.5
ZIIIC, DISSOIVEU	4.4	0.3	7.5

Volidated Analytical Data\[Appendix E - Validated Data.xlsx], D'Onofrio, Jackie/WDC, 12/18/2018

Notes:

Shading indicates detections

- NA Not analyzed J Analyte present, value may or may not be accurate or
- precise
 J+ Analyte present, value may be biased high, actual value may be lower
 U - The material was analyzed for, but not detected
 UJ - Analyte not detected, quantitation limit may be
- inaccurate
- UG/L Micrograms per liter

Appendix D - Site 9 Groundwater Analytical Data

Station ID	CBD-S09-DP01	CBD-S09-DP03
Sample ID	CBD-S09-GW01P-1012	CBD-S09-GW01-1012
Sample Date	10/15/12	10/15/12
Chemical Name		
Volatile Organic Compounds (UG/L)	1	
1,1,1-Trichloroethane	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113) 1,1,2-Trichloroethane	0.5 U 0.5 U	0.5 U
1.1-Dichloroethane	0.5 U	0.5 U 0.5 U
1,1-Dichloroethene	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.5 U 0.5 U	0.5 U 0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U
1,3-Dichlorobenzene 1.4-Dichlorobenzene	0.5 U 0.5 U	0.5 U 0.5 U
2-Butanone	0.5 0 1 U	0.5 U
2-Hexanone	1 U	1 U
4-Methyl-2-pentanone	1 U	1 U
Acetone Benzene	2 UJ 0.2 U	2 U 0.2 U
Bromochloromethane	0.2 U	0.2 U
Bromodichloromethane	0.5 U	0.5 U
Bromoform	1 U	1 U
Bromomethane	0.5 U	0.87 B
Carbon disulfide Carbon tetrachloride	1 U 0.5 U	4.7 B 0.5 U
Chlorobenzene	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U
Chloroform	0.2 U	0.2 U
Chloromethane cis-1,2-Dichloroethene	0.5 U 0.5 U	0.51 B 0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U
Dichlorodifluoromethane (Freon-12) Ethylbenzene	0.5 U 0.5 U	0.5 U 0.5 U
Isopropylbenzene	0.5 U	0.5 U
m- and p-Xylene	1 U	1 U
Methyl acetate	1.8 B	1.9 B
Methylcyclohexane Methylene chloride	1 U	1 U 1 U
Methyl-tert-butyl ether (MTBE)	0.5 U	0.5 U
o-Xylene	0.2 U	0.2 U
Styrene	0.5 U	0.5 U
Tetrachloroethene Toluene	0.5 U 0.5 U	0.5 U 0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U
Trichlorofluoromethane (Freon-11) Vinyl chloride	0.5 U 0.5 U	0.5 U 0.5 U
	0.0 0	0.0 0
Semivolatile Organic Compounds (UG/L)		
1,1-Biphenyl	0.1 U	0.1 U
1,2,4,5-Tetrachlorobenzene 2,2'-Oxybis(1-chloropropane)	0.1 U 0.1 U	0.1 U 0.1 U
2,3,4,6-Tetrachlorophenol	0.5 U	0.5 U
2,4,5-Trichlorophenol	0.5 U	0.5 U
2,4,6-Trichlorophenol	0.5 U	0.5 U
2,4-Dichlorophenol 2,4-Dimethylphenol	0.25 U 0.5 U	0.25 U 0.5 U
2,4-Dinitrophenol	5.5 U	5 U
2,4-Dinitrotoluene	0.1 U	0.1 U
2,6-Dinitrotoluene	0.25 U	0.25 U
A L DIOCONONTINGIANA	0.1 U 0.1 U	0.1 U 0.1 U
2-Chloronaphthalene 2-Chlorophenol	0.1 0	
2-Chlorophenol	0.1 U	0.1 U
	0.1 U 0.1 U	0.1 U 0.1 U
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	0.1 U 0.5 U	0.1 U 0.5 U
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	0.1 U	0.1 U

Appendix D - Site 9 Groundwater Analytical Data

Station ID	CBD-S09-DP01	CBD-S09-DP03
Sample ID	CBD-S09-GW01P-1012	CBD-S09-GW01-1012
Sample Date	10/15/12	10/15/12
Chemical Name 4,6-Dinitro-2-methylphenol	1 U	1 U
4-Bromophenyl-phenylether	0.1 U	0.1 U
4-Chloro-3-methylphenol	0.5 U	0.5 U
4-Chloroaniline	0.5 U	0.5 U
4-Chlorophenyl-phenylether	0.05 U	0.05 U
4-Methylphenol	0.5 U	0.5 U
4-Nitroaniline 4-Nitrophenol	0.5 U 2 U	0.5 U 2 U
Acenaphthene	0.05 U	0.05 U
Acenaphthylene	0.05 U	0.05 U
Acetophenone	0.1 U	0.1 U
Anthracene	0.05 U	0.05 U
Atrazine Benzaldehyde	0.1 U 0.25 U	0.1 U 0.25 U
Benzo(a)anthracene	0.25 U	0.25 U
Benzo(a)pyrene	0.02 U	0.02 U
Benzo(b)fluoranthene	0.02 U	0.02 U
Benzo(g,h,i)perylene	0.09 B	0.1 U
Benzo(k)fluoranthene	0.02 U	0.02 U
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	0.05 U 0.1 U	0.05 U 0.1 U
bis(2-Chioroethyr)ether bis(2-Ethylhexyl)phthalate	0.1 U 0.5 U	0.1 U 0.5 U
Butylbenzylphthalate	0.5 U	0.5 U
Caprolactam	1 UL	1 UL
Carbazole	0.5 U	0.5 U
Chrysene	0.4 B	0.1 U
Dibenz(a,h)anthracene Dibenzofuran	0.02 U 0.1 U	0.02 U 0.1 U
Diethylphthalate	0.1 G 0.16 B	0.1 B
Dimethyl phthalate	0.25 U	0.25 U
Di-n-butylphthalate	0.5 U	0.5 U
Di-n-octylphthalate	0.5 U	0.5 U
Fluoranthene	0.06 B	0.05 U
Fluorene Hexachlorobenzene	0.05 U 0.1 U	0.05 U 0.1 U
Hexachlorobutadiene	0.1 U	0.05 U
Hexachlorocyclopentadiene	0.1 U	0.1 U
Hexachloroethane	0.1 U	0.1 U
Indeno(1,2,3-cd)pyrene	0.02 U	0.02 U
Isophorone Naphthalene	0.1 U 0.05 J	0.1 U 0.03 J
n-Nitroso-di-n-propylamine	0.03 J 0.1 U	0.03 J 0.1 U
n-Nitrosodiphenylamine	0.1 U	0.1 U
Nitrobenzene	0.25 U	0.25 U
Pentachlorophenol	0.5 U	0.5 U
Phenal	0.03 B	0.05 U
Phenol Pyrene	0.05 U 0.06 B	0.05 U 0.1 U
r yrene	0.00 B	0.1 0
Total Metals (UG/L)		
Aluminum	1,100 J	72 B
Antimony	0.4 B	0.5 U
Arsenic Barium	0.54 J 62	0.5 U 47
Beryllium	0.2 J	0.4 U
Cadmium	1.3	1.2
Calcium	34,000 J	14,000 J
Chromium	7.9 J	0.91 J
Cobalt	3.1	1.7
Copper Cyanide	13 J 4 U	2.6 B 4 U
Cyanide Iron	1,800 J	140 J
Lead	0.93 J	0.22 J
Magnesium	6,300 J	4,600 J
Manganese	110 J	21 J
Mercury	0.1 U	0.1 U
Nickel Potosojum	15 J	5.1 J
Potassium Selenium	10,000 1 U	9,100 1 U
Silver	0.1 U	0.1 U
Sodium	32,000	28,000
Thallium	0.29 J	0.22 B
Vanadium	2.9 J	0.45 J
Zinc	56 B	29 B

Appendix D - Site 9 Groundwater Analytical Data

Station ID	CBD-S09-DP01	CBD-S09-DP03
Sample ID	CBD-S09-GW01P-1012	CBD-S09-GW01-1012
Sample Date	10/15/12	10/15/12
Chemical Name		
Dissolved Metals (UG/L)		
Aluminum, Dissolved	23 B	17 B
Antimony, Dissolved	0.28 B	0.52 B
Arsenic, Dissolved	0.27 J	2
Barium, Dissolved	38	37
Beryllium, Dissolved	0.4 U	0.2 J
Cadmium, Dissolved	1.1	1.3
Calcium, Dissolved	13,000	15,000 L
Chromium (hexavalent), Dissolved	10 UJ	10 UJ
Chromium, Dissolved	0.6 J	1
Cobalt, Dissolved	1.5	1.5
Copper, Dissolved	1.4 B	1.6 B
Iron, Dissolved	30 J	8.1 J
Lead, Dissolved	0.5 U	0.45 J
Magnesium, Dissolved	4,700	5,100 L
Manganese, Dissolved	15	15
Mercury, Dissolved	0.1 U	0.1 U
Nickel, Dissolved	3.6	3.7
Potassium, Dissolved	8,900	9,500
Selenium, Dissolved	0.64 J	1.6
Silver, Dissolved	0.1 U	0.51
Sodium, Dissolved	29,000	32,000 L
Thallium, Dissolved	0.32 J	1
Vanadium, Dissolved	0.31 J	0.66 J
Zinc, Dissolved	22 B	25 B

Notes:

Shading indicates detections

NA - Not analyzed

- B Analyte not detected above the level reported in blanks
- J Analyte present, value may or may not be accurate or
- J Analyte present, value may be biased low, actual value may be higher
 U The material was analyzed for, but not detected
 UJ Analyte not detected, quantitation limit may be incontrate.

- inaccurate
 UL Analyte not detected, quantitation limit is probably

higher UG/L - Micrograms per liter

Appendix F Human Health Risk Screening Tables

Table 1. Summary of Data Used in Baseline Human Health Risk Assessment

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Medium/Sampling Station	Sample ID	Sample Type	Sample Date	Parameters
Site 3 Groundwater CBD-S03-MW01	CBD-S03-GW01-0418	N	4/2E/2019	VOC SVOC Posticide/PCP Total Motals Dissalved Motals
CBD-S03-MW02	CBD-S03-GW01-0418	N N	4/25/2018 5/3/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S03-MW03	CBD-S03-GW02-0518	N	4/25/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
Site 3 Surface Soil	055 000 01100 0110		1,23,2010	vol, ovol, vesticiae, vest, vesta metals, prosoved metals
CBD-S03-DP01	CBD-S03-SS01-1012	N	10/17/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S03-DP02	CBD-S03-SS02-1012	N	10/17/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S03-DP03	CBD-S03-SS03-1012	N	10/17/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S03-DP04	CBD-S03-SS04-1012	N	10/17/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S03-DP05	CBD-S03-SS05-1012	N	10/17/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S03-DP06	CBD-S03-SS06-000H	N	4/3/2018	Pesticide
CBD-S03-DP07	CBD-S03-SS07-000H	N	4/3/2018	Pesticide
CBD-S03-DP08	CBD-S03-SS08-000H	N	4/3/2018	Pesticide
CBD-S03-DP09	CBD-S03-SS09-000H	N	4/3/2018	Pesticide
CBD-S03-DP10	CBD-S03-SS10-000H	N	4/3/2018	Pesticide Pesticide
CBD-S03-DP11	CBD-S03-SS11-000H	N	4/3/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP11	CBD-S03-SS11P-000H	FD N	4/3/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP12 CBD-S03-DP13	CBD-S03-SS12-000H CBD-S03-SS13-000H	N N	4/4/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP13 CBD-S03-DP14	CBD-S03-SS14-000H	N N	4/3/2018 4/4/2018	SVOC, Pesticide/PCB, Total Metals SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP15	CBD-S03-SS15-000H	N N	4/3/2018	SVOC, Pesticide/PCB, Total Metals
Site 3 Subsurface Soil	CDD 303 3313 00011	14	4/3/2010	SVOC, I Esticiac/I CB, Total Mictals
CBD-S03-DP01	CBD-S03-SB01-1315	N	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP01	CBD-S03-SB01P-1315	FD	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP02	CBD-S03-SB02-2022	N	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP03	CBD-S03-SB03-2022	N	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP04	CBD-S03-SB04-1820	N	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP05	CBD-S03-SB05-1315	N	10/17/2012	VOC, SVOC, PCB, Total Metals
CBD-S03-DP06	CBD-S03-SB06-0810	N	4/3/2018	Pesticide
CBD-S03-DP07	CBD-S03-SB07-0810	N	4/3/2018	Pesticide
CBD-S03-DP08	CBD-S03-SB08-0810	N	4/3/2018	Pesticide
CBD-S03-DP09	CBD-S03-SB09-0810	N	4/3/2018	Pesticide
CBD-S03-DP10	CBD-S03-SB10-0810	N	4/3/2018	Pesticide
CBD-S03-DP11	CBD-S03-SB11-0810	N	4/3/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP12	CBD-S03-SB12-0810	N	4/4/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP13	CBD-S03-SB13-0810	N	4/3/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP14	CBD-S03-SB14-0810	N N	4/4/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S03-DP15 CBD-S03-DP15	CBD-S03-SB15-0810 CBD-S03-SB15P-0810	FD	4/3/2018 4/3/2018	SVOC, Pesticide/PCB, Total Metals SVOC, Pesticide/PCB, Total Metals
Site 4 Groundwater	CBD-303-3B13F-0010	10	4/3/2018	3VOC, resticite/rCb, Total Metals
CBD-S04-DP02	CBD-S04-GW02-1012	N	10/19/2012	VOC, SVOC, Total Metals, Dissolved Metals
CBD-S04-DP03	CBD-S04-GW03-1012	N	10/19/2012	VOC, SVOC, PCB, Total Metals, Dissolved Metals
CBD-S04-MW01	CBD-S04-GW01-0518	N	5/3/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S04-MW02	CBD-S04-GW02-0518	N	5/3/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S04-MW02	CBD-S04-GW02P-0518	FD	5/3/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S04-MW03	CBD-S04-GW03-0518	N	5/3/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
Site 4 Surface Soil				
CBD-S04-DP01	CBD-S04-SS01-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-DP01	CBD-S04-SS01P-1012	FD	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-DP02	CBD-S04-SS02-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-DP03	CBD-S04-SS03-1012	N .	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-DP04	CBD-S04-SS04-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-DP05 CBD-S04-S006	CBD-S04-SS05-1012 CBD-S04-SS06-1012	N N	10/18/2012 10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S04-S006 CBD-S04-DP07	CBD-S04-SS07-000H	N N	4/5/2018	Pesticide
CBD-S04-DP08	CBD-S04-SS08-000H	N N	4/5/2018	Pesticide
CBD-S04-DP09	CBD-S04-SS09-000H	N N	4/4/2018	Pesticide
CBD-S04-DP10	CBD-S04-SS10-000H	N	4/4/2018	Pesticide
CBD-S04-DP11	CBD-S04-SS11-000H	N	4/5/2018	Pesticide
CBD-S04-DP12	CBD-S04-SS12-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP13	CBD-S04-SS13-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP13	CBD-S04-SS13P-000H	FD	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP14	CBD-S04-SS14-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP15	CBD-S04-SS15-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP16	CBD-S04-SS16-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
Site 4 Subsurface Soil	1		T	T
CBD-S04-DP01	CBD-S04-SB01-1820	N	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S04-DP02	CBD-S04-SB02-1618	N .	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S04-DP03	CBD-S04-SB03-1416	N	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S04-DP04	CBD-S04-SB04-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S04-DP05	CBD-S04-SB05-1315	N	10/18/2012	VOC, SVOC, PCB, Total Metals

Table 1. Summary of Data Used in Baseline Human Health Risk Assessment

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Medium/Sampling Station	Sample ID	Sample Type	Sample Date	Parameters
CBD-S04-DP07	CBD-S04-SB07-0810	N	4/5/2018	Pesticide
CBD-S04-DP08	CBD-S04-SB08-0810	N	4/5/2018	Pesticide
CBD-S04-DP09	CBD-S04-SB09-0810	N	4/4/2018	Pesticide
CBD-S04-DP10	CBD-S04-SB10-0810	N	4/4/2018	Pesticide
CBD-S04-DP11	CBD-S04-SB11-0810	N	4/5/2018	Pesticide
CBD-S04-DP12	CBD-S04-SB12-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP12	CBD-S04-SB12P-0810	FD	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP13	CBD-S04-SB13-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP14	CBD-S04-SB14-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP15	CBD-S04-SB15-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S04-DP16	CBD-S04-SB16-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
Site 5 Groundwater		N		
CBD-S05-MW01	CBD-S05-GW01-0418	N	4/25/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S05-MW02	CBD-S05-GW02-0418	N	4/25/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
CBD-S05-MW03	CBD-S05-GW03-0418	N	4/25/2018	VOC, SVOC, Pesticide/PCB, Total Metals, Dissolved Metals
Site 5 Surface Soil				
CBD-S05-DP01	CBD-S05-SS01-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP01	CBD-S05-SS01P-1012	FD	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP02	CBD-S05-SS02-1012	N	10/19/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP03	CBD-S05-SS03-1012	N	10/18/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP04	CBD-S05-SS04-1012	N	10/19/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP05	CBD-S05-SS05-1012	N	10/19/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-S006	CBD-S05-SS06-1012	N	10/19/2012	VOC, SVOC, PCB, Total Metals, Wet Chemistry
CBD-S05-DP07	CBD-S05-SS07-000H	N	4/5/2018	Pesticide
CBD-S05-DP08	CBD-S05-SS08-000H	N	4/5/2018	Pesticide
CBD-S05-DP09	CBD-S05-SS09-000H	N	4/5/2018	Pesticide
CBD-S05-DP10	CBD-S05-SS10-000H	N	4/5/2018	Pesticide
CBD-S05-DP11	CBD-S05-SS11-000H	N	4/5/2018	Pesticide
CBD-S05-DP12	CBD-S05-SS12-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP13	CBD-S05-SS13-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP13	CBD-S05-SS13P-000H	FD	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP14	CBD-S05-SS14-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP15	CBD-S05-SS15-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP16	CBD-S05-SS16-000H	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS17	CBD-S05-SS17-000H	N	4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS18	CBD-S05-SS18-000H	N FD	4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS18	CBD-S05-SS18P-000H		4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS19	CBD-S05-SS19-000H	N N	4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS20	CBD-S05-SS20-000H	N N	4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS21	CBD-S05-SS21-000H	N N	4/6/2018 4/6/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-SS22 CBD-S05-SS23	CBD-S05-SS22-000H CBD-S05-SS23-000H	N N	4/6/2018	SVOC, Pesticide/PCB, Total Metals SVOC, Pesticide/PCB, Total Metals
Site 5 Subsurface Soil	CBD-303-3323-000H	IN	4/0/2018	3VOC, Festicide/FCB, Total Metals
CBD-S05-DP01	CBD-S05-SB01-2022	N	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP01	CBD-S05-SB01P-2022	FD	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP02	CBD-S05-SB02-2022	N N	10/19/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP03	CBD-S05-SB03-1820	N	10/18/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP04	CBD-S05-SB04-2022	N N	10/19/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP05	CBD-S05-SB05-2022	N	10/19/2012	VOC, SVOC, PCB, Total Metals
CBD-S05-DP07	CBD-S05-SB07-0810	N	4/5/2018	Pesticide
CBD-S05-DP08	CBD-S05-SB08-0810	N	4/5/2018	Pesticide
CBD-S05-DP09	CBD-S05-SB09-0810	N	4/5/2018	Pesticide
CBD-S05-DP10	CBD-S05-SB10-0810	N	4/5/2018	Pesticide
CBD-S05-DP11	CBD-S05-SB11-0810	N	4/5/2018	Pesticide
CBD-S05-DP12	CBD-S05-SB12-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP12	CBD-S05-SB12P-0810	FD	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP13	CBD-S05-SB13-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP14	CBD-S05-SB14-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP15	CBD-S05-SB15-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
CBD-S05-DP16	CBD-S05-SB16-0810	N	4/5/2018	SVOC, Pesticide/PCB, Total Metals
Site 7 Surface Soil			,,,,====	2.23, . 23.03, . 22, . 23.0
CBD-S07-DP01	CBD-S07-SS01-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP01	CBD-S07-SS01P-1012	FD	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP02	CBD-S07-SS02-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP03	CBD-S07-SS03-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP04	CBD-S07-SS04-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
	CBD-S07-SS05-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP05	355 307 3303 1012			•
CBD-S07-DP05 CBD-S07-DP06	CBD-S07-SS06-1012	N	10/22/2012	V()(* P(*B. Lotal Metals, Wet Chemistry
CBD-S07-DP06	CBD-S07-SS06-1012	N N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry VOC PCB, Total Metals, Wet Chemistry
CBD-S07-DP06 CBD-S07-DP07	CBD-S07-SS07-1012	N	10/22/2012	VOC, PCB, Total Metals, Wet Chemistry
CBD-S07-DP06				•

Table 1. Summary of Data Used in Baseline Human Health Risk Assessment

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Madium/Sampling Station	Commin ID	Cample Tree	Cample Date	Dovometove
Medium/Sampling Station CBD-S07-DP20	Sample ID CBD-S07-SS20-000H	Sample Type N	Sample Date 4/3/2018	Parameters PCB, Total Metals
CBD-S07-DP21	CBD-307-3320-000H	N	4/3/2018	PCB, Total Metals PCB, Total Metals
CBD-S07-DP21	CBD-S07-SS21P-000H	FD	4/3/2018	PCB, Total Metals
CBD-S07-DP22	CBD-S07-SS22-000H	N	4/3/2018	PCB, Total Metals
CBD-S07-DP23	CBD-S07-SS23-000H	N	4/3/2018	PCB, Total Metals
CBD-S07-DP24	CBD-S07-SS24-000H	N	4/3/2018	PCB, Total Metals
CBD-S07-DP25	CBD-S07-SS25-000H	N	4/3/2018	PCB, Total Metals
CBD-S07-DP26	CBD-S07-SS26-000H	N	4/3/2018	PCB, Total Metals
CBD-S07-DP27	CBD-S07-SS27-000H	N	4/4/2018	PCB, Total Metals
Site 7 Subsurface Soil	•		•	·
CBD-S07-DP01	CBD-S07-SB01-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP01	CBD-S07-SB01P-0608	FD	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP02	CBD-S07-SB02-0507	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP03	CBD-S07-SB03-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP04	CBD-S07-SB04-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP05	CBD-S07-SB05-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP06	CBD-S07-SB06-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP07	CBD-S07-SB07-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP08	CBD-S07-SB08-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP09	CBD-S07-SB09-0608	N	10/22/2012	VOC, PCB, Total Metals
CBD-S07-DP10	CBD-S07-SB10-0204	N	10/17/2012	VOC, PCB, Total Metals
CBD-S07-DP10	CBD-S07-SB10P-0204	FD	10/17/2012 10/17/2012	VOC, PCB, Total Metals
CBD-S07-DP11 CBD-S07-DP12	CBD-S07-SB11-0204 CBD-S07-SB12-0204	N N	10/17/2012	VOC, PCB, Total Metals VOC, PCB, Total Metals
		N N	10/17/2012	
CBD-S07-DP13 CBD-S07-DP14	CBD-S07-SB13-0204 CBD-S07-SB14-0204	N N	10/17/2012	VOC, PCB, Total Metals VOC, PCB, Total Metals
CBD-S07-DP15	CBD-307-3B14-0204 CBD-S07-SB15-0204	N	10/17/2012	VOC, PCB, Total Metals VOC, PCB, Total Metals
CBD-S07-DP16	CBD-S07-SB16-0204	N	10/19/2012	VOC, PCB, Total Metals
CBD-S07-DP17	CBD-S07-SB17-0204	N	10/19/2012	VOC, PCB, Total Metals
CBD-S07-DP18	CBD-S07-SB18-0204	N	10/19/2012	VOC, PCB, Total Metals
CBD-S07-DP19	CBD-S07-SB19-0204	N	10/19/2012	VOC, PCB, Total Metals
CBD-S07-DP20	CBD-S07-SB20-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP21	CBD-S07-SB21-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP22	CBD-S07-SB22-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP23	CBD-S07-SB23-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP24	CBD-S07-SB24-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP25	CBD-S07-SB25-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP25	CBD-S07-SB25P-0508	FD	4/3/2018	PCB, Total Metals
CBD-S07-DP26	CBD-S07-SB26-0508	N	4/3/2018	PCB, Total Metals
CBD-S07-DP27	CBD-S07-SB27-0508	N	4/4/2018	PCB, Total Metals
Site 9 Surface Soil	T T		1	
CBD-S09-DP01	CBD-S09-SS01-1012	N	10/12/2012	VOC, SVOC, Total Metals, Wet Chemistry
CBD-S09-DP01	CBD-S09-SS01P-1012	FD	10/12/2012	VOC, SVOC, Total Metals, Wet Chemistry
CBD-S09-DP02	CBD-S09-SS02-1012	N	10/12/2012	VOC, SVOC, Total Metals, Wet Chemistry
CBD-S09-DP03	CBD-S09-SS03-1012	N N	10/12/2012 10/12/2012	VOC, SVOC, Total Metals, Wet Chemistry
CBD-S09-DP04 CBD-S09-DP05	CBD-S09-SS04-1012 CBD-S09-SS05-000H	N N	4/4/2018	VOC, SVOC, Total Metals, Wet Chemistry SVOC, Total Metals
CBD-S09-DP06	CBD-S09-SS06-000H	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP06	CBD-S09-SS06P-000H	FD	4/4/2018	SVOC, Total Metals
CBD-S09-DP07	CBD-S09-SS07-000H	N N	4/4/2018	SVOC, Total Metals
CBD-S09-DP08	CBD-S09-SS08-000H	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP09	CBD-S09-SS09-000H	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP10	CBD-S09-SS10-000H	N	4/4/2018	SVOC, Total Metals
Site 9 Subsurface Soil				·
CBD-S09-DP01	CBD-S09-SB01-1315	N	10/12/2012	VOC, SVOC, Total Metals
CBD-S09-DP02	CBD-S09-SB02-1315	N	10/12/2012	VOC, SVOC, Total Metals
CBD-S09-DP03	CBD-S09-SB03-1315	N	10/12/2012	VOC, SVOC, Total Metals
CBD-S09-DP04	CBD-S09-SB04-1315	N	10/12/2012	VOC, SVOC, Total Metals
CBD-S09-DP05	CBD-S09-SB05-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP06	CBD-S09-SB06-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP07	CBD-S09-SB07-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP08	CBD-S09-SB08-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP09	CBD-S09-SB09-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP10	CBD-S09-SB10-0810	N	4/4/2018	SVOC, Total Metals
CBD-S09-DP10	CBD-S09-SB10P-0810	FD	4/4/2018	SVOC, Total Metals
Surface Soil	CDD AOD 5504 4043	.	10/15/2012	1
CBD-AOD-SO01	CBD-AOD-SS01-1012	N	10/15/2012	Lead
CBD-AOD-SO01	CBD-AOD-SS01P-1012	FD	10/15/2012	Lead
CBD-AOD-SO02 CBD-AOD-SO03	CBD-AOD-SS02-1012 CBD-AOD-SS03-1012	N N	10/15/2012 10/15/2012	Lead Lead
CBD-AOD-SO04	CBD-AOD-SS04-1012	N N	10/15/2012	Lead Lead
CDD-AOD-3004	CDD 400-3304-1017	IN	10/13/2012	LCau

Table 1. Summary of Data Used in Baseline Human Health Risk Assessment

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Medium/Sampling Station	Sample ID	Sample Type	Sample Date	Parameters
CBD-AOD-DP05	CBD-AOD-SS05-000H	N	4/11/2018	Lead
CBD-AOD-DP07	CBD-AOD-SS07-000H	N	4/11/2018	Lead
CBD-AOD-DP10	CBD-AOD-SS10-000H	N	4/11/2018	Lead
CBD-AOD-DP11	CBD-AOD-SS11-000H	N	4/11/2018	Lead
CBD-AOD-DP11	CBD-AOD-SS11P-000H	FD	4/11/2018	Lead
CBD-AOD-DP12	CBD-AOD-SS12-000H	N	4/11/2018	Lead
CBD-AOD-DP12	CBD-AOD-SS12P-000H	FD	4/11/2018	Lead
CBD-AOD-DP13	CBD-AOD-SS13-000H	N	4/11/2018	Lead
CBD-AOD-DP13	CBD-AOD-SS13P-000H	FD	4/11/2018	Lead
CBD-AOD-DP18	CBD-AOD-SS18-000H	N	4/11/2018	Lead
CBD-AOD-DP19	CBD-AOD-SS19-000H	N	4/11/2018	Lead
CBD-AOD-DP21	CBD-AOD-SS21-000H	N	4/11/2018	Lead
CBD-AOD-DP25	CBD-AOD-SS25-000H	N	4/11/2018	Lead
Subsurface Soil				
CBD-AOD-DP05	CBD-AOD-SB05-1H02	N	4/11/2018	Lead
CBD-AOD-DP07	CBD-AOD-SB07-1H02	N	4/11/2018	Lead
CBD-AOD-DP10	CBD-AOD-SB10-1H02	N	4/11/2018	Lead
CBD-AOD-DP11	CBD-AOD-SB11-1H02	N	4/11/2018	Lead
CBD-AOD-DP11	CBD-AOD-SB11P-1H02	FD	4/11/2018	Lead
CBD-AOD-DP12	CBD-AOD-SB12-1H02	N	4/11/2018	Lead
CBD-AOD-DP12	CBD-AOD-SB12P-1H02	FD	4/11/2018	Lead
CBD-AOD-DP13	CBD-AOD-SB13-1H02	N	4/11/2018	Lead
CBD-AOD-DP13	CBD-AOD-SB13P-1H02	FD	4/11/2018	Lead
CBD-AOD-DP18	CBD-AOD-SB18-1H02	N	4/11/2018	Lead
CBD-AOD-DP19	CBD-AOD-SB19-1H02	N	4/11/2018	Lead
CBD-AOD-DP21	CBD-AOD-SB21-1H02	N	4/11/2018	Lead
CBD-AOD-DP25	CBD-AOD-SB25-1H02	N	4/11/2018	Lead

Notes:

N = normal sample

FD = field duplicate sample

Appendix F.1 Site 3 Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potentail Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Surface Soil	108-10-1	4-Methyl-2-pentanone	3.0E-03 J	3.0E-03 J	MG/KG	CBD-S03-SS03-1012	1/5	0.0042 - 0.005	3.0E-03	N/A	3.3E+03 N	1.4E-01	SSL	NO	BSL
II I	67-64-1	Acetone	6.5E-02 J	6.5E-02 J	MG/KG	CBD-S03-SS05-1012	1/5	0.031 - 0.071	6.5E-02	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	67-66-3	Chloroform	1.4E-04 J	1.4E-04 J	MG/KG	CBD-S03-SS05-1012	1/5	0.00018 - 0.00028	1.4E-04	N/A	3.2E-01 C	6.1E-05	SSL	NO	BSL
	76-13-1	Trichlorofluoromethane (Freon-11)	2.8E-04 J	2.8E-04 J	MG/KG	CBD-S03-SS03-1012	1/5	0.21 - 0.25	2.8E-04	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	83-32-9	Acenaphthene	7.6E-04 J	1.5E-03 J	MG/KG	CBD-S03-SS04-1012	3/10	0.0011 - 0.0018	1.5E-03	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	6.9E-04 J	1.2E-02	MG/KG	CBD-S03-SS14-000H	3/10	0.0011 - 0.0018	1.2E-02	N/A	3.6E+02 N	N/A		NO	BSL
	120-12-7	Anthracene	2.6E-03 J	1.3E-02	MG/KG	CBD-S03-SS14-000H	2/10	0.0011 -0.00 65	1.3E-02	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
11 1	56-55-3	Benzo(a)anthracene	1.5E-02	2.9E-02	MG/KG	CBD-S03-SS14-000H	2/10	0.0018 - 0.041	2.9E-02	N/A	1.1E+00 C	1.1E-02	SSL	NO	BSL
II I	50-32-8	Benzo(a)pyrene	2.9E-03 J	4.8E-02	MG/KG	CBD-S03-SS04-1012	6/10	0.0029 - 0.0074	4.8E-02	N/A	1.1E-01 C	2.9E-02	SSL	NO	BSL
	205-99-2	Benzo(b)fluoranthene	1.5E-02	1.2E-01	MG/KG	CBD-S03-SS04-1012	4/10	0.0023 - 0.023	1.2E-01	N/A	1.1E+00 C	3.0E-01	SSL	NO	BSL
	191-24-2	Benzo(g,h,i)perylene	9.1E-03 J	4.2E-02	MG/KG	CBD-S03-SS04-1012, CBD-S03-SS14-000H	4/10	0.0018 - 0.01	4.2E-02	N/A	1.8E+02 N	N/A		NO	BSL
II I	207-08-9	Benzo(k)fluoranthene	1.3E-02	5.8E-02	MG/KG	CBD-S03-SS04-1012	3/10	0.0026 - 0.0089	5.8E-02	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
II I	218-01-9	Chrysene	2.4E-02 J	4.7E-02	MG/KG	CBD-S03-SS14-000H	2/10	0.0022 - 0.045	4.7E-02	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
ll l	53-70-3	Dibenz(a,h)anthracene	3.7E-03 J	1.0E-02 J	MG/KG	CBD-S03-SS14-000H	5/10	0.0029 - 0.01	1.0E-02	N/A	1.1E-01 C	9.6E-02	SSL	NO	BSL
II I	206-44-0	Fluoranthene	2.9E-02 J	5.2E-02	MG/KG	CBD-S03-SS14-000H	3/10	0.0018 - 0.011	5.2E-02	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	1.1E-03 J	2.1E-03 J	MG/KG	CBD-S03-SS14-000H	3/10	0.0018 - 0.04	2.1E-03	N/A	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.0E-02 J	5.1E-02	MG/KG	CBD-S03-SS14-000H	4/10	0.0036 - 0.01	5.1E-02	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	85-01-8	Phenanthrene	6.6E-03 J	2.1E-02	MG/KG	CBD-S03-SS04-1012	4/10	0.0011 - 0.0078	2.1E-02	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	3.4E-03 J	6.8E-02	MG/KG	CBD-S03-SS04-1012	5/10	0.0015 - 0.013	6.8E-02	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	72-55-9	4,4'-DDE	2.7E-03	1.4E-02	MG/KG	CBD-S03-SS15-000H	3/9	0.00013 - 0.00029	1.4E-02	N/A	2.0E+00 C	1.1E-02	SSL	NO	BSL
	11096-82-5	Aroclor-1260	4.1E-02	5.5E+00	MG/KG	CBD-S03-SS03-1012	10/10	0.0071 - 0.290	5.5E+00	N/A	2.4E-01 C	5.5E-03	SSL	YES	ASL
	7429-90-5	Aluminum	4.5E+03	7.9E+03	MG/KG	CBD-S03-SS05-1012	10/10	N/A	7.9E+03	1.3E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	7.6E-02 J	9.0E-01	MG/KG	CBD-S03-SS03-1012	10/10	N/A	9.0E-01	4.2E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	1.2E+00	1.4E+01	MG/KG	CBD-S03-SS03-1012	10/10	N/A	1.4E+01	6.4E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	9.8E+00	4.4E+01	MG/KG	CBD-S03-SS05-1012	10/10	N/A	4.4E+01	5.8E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	2.4E-01 J	6.4E-01	MG/KG	CBD-S03-SS05-1012	10/10	N/A	6.4E-01	8.1E-01	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	5.5E-02	1.7E+00	MG/KG	CBD-S03-SS15-000H	10/10	N/A	1.7E+00	1.7E+00	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	1.8E+02	7.8E+05	MG/KG	CBD-S03-SS11-000H	10/10	N/A	7.8E+05	9.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	1.5E-01 J	1.5E-01 J	MG/KG	CBD-S03-SS01-1012	1/1	N/A	1.5E-01	4.0E-01	3.0E-01 C	6.7E-04	SSL	NO	BSL
	7440-47-3	Chromium	6.2E+00	1.6E+01	MG/KG	CBD-S03-SS13-000H	10/10	N/A	1.6E+01	3.1E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	1.4E+00	3.9E+00	MG/KG	CBD-S03-SS14-000H	10/10	N/A	3.9E+00	1.2E+01	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.9E+00	1.6E+01	MG/KG	CBD-S03-SS15-000H	10/10	N/A	1.6E+01	2.7E+01	3.1E+02 N	2.8E+00	SSL	NO	BSL
	57-12-5	Cyanide	4.3E-02 J	4.3E-02 J	MG/KG	CBD-S03-SS05-1012	1/5	N/A	4.3E-02	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	5.6E+03	1.0E+04	MG/KG	CBD-S03-SS13-000H	10/10	N/A	1.0E+04	4.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	2.9E+00	9.5E+01	MG/KG	CBD-S03-SS15-000H	10/10	N/A	9.5E+01	5.0E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	4.8E+02	8.0E+05	MG/KG	CBD-S03-SS11-000H	10/10	N/A	8.0E+05	3.8E+03	N/A	N/A	<u> </u>	NO	NUT

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potentail Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
	7439-96-5	Manganese	2.0E+01	1.6E+02	MG/KG	CBD-S03-SS01-1012	10/10	N/A	1.6E+02	2.0E+02	1.8E+02 N	2.8E+00	SSL	NO	BSL
	7439-97-6	Mercury	7.8E-03 J	1.2E-02 J	MG/KG	CBD-S03-SS01-1012	4/10	0.017 - 0.19	1.2E-02	1.9E-01	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	2.3E+00	1.0E+01	MG/KG	CBD-S03-SS01-1012	10/10	N/A	1.0E+01	1.2E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	2.5E+02	5.8E+05	MG/KG	CBD-S03-SS11-000H	10/10	N/A	5.8E+05	1.5E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	2.5E-01	1.3E+00	MG/KG	CBD-S03-SS12-000H	9/10	N/A	1.3E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	2.4E-02 J	1.4E-01 J	MG/KG	CBD-S03-SS13-000H	8/10	0.15 - 0.19	1.4E-01	1.4E+00	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.4E+01 J+	3.8E+05 J	MG/KG	CBD-S03-SS11P-000H	4/10	6.3 - 12.9	3.8E+05	3.1E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	8.0E-02	2.4E-01 J	MG/KG	CBD-S03-SS05-1012 : CBD-S03-SS12-000H	10/10	N/A	2.4E-01	1.3E+00	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	8.2E+00	1.8E+01	MG/KG	CBD-S03-SS03-1012	10/10	N/A	1.8E+01	3.0E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	2.9E+01	7.0E+01	MG/KG	CBD-S03-SS15-000H	8/10	N/A	7.0E+01	7.9E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).

4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10⁻⁶ for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.1a. Step 2 Surface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aroclor-1260	10 / 10	5.5E+00	CBD-S03-SS03-1012	N/A	2.4E-01	N/A	2E-05	N/A
Aluminum	10 / 10	7.9E+03	CBD-S03-SS05-1012	7.7E+04	N/A	0.1	N/A	Neurological
Arsenic	10 / 10	1.4E+01	CBD-S03-SS03-1012	3.5E+01	6.8E-01	0.4	2E-05	Cardiovascular, Dermal
Cobalt	10 / 10	3.9E+00	CBD-S03-SS14-000H	2.3E+01	4.2E+02	0.2	9E-09	Thyroid, Respiratory
Iron	10 / 10	1.0E+04	CBD-S03-SS13-000H	5.5E+04	N/A	0.2	N/A	Gastrointestinal
Thallium	10 / 10	2.4E-01 J	CBD-S03-SS05-1012 : CBD-S03-SS12-000H	7.8E-01	N/A	0.3	N/A	Dermal
Cumulative Hazard Index ^c			·			1		
Cumulative Cancer Risk ^d							4E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading. COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.1b. Step 3 Surface Soil Screening - Risk Ratio, 95% UCL, Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aroclor-1260	10 / 10	3.7E+00	95% Adjusted Gamma UCL	1, 3	N/A	2.4E-01	N/A	2E-05	NA
Arsenic	10 / 10	6.1E+00	95% H-UCL	1	3.5E+01	6.8E-01	0.2	9E-06	Cardiovascular, Dermal
Thallium	10 / 10	2.1E-01	95% Student's-t UCL	2	7.8E-01	N/A	0.3	N/A	Dermal
Cumulative Hazard Index ^c			•				0.4		
Cumulative Cancer Risk ^d								2E-05	
				•	•	•	Tota	Cardiovascular HI =	0.2

Notes:

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

UCL = Upper Confidence Limit

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users quide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

0.4

Total Dermal HI

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.1c. Comparison of Concentrations of COPCs to Background Concentrations - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Exceeds Background?
Surface Soil	7440-38-2	Arsenic	1.2E+00	1.4E+01	MG/KG	CBD-S03-SS03-1012	10/10	N/A	1.4E+01	6.4E+00	YES

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Background value is the surface soil background threshold value (BTV).

bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

N/A = not applicable

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 22 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion
															or Selection
Subsurface Soil	71-43-2	Benzene	3.8E-04 J	3.8E-04 J	MG/KG	CBD-S03-SB04-1820	1/5	0.00047 - 0.0009	3.8E-04	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	100-41-4	Ethylbenzene	2.2E-04 J	2.2E-04 J	MG/KG	CBD-S03-SB04-1820	1/5	0.00047 - 0.0009	2.2E-04	N/A	5.8E+00 C	1.7E-03	SSL	NO	BSL
	m&pXYLENE	m- and p-Xylene	4.3E-04 J	4.3E-04 J	MG/KG	CBD-S03-SB04-1820	1/5	0.00047 - 0.0009	4.3E-04	N/A	5.8E+01 N	1.9E-02	SSL	NO	BSL
	108-87-2	Methylcyclohexane	1.8E-04 J	1.8E-04 J	MG/KG	CBD-S03-SB04-1820	1/5	0.00047 - 0.0009	1.8E-04	N/A	6.1E+01 N	N/A		NO	BSL
	75-09-2	Methylene chloride	1.8E-02	1.8E-02	MG/KG	CBD-S03-SB05-1315	1/5	0.00047 - 0.0009	1.8E-02	N/A	3.5E+01 N	2.7E-03	SSL	NO	BSL
	108-88-3	Toluene	1.1E-03 J	1.1E-03 J	MG/KG	CBD-S03-SB04-1820	1/5	0.00047 - 0.0009	1.1E-03	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	76-13-1	Trichlorofluoromethane (Freon-11)	1.5E-03 J	1.5E-03 J	MG/KG	CBD-S03-SB02-2022	1/5	0000.23 - 0.00045	1.5E-03	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	83-32-9	Acenaphthene	5.8E-04 J	5.8E-04 J	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0029	5.8E-04	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	120-12-7	Anthracene	1.7E-03 J	1.7E-03 J	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0054	1.7E-03	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	1.1E-02	1.1E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0054	1.1E-02	N/A	1.1E+00 C	1.1E-02	SSL	NO	BSL
	50-32-8	Benzo(a)pyrene	1.4E-02	1.4E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0032 - 0.0054	1.4E-02	N/A	1.1E-01 C	2.9E-02	SSL	NO	BSL
	205-99-2	Benzo(b)fluoranthene	2.6E-02	2.6E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0037 - 0.0083	2.6E-02	N/A	1.1E+00 C	3.0E-01	SSL	NO	BSL
	191-24-2	Benzo(g,h,i)perylene	1.2E-02	1.2E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0083	1.2E-02	N/A	1.8E+02 N	N/A		NO	BSL
	218-01-9	Chrysene	1.6E-02	1.6E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0054	1.6E-02	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	3.2E-03 J	3.2E-03 J	MG/KG	CBD-S03-SB12-0810	1/10	0.0032 - 0.0083	3.2E-03	N/A	1.1E-01 C	9.6E-02	SSL	NO	BSL
	206-44-0	Fluoranthene	1.6E-02	1.6E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0054	1.6E-02	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.5E-02	1.5E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0037 - 0.0083	1.5E-02	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	85-01-8	Phenanthrene	8.6E-03 J	8.6E-03 J	MG/KG	CBD-S03-SB12-0810	1/10	0.0019 - 0.0083	8.6E-03	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	1.3E-02	1.3E-02	MG/KG	CBD-S03-SB12-0810	1/10	0.0037 - 0.0083	1.3E-02	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	11096-82-5	Aroclor-1260	4.9E-03 J	8.1E-02	MG/KG	CBD-S03-SB03-2022	4/10	0.0037 - 0.0083	8.1E-02	N/A	2.4E-01 C	5.5E-03	SSL	NO	BSL
	7429-90-5	Aluminum	1.6E+03	6.1E+03	MG/KG	CBD-S03-SB04-1820	10/10	N/A	6.1E+03	1.6E+04	7.7E+03 N	3.0E+03	SSL	NO	BSL
	7440-36-0	Antimony	7.1E-02 J	1.8E-01	MG/KG	CBD-S03-SB02-2022	8/10	0.14 - 0.17	1.8E-01	5.5E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	2.8E-01	5.2E+00	MG/KG	CBD-S03-SB02-2022	10/10	N/A	5.2E+00	9.8E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	3.1E+00	1.4E+01	MG/KG	CBD-S03-SB02-2022	10/10	N/A	1.4E+01	5.7E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.2E-01	1.1E+00	MG/KG	CBD-S03-SB03-2022	6/10	0.27 - 0.33	1.1E+00	1.2E+00	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	1.8E-01	9.3E-01	MG/KG	CBD-S03-SB04-1820	3/10	0.14 - 0.17	9.3E-01	8.1E-01	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	4.7E+01	3.6E+04	MG/KG	CBD-S03-SB04-1820	9/10	N/A	3.6E+04	1.4E+03	N/A	N/A	002	NO	NUT
	18540-29-9	Chromium (hexavalent)	5.8E-01	5.8E-01	MG/KG	CBD-S03-SB01P-1315	1/1	N/A	5.8E-01	4.9E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL
	7440-47-3	Chromium	3.5E+00	2.6E+01	MG/KG	CBD-S03-SB04-1820	10/10	N/A	2.6E+01	5.8E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	2.4E-01 J	5.0E+00	MG/KG	CBD-S03-SB04-1820	10/10	N/A	5.0E+00	5.9E+00	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.1E+00	3.3E+00	MG/KG	CBD-S03-SB12-0810	10/10	N/A	3.3E+00	7.9E+00	3.1E+02 N	2.8E+00	SSL	NO	BSL
	7440-50-6 7439-89-6	Iron	1.8E+03	1.8E+04	MG/KG	CBD-S03-SB12-0010	10/10	N/A	1.8E+04	7.9E+00 3.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-93-0	Lead	1.6E+00	5.0E+00	MG/KG	CBD-S03-SB02-2022	10/10	N/A	5.0E+00	1.2E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
													JOL		
	7439-95-4 7439-96-5	Magnesium	1.8E+02 2.5E+00	1.9E+04 3.2E+02	MG/KG	CBD-S03-SB04-1820	10/10 10/10	N/A N/A	1.9E+04 3.2E+02	3.4E+03 2.3E+02	N/A 1.8E+02 N	N/A 2.8E+00	SSL	NO YES	NUT ASL
	7 439-96-5 7439-97-6	Manganese Mercury	1.0E-02 J	1.0E-02 J	MG/KG MG/KG	CBD-S03-SB04-1820 CBD-S03-SB01P-1315	1/10	N/A 0.016 - 0.17	3.2E+02 1.0E-02	4.0E-02	1.8E+02 N 2.3E+00 N	3.3E-03	SSL	NO NO	BSL

Table 2.2. Occurrence. Distribution and Selection of Chemicals of Potential Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 22 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	•	Concentration [2] Used for Screening		Screening [4] Toxicity Value		Potential		Rationale for [5] Contaminant Deletion or Selection
	7440-02-0	Nickel	5.9E-01	1.8E+01	MG/KG	CBD-S03-SB04-1820	10/10	N/A	1.8E+01	1.3E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	2.2E+02	1.8E+03	MG/KG	CBD-S03-SB04-1820	10/10	N/A	1.8E+03	1.6E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	3.0E-01 J	1.4E+00	MG/KG	CBD-S03-SB02-2022	7/10	0.27 - 0.33	1.4E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	3.5E-02 J	7.7E-02 J	MG/KG	CBD-S03-SB13-0810	8/10	0.14 - 0.17	7.7E-02	2.3E-01	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	2.1E+01 J+	2.0E+02	MG/KG	CBD-S03-SB04-1820	2/10	4.8 - 25	2.0E+02	1.4E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	6.6E-02 J	3.2E-01	MG/KG	CBD-S03-SB02-2022	8/10	0.14 - 0.17	3.2E-01	4.1E-01	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	3.2E+00	1.4E+01	MG/KG	CBD-S03-SB02-2022	10/10	N/A	1.4E+01	3.6E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	2.6E+00	5.4E+01	MG/KG	CBD-S03-SB02-2022	10/10	N/A	5.4E+01	6.4E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10⁻⁶ for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for xylenes used for m- and p-xylenes.

RSL value for n-hexane used as surrogate for methylcyclohexane.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.2a. Step 2 Subsurface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Arsenic	10 / 10	5.2E+00	CBD-S03-SB02-2022	3.5E+01	6.8E-01	0.1	8E-06	Cardiovascular, Dermal
Chromium (hexavalent)	1 / 1	5.8E-01	CBD-S03-SB01P-1315	2.3E+02	3.0E-01	0.003	2E-06	None Reported, Respiratory
Cobalt	10 / 10	5.0E+00	CBD-S03-SB04-1820	2.3E+01	N/A	0.2	N/A	Thyroid, Respiratory
Iron	10 / 10	1.8E+03	CBD-S03-SB02-2022	5.5E+04	N/A	0.03	N/A	Gastrointestinal
Manganese	10 / 10	3.2E+02	CBD-S03-SB04-1820	1.8E+03	N/A	0.2	N/A	Nervous
Thallium	8 / 10	3.2E-01	CBD-S03-SB02-2022	7.8E-01	N/A	0.4	N/A	Dermal
Cumulative Hazard Index ^c				•		1		
Cumulative Cancer Risk ^a							1E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

Total Cardiovascular HI = 0.1 Total Dermal HI = 0.6 Total Respiratory HI = Total Thyroid HI = 0.2 Total Gastrointestinal HI = 0.03 0.2 Total Nervous HI =

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2b. Step 3 Subsurface Soil Screening - Risk Ratio, 95% UCL, Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC		etectio		95%	UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Arsenic	10	1	10	3.2E+00	95% Student's-t UCL	1, 3	3.5E+01	6.8E-01	0.1	5E-06	Cardiovascular, Dermal
Thallium	10	/	10	2.0E-01	95% KM (t) UCL	2, 3	7.8E-01	N/A	0.3	N/A	Dermal
Cumulative Hazard Index ^c									0.3		
Cumulative Cancer Risk ^a										5E-06	
									To	otal Cardiovascular HI =	0.1
Notes:										Total Dermal HI =	0.3

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MDE = Maryland Department of the Environment

ELCR = Excess Lifetime Cancer Risk N/A = Not available/not applicable

HI = Hazard Index RSL = Regional Screening Levels, November 2019 HQ = Hazard Quotient USEPA = US Environmental Protection Agency

MG/KG = milligrams per kilogram UCL = Upper Confidence Limit

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.3. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future
Medium: Groundwater
Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier		Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value		Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
Groundwater	108-88-3	Toluene	1.3E+00 J	1.3E+00 J	UG/L	CBD-S03-GW03-0418	1/3	0.4 - 0.4	1.3E+00	ND	1.1E+02 N	1.0E+03	MCL	NO	BSL
	91-57-6	2-Methylnaphthalene	1.0E-02 J	1.0E-02 J	UG/L	CBD-S03-GW02-0518	1/3	0.012- 0.014	1.0E-02	ND	3.6E+00 N	N/A		NO	BSL
	56-55-3	Benzo(a)anthracene	5.9E-03 J	2.6E-02 J	UG/L	CBD-S03-GW03-0418	2/3	0.012- 0.014	2.6E-02	ND	3.0E-02 C	N/A		NO	BSL
	50-32-8	Benzo(a)pyrene	1.5E-02 J	1.5E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.012- 0.014	1.5E-02	ND	2.5E-02 C	2.0E-01	MCL	NO	BSL
	205-99-2	Benzo(b)fluoranthene	3.0E-02 J	3.0E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.012- 0.014	3.0E-02	ND	2.5E-01 C	N/A		NO	BSL
	191-24-2	Benzo(g,h,i)perylene	1.9E-02 J	1.9E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.012- 0.014	1.9E-02	ND	1.2E+01 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	3.7E-02 J	3.7E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.012- 0.014	3.7E-02	ND	2.5E+00 C	N/A		NO	BSL
	218-01-9	Chrysene	4.2E-03 J	3.5E-02 J	UG/L	CBD-S03-GW03-0418	3/3	0.012- 0.014	3.5E-02	1.3E-02	2.5E+01 C	N/A		NO	BSL
	206-44-0	Fluoranthene	5.2E-03 J	2.3E-02 J	UG/L	CBD-S03-GW03-0418	3/3	0.02 - 0.023	2.3E-02	2.6E-02	8.0E+01 N	N/A		NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	2.2E-02 J	2.2E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.02 - 0.023	2.2E-02	ND	2.5E-01 C	N/A		NO	BSL
	91-20-3	Naphthalene	1.8E-02 J	1.8E-02 J	UG/L	CBD-S03-GW02-0518	1/3	0.012- 0.014	1.8E-02	4.1E-02	1.7E-01 C	N/A		NO	BSL
	85-01-8	Phenanthrene	1.3E-02 J	3.0E-02 J	UG/L	CBD-S03-GW02-0518	2/3	0.02 - 0.023	3.0E-02	3.8E-02	1.8E+02 N	N/A		NO	BSL
	129-00-0	Pyrene	2.3E-02 J	2.3E-02 J	UG/L	CBD-S03-GW03-0418	1/3	0.02 - 0.023	2.3E-02	1.3E-02	1.2E+01 N	N/A		NO	BSL
	7429-90-5	Aluminum	1.6E+02	5.4E+03	UG/L	CBD-S03-GW01-0418	3/3	N/A	5.4E+03	5.0E+03	2.0E+03 N	N/A		YES	ASL
	7440-38-2	Arsenic	2.3E-01 J	5.9E-01	UG/L	CBD-S03-GW02-0518	3/3	N/A	5.9E-01	6.1E+00	5.2E-02 C	1.0E+01	MCL	YES	ASL
	7440-39-3	Barium	1.6E+01	3.4E+01	UG/L	CBD-S03-GW03-0418	3/3	N/A	3.4E+01	1.6E+02	3.8E+02 N	2.0E+03	MCL	NO	BSL
	7440-41-7	Beryllium	4.5E-01 J	9.6E-01	UG/L	CBD-S03-GW03-0418	2/3	0.13	9.6E-01	3.0E+00	2.5E+00 N	4.0E+00	MCL	NO	BSL
	7440-43-9	Cadmium	1.5E-01 J	3.2E+00	UG/L	CBD-S03-GW01-0418	3/3	N/A	3.2E+00	6.4E+01	9.2E-01 N	5.0E+00	MCL	YES	ASL
	7440-70-2	Calcium	6.0E+03	5.1E+04	UG/L	CBD-S03-GW02-0518	3/3	N/A	5.1E+04	1.3E+05	N/A	N/A		NO	NUT
	7440-47-3	Chromium	6.3E-01	3.4E+00	UG/L	CBD-S03-GW01-0418	2/3	0.15	3.4E+00	2.5E+01	3.5E-02 C	1.0E+02	MCL	YES	ASL
	7440-48-4	Cobalt	4.9E-01 J	6.8E+00	UG/L	CBD-S03-GW03-0418	3/3	N/A	6.8E+00	4.0E+01	6.0E-01 N	N/A		YES	ASL
	7440-50-8	Copper	7.0E-02 J	1.5E+00	UG/L	CBD-S03-GW01-0418	2/3	0.29	1.5E+00	1.1E+01	8.0E+01 N	1.3E+03		NO	BSL
	7439-89-6	Iron	2.6E+02	7.7E+03	UG/L	CBD-S03-GW03-0418	3/3	N/A	7.7E+03	2.3E+04	1.4E+03 N	N/A		YES	ASL
	7439-92-1	Lead	1.0E-01 J	2.4E+00	UG/L	CBD-S03-GW01-0418	2/3	0.13	2.4E+00	1.4E+00	1.5E+01 L	1.5E+01	MCL	NO	BSL
	7439-95-4	Magnesium	3.4E+03	2.6E+04	UG/L	CBD-S03-GW02-0518	3/3	N/A	2.6E+04	3.8E+04	N/A	N/A		NO	NUT
	7439-96-5	Manganese	2.0E+01	9.0E+01	UG/L	CBD-S03-GW03-0418	3/3	N/A	9.0E+01	4.0E+03	4.3E+01 N	N/A		YES	ASL
	7440-02-0	Nickel	3.2E+00	2.1E+01	UG/L	CBD-S03-GW03-0418	3/3	N/A	2.1E+01	2.6E+02	3.9E+01 N	N/A		NO	BSL
	7440-09-7	Potassium	1.8E+03	3.1E+03	UG/L	CBD-S03-GW03-0418	3/3	N/A	3.1E+03	1.2E+04	N/A	N/A		NO	NUT
	7782-49-2	Selenium	1.1E+00	1.1E+00	UG/L	CBD-S03-GW01-0418	1/3	0.5	1.1E+00	1.4E+00	1.0E+01 N	5.0E+01	MCL	NO	BSL
	7440-23-5	Sodium	5.5E+03	2.1E+04	UG/L	CBD-S03-GW01-0418	3/3	N/A	2.1E+04	5.5E+04	N/A	N/A		NO	NUT

Table 2.3. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier				Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Screening [4] Toxicity Value			Flag	Rationale for [5] Contaminant Deletion or Selection
	7440-28-0	Thallium	2.8E-01 J	2.8E-01 J	UG/L	CBD-S03-GW01-0418	1/3	0.5	2.8E-01	3.1E+00	2.0E-02 N	2.0E+00	MCL	YES	ASL
	7440-62-2	Vanadium	2.5E-01 J	2.1E+00	UG/L	CBD-S03-GW01-0418	3/3	N/A	2.1E+00	4.7E+00	8.6E+00 N	N/A		NO	BSL
	7440-66-6	Zinc	3.1E+00 J+	2.8E+02	UG/L	CBD-S03-GW03-0418	3/3	N/A	2.8E+02	3.2E+02	6.0E+02 N	N/A		NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Tap Water RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium (hexavalent) used for chromium.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT) Below Screening Level (BSL) COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

MCL = USEPA Maximum Contaminant Level

L = Lead screening level from November 2019 RSL Table

UG/L = Micrograms per liter

N/A = Not available/not applicable

ND = Not detected

Table 2.3a. Step 2 Groundwater Screening - Risk Ratio, Maximum Detected Concentration, Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Tap Water RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Metals (UG/L)								
Aluminum	3 / 3	5.4E+03	CBD-S03-GW01-0418	2.0E+04	N/A	0.3	N/A	Neurological
Arsenic	3 / 3	5.9E-01	CBD-S03-GW02-0518	6.0E+00	5.2E-02	0.1	1E-05	Cardiovascular, Dermal
Cadmium	3 / 3	3.2E+00	CBD-S03-GW01-0418	9.2E+00	N/A	0.3	N/A	Urinary, Kidney
Chromium	2 / 3	3.4E+00	CBD-S03-GW01-0418	2.2E+04	N/A	0.0002	N/A	No effects observed, Respiratory
Cobalt	3 / 3	6.8E+00	CBD-S03-GW03-0418	6.0E+00	N/A	1	N/A	Thyroid, Respiratory
Iron	3 / 3	7.7E+03	CBD-S03-GW03-0418	1.4E+04	N/A	0.6	N/A	Gastrointestinal
Manganese	3 / 3	9.0E+01	CBD-S03-GW03-0418	4.3E+02	N/A	0.2	N/A	Nervous
Thallium	1 / 3	2.8E-01 J	CBD-S03-GW01-0418	2.0E-01	N/A	1	N/A	Dermal
Cumulative Hazard Index ^c						4		
Cumulative Cancer Risk ^d							1E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by latic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index UG/L = micrograms per liter NA = Not available/not applicable

RSL = Regional Screening Levels, November 2019

MDE = Maryland Department of the Environment USEPA = US Environmental Protection Agency

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of Hazard Indices for each constituent.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each constituent.

Table 2.3b. Comparison of Concentrations of COPCs to Background Concentrations - Site 3

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier		Location of Maximum Concentration	Detection Frequency	Range of Detection Limits		Background [3] Value	Exceeds Background?
Groundwater	7440-38-2	Arsenic	2.3E-01 J	5.9E-01	UG/L	CBD-S03-GW02-0518	3/3	N/A	5.9E-01	6.1E+00	NO
	7440-48-4	Cobalt	4.9E-01 J	6.8E+00	UG/L	CBD-S03-GW03-0418	3/3	N/A	6.8E+00	4.0E+01	NO
	7439-89-6	Iron	2.6E+02	7.7E+03	UG/L	CBD-S03-GW03-0418	3/3	N/A	7.7E+03	2.3E+04	NO
	7440-28-0	Thallium	2.8E-01 J	2.8E-01 J	UG/L	CBD-S03-GW01-0418	1/3	0.5 - 0.5	2.8E-01	3.1E+00	NO

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the groundwater background threshold value (BTV).

COPC = Chemical of Potential Concern

UG/L = microgram per liter

N/A = not available/not applicable

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/3/2019 8:11:04 AM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Aroclor-1260 (UG/KG)

General Statistics

Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	41	Mean	1118
Maximum	5500	Median	250
SD	1710	Std. Error of Mean	540.8
Coefficient of Variation	1.529	Skewness	2.199

Normal GOF Test

Shapiro Wilk Test Statistic 0.694	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.273	Lilliefors GOF Test
5% Lilliefors Critical Value 0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLS (Adjusted for Skewness)					
95% Student's-t UCL	2110	95% Adjusted-CLT UCL (Chen-1995)	2410				
		95% Modified-t UCL (Johnson-1978)	2172				

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.504	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.775	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.228	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.28	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.529	k star (bias corrected MLE)	0.437
Theta hat (MLE)	2116	Theta star (bias corrected MLE)	2561
nu hat (MLE)	10.57	nu star (bias corrected)	8.733
MLE Mean (bias corrected)	1118	MLE Sd (bias corrected)	1692
		Approximate Chi Square Value (0.05)	3.167
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	2.613

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 3084 95% Adjusted Gamma UCL (use when n<50) 3738

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test

Site 3 Surface Soil

5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.18	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.714	Mean of logged Data	5.828
Maximum of Logged Data	8.613	SD of logged Data	1.744

Assuming Lognormal Distribution

95% H-UCL 25053	90% Chebyshev (MVUE) UCL	3188
95% Chebyshev (MVUE) UCL 4103	97.5% Chebyshev (MVUE) UCL	5374
99% Chebyshev (MVUE) UCL 7869		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2008	95% Jackknife UCL	2110
95% Standard Bootstrap UCL	1953	95% Bootstrap-t UCL	3326
95% Hall's Bootstrap UCL	5219	95% Percentile Bootstrap UCL	2054
95% BCA Bootstrap UCL	2589		
90% Chebyshev(Mean, Sd) UCL	2741	95% Chebyshev(Mean, Sd) UCL	3476
97.5% Chebyshev(Mean, Sd) UCL	4496	99% Chebyshev(Mean, Sd) UCL	6499

Suggested UCL to Use

95% Adjusted Gamma UCL 3738

Lilliefors Test Statistic

5% Lilliefors Critical Value

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic (MG/KG)

	General Statistics		
Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	1.2	Mean	3.68
Maximum	14	Median	2.7
SD	3.713	Std. Error of Mean	1.174
Coefficient of Variation	1.009	Skewness	2.891
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.578	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level	

Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

0.387

0.262

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 5.832 95% Adjusted-CLT UCL (Chen-1995) 6.758 95% Modified-t UCL (Johnson-1978) 6.011

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.969	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.735	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.291	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.27	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.125	k star (bias corrected MLE)	1.554
Theta hat (MLE)	1.732	Theta star (bias corrected MLE)	2.368
nu hat (MLE)	42.49	nu star (bias corrected)	31.08
MLE Mean (bias corrected)	3.68	MLE Sd (bias corrected)	2.952
		Approximate Chi Square Value (0.05)	19.34
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	17.75

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.913 95% Adjusted Gamma UCL (use when n<50) 6.443

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.869	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	1.049
Maximum of Logged Data	2.639	SD of logged Data	0.659

Assuming Lognormal Distribution

95% H-UCL	6.098	90% Chebyshev (MVUE) UCL	5.687
95% Chebyshev (MVUE) UCL	6.695	97.5% Chebyshev (MVUE) UCL	8.095
99% Chebyshev (MVUE) UCL	10.84		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

5.832	95% Jackknife UCL	5.611	95% CLT UCL
11.04	95% Bootstrap-t UCL	5.499	95% Standard Bootstrap UCL
5.99	95% Percentile Bootstrap UCL	14.02	95% Hall's Bootstrap UCL
		7.18	95% BCA Bootstrap UCL
8.798	95% Chebyshev(Mean, Sd) UCL	7.202	90% Chebyshev(Mean, Sd) UCL
15.36	99% Chebyshev(Mean, Sd) UCL	11.01	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 6.098

Site 3 Surface Soil

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.111/7/2019 10:21:40 AM

From File UCLInput.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Thallium (MG/KG)

General Statistics

Total Number of Observations	10	Number of Distinct Observations	6
		Number of Missing Observations	0
Minimum	0.08	Mean	0.183
Maximum	0.24	Median	0.195
SD	0.0497	Std. Error of Mean	0.0157
Coefficient of Variation	0.271	Skewness	-1.087

Normal GOF Test

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.256	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.212	95% Adjusted-CLT UCL (Chen-1995)	0.203	
		95% Modified-t UCL (Johnson-1978)	0.211	

Gamma GOF Test

A-D Test Statistic	0.836	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.725	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.29	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.267	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	11.55	k star (bias corrected MLE)	8.149
Theta hat (MLE)	0.0158	Theta star (bias corrected MLE)	0.0225
nu hat (MLE)	230.9	nu star (bias corrected)	163

MLE Mean (bias corrected)	0.183	MLE Sd (bias corrected)	0.0641
		Approximate Chi Square Value (0.05)	134.5
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	130

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.222 95% Adjusted Gamma UCL (use when n<50) 0.229

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.795	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.526	Mean of logged Data	-1.742
Maximum of Logged Data	-1.427	SD of logged Data	0.337

Assuming Lognormal Distribution

95% H-UCL	0.233	90% Chebyshev (MVUE) UCL	0.244
95% Chebyshev (MVUE) UCL	0.271	97.5% Chebyshev (MVUE) UCL	0.308
99% Chebyshev (MVUE) UCL	0.381		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.209	95% Jackknife UCL	0.212
95% Standard Bootstrap UCL	0.208	95% Bootstrap-t UCL	0.208
95% Hall's Bootstrap UCL	0.204	95% Percentile Bootstrap UCL	0.207
95% BCA Bootstrap UCL	0.202		
90% Chebyshev(Mean, Sd) UCL	0.23	95% Chebyshev(Mean, Sd) UCL	0.251
97.5% Chebyshev(Mean, Sd) UCL	0.281	99% Chebyshev(Mean, Sd) UCL	0.339

Suggested UCL to Use

95% Student's-t UCL 0.212

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Site 3 Subsurface Soil

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.111/12/2019 2:53:00 PM

From File NRL Site 3 subsurface soil.xls

Full Precision OFF
Confidence Coefficient 95%
of Rootstrap Operations 2000

Number of Bootstrap Operations 2000

Arsenic (MG/KG)

Canaral	Statistics

Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	0.28	Mean	2.208
Maximum	5.2	Median	1.85
SD	1.67	Std. Error of Mean	0.528
Coefficient of Variation	0.756	Skewness	0.596

Normal GOF Test

Shapiro Wilk GOF Test	0.932	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Leve	0.842	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.142	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.262	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.176	95% Adjusted-CLT UCL (Chen-1995)	3.183

95% Modified-t UCL (Johnson-1978) 3.193

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.216	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.739	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.154	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.271	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.596	k star (bias corrected MLE)	1.184
Theta hat (MLE)	1.384	Theta star (bias corrected MLE)	1.865
nu hat (MLE)	31.92	nu star (bias corrected)	23.68
MLE Mean (bias corrected)	2.208	MLE Sd (bias corrected)	2.029
		Approximate Chi Square Value (0.05)	13.6
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	12.29

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.843 95% Adjusted Gamma UCL (use when n<50) 4.252

Site 3 Subsurface Soil

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.944	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.139	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.273	Mean of logged Data	0.447
Maximum of Logged Data	1.649	SD of logged Data	0.964

Assuming Lognormal Distribution

95% H-UCL	6.582	90% Chebyshev (MVUE) UCL	4.58
95% Chebyshev (MVUE) UCL	5.595	97.5% Chebyshev (MVUE) UCL	7.003
99% Chebyshev (MVUE) UCL	9.769		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.077	95% Jackknife UCL	3.176
95% Standard Bootstrap UCL	3.022	95% Bootstrap-t UCL	3.34
95% Hall's Bootstrap UCL	3.132	95% Percentile Bootstrap UCL	3.061
95% BCA Bootstrap UCL	3.12		
90% Chebyshev(Mean, Sd) UCL	3.792	95% Chebyshev(Mean, Sd) UCL	4.51
97.5% Chebyshev(Mean, Sd) UCL	5.506	99% Chebyshev(Mean, Sd) UCL	7.463

Suggested UCL to Use

95% Student's-t UCL 3.176

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium (MG/KG)

General Statistics

Total Number of Observations	10	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	2
Number of Distinct Detects	7	Number of Distinct Non-Detects	2
Minimum Detect	0.066	Minimum Non-Detect	0.14
Maximum Detect	0.32	Maximum Non-Detect	0.17
Variance Detects	0.00633	Percent Non-Detects	20%
Mean Detects	0.168	SD Detects	0.0795
Median Detects	0.16	CV Detects	0.473
Skewness Detects	0.84	Kurtosis Detects	0.806
Mean of Logged Detects	-1.883	SD of Logged Detects	0.489

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.94	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.185	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.156	KM Standard Error of Mean	0.0247
0.0718	95% KM (BCA) UCL	0.194
0.201	95% KM (Percentile Bootstrap) UCL	0.197
0.197	95% KM Bootstrap t UCL	0.211
0.23	95% KM Chebyshev UCL	0.264
0.31	99% KM Chebyshev UCL	0.402
	0.0718 0.201 0.197 0.23	0.0718 95% KM (BCA) UCL 0.201 95% KM (Percentile Bootstrap) UCL 0.197 95% KM Bootstrap t UCL 0.23 95% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.217	Anderson-Darling GOF Test
5% A-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.166	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.295	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

3.299	k star (bias corrected MLE)	5.146	k hat (MLE)
0.051	Theta star (bias corrected MLE)	0.0327	Theta hat (MLE)
52.79	nu star (bias corrected)	82.33	nu hat (MLE)
		0.168	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.156	Mean	0.066	Minimum
0.125	Median	0.32	Maximum
0.482	CV	0.075	SD
3.82	k star (bias corrected MLE)	5.363	k hat (MLE)
0.0407	Theta star (bias corrected MLE)	0.029	Theta hat (MLE)
76.41	nu star (bias corrected)	107.3	nu hat (MLE)
		0.0267	Adjusted Level of Significance (β)
54.4	Adjusted Chi Square Value (76.41, β)	57.27	Approximate Chi Square Value (76.41, α)
0.219	95% Gamma Adjusted UCL (use when n<50)	0.208	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.156	SD (KM)	0.0718
0.00516	SE of Mean (KM)	0.0247
4.712	k star (KM)	3.365
94.23	nu star (KM)	67.29
0.0331	theta star (KM)	0.0463
0.219	90% gamma percentile (KM)	0.27
0.317	99% gamma percentile (KM)	0.418
	0.00516 4.712 94.23 0.0331 0.219	0.00516 SE of Mean (KM) 4.712 k star (KM) 94.23 nu star (KM) 0.0331 theta star (KM) 0.219 90% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (67.29, α)	49.41	Adjusted Chi Square Value (67.29, β)	46.76
95% Gamma Approximate KM-UCL (use when n>=50)	0.212	95% Gamma Adjusted KM-UCL (use when n<50)	0.224

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.175	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.156	Mean in Log Scale	-1.957
SD in Original Scale	0.0751	SD in Log Scale	0.459
95% t UCL (assumes normality of ROS data)	0.199	95% Percentile Bootstrap UCL	0.196
95% BCA Bootstrap UCL	0.198	95% Bootstrap t UCL	0.218
95% H-UCL (Log ROS)	0.218		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.96	KM Geo Mean	0.141
KM SD (logged)	0.453	95% Critical H Value (KM-Log)	2.156
KM Standard Error of Mean (logged)	0.161	95% H-UCL (KM -Log)	0.216
KM SD (logged)	0.453	95% Critical H Value (KM-Log)	2.156
KM Standard Error of Mean (logged)	0.161		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.15	Mean in Log Scale	-2.019
SD in Original Scale	0.08	SD in Log Scale	0.52
95% t UCL (Assumes normality)	0.196	95% H-Stat UCL	0.224

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.201

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix F.2 Site 4 Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

														Step 1	
Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	COPC	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value		ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration	,,	Limits	Screening			Value	Source		Deletion
			4	4											or Selection
						CBD-S04-SS03-1012, CBD									
Surface Soil	67-64-1	Acetone	2.2E-02 J	1.0E-01	MG/KG	S04-SS05-1012	6/6	N/A	1.0E-01	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	71-43-2	Benzene	1.8E-04 J	1.8E-04 J	MG/KG	CBD-S04-SS03-1012	1/6	0.00042 - 0.00057	1.8E-04	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	108-88-3	Toluene	2.0E-04 J	2.0E-04 J	MG/KG	CBD-S04-SS03-1012	1/6	0.00042 - 0.00057	2.0E-04	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	76-13-1	Trichlorofluoromethane (Freon-11)	2.6E-04 J	2.6E-04 J	MG/KG	CBD-S04-SS01-1012	1/6	0.00021 - 0.00029	2.6E-04	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	92-52-4	1,1-Biphenyl	1.3E-02 J	1.3E-02 J	MG/KG	CBD-S04-SS03-1012	1/11	0.018 - 0.740	1.3E-02	N/A	4.7E+00 N	8.7E-04	SSL	NO	BSL
	91-57-6	2-Methylnaphthalene	3.2E-02	3.2E-02	MG/KG	CBD-S04-SS03-1012	1/11	0.0018 - 0.0023	3.2E-02	N/A	2.4E+01 N	1.9E-02	SSL	NO	BSL
	534-52-1	4,6-Dinitro-2-methylphenol	2.3E-02 J	2.3E-02 J	MG/KG	CBD-S04-SS02-1012	1/11	0.018 - 2.4	2.3E-02	N/A	5.1E-01 N	2.6E-04	SSL	NO	BSL
	83-32-9	Acenaphthene	5.8E-04 J	3.1E-01	MG/KG	CBD-S04-SS03-1012	6/11	0.0011 - 0.0019	3.1E-01	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	5.6E-04 J	4.5E-03 J	MG/KG	CBD-S04-SS15-000H	5/11	0.0011 - 0.0019	4.5E-03	N/A	3.6E+02 N	N/A		NO	BSL
	120-12-7	Anthracene	1.6E-03 J	5.8E-01	MG/KG	CBD-S04-SS03-1012	7/11	0.0018 - 0051	5.8E-01	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	1.9E-03 J	3.1E+00	MG/KG	CBD-S04-SS03-1012	8/11	0.0018 - 0051	3.1E+00	N/A	1.1E+00 C	1.1E-02	SSL	YES	ASL
	50-32-8	Benzo(a)pyrene	8.0E-03 J	3.5E+00	MG/KG	CBD-S04-SS03-1012	7/11	0.00076 - 0051	3.5E+00	N/A	1.1E-01 C	2.9E-02	SSL	YES	ASL
	205-99-2	Benzo(b)fluoranthene	1.5E-02	3.9E+00	MG/KG	CBD-S04-SS03-1012	7/11	0.0037 - 0.0078	3.9E+00	N/A	1.1E+00 C	3.0E-01	SSL	YES	ASL
	191-24-2	Benzo(g,h,i)perylene	1.2E-03 J	8.0E-01	MG/KG	CBD-S04-SS03-1012	8/11	0.0018 - 0.247	8.0E-01	N/A	1.8E+02 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	5.3E-03 J	7.3E-01	MG/KG	CBD-S04-SS03-1012	7/11	0.0037 - 0.0051	7.3E-01	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
	86-74-8	Carbazole	3.8E-01	3.8E-01	MG/KG	CBD-S04-SS03-1012	1/11	0.035 - 0.247	3.8E-01	N/A	N/A	N/A		NO	NTX
	218-01-9	Chrysene	1.5E-03 J	2.6E+00	MG/KG	CBD-S04-SS03-1012	8/11	0.0018 - 0051	2.6E+00	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	3.8E-03 J	2.3E-01 J	MG/KG	CBD-S04-SS03-1012	6/11	0.00076 - 0.0078	2.3E-01	N/A	1.1E-01 C	9.6E-02	SSL	YES	ASL
	132-64-9	Dibenzofuran	2.2E-03 J	1.7E-01	MG/KG	CBD-S04-SS03-1012	3/11	0.0018 - 0.247	1.7E-01	N/A	7.3E+00 N	1.5E-02	SSL	NO	BSL
	131-11-3	Dimethyl phthalate	2.3E-03 J	2.3E-03 J	MG/KG	CBD-S04-SS02-1012	1/11	0.0035 - 0.49	2.3E-03	N/A	N/A	N/A		NO	NTX
	206-44-0	Fluoranthene	1.2E-03 J	4.8E+00	MG/KG	CBD-S04-SS03-1012	9/11	0.0011 - 0.0051	4.8E+00	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	3.2E-03 J	2.1E-01	MG/KG	CBD-S04-SS03-1012	4/11	0.0018 - 0031	2.1E-01	N/A	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	6.7E-03 J	8.3E-01	MG/KG	CBD-S04-SS03-1012	7/11	0.0037 - 0.0078	8.3E-01	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	91-20-3	Naphthalene	1.1E-03 J	8.4E-02	MG/KG	CBD-S04-SS03-1012	3/11	0.0018 - 0025	8.4E-02	N/A	3.8E+00 C	5.4E-04	SSL	NO	BSL
	85-01-8	Phenanthrene	1.2E-03 J	3.5E+00	MG/KG	CBD-S04-SS03-1012	9/11	0.0018 - 0078	3.5E+00	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	2.3E-03 J	4.5E+00	MG/KG	CBD-S04-SS03-1012	8/11	0.0037 - 0.0078	4.5E+00	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	72-55-9	4,4'-DDE	1.9E-04 J	5.2E-04	MG/KG	CBD-S04-SS10-000H	2/10	0.00013 - 0.000236	5.2E-04	N/A	2.0E+00 C	1.1E-02	SSL	NO	BSL
	11096-82-5	Aroclor-1260	7.2E-03 J	2.6E-01	MG/KG	CBD-S04-SS03-1012	4/11	0.0065 - 0.015	2.6E-01	N/A	2.4E-01 C	5.5E-03	SSL	YES	ASL
	7429-90-5	Aluminum	4.4E+03	2.1E+04 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	2.1E+04	1.3E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	8.4E-02 J	2.1E+00	MG/KG	CBD-S04-SS04-1012	8/11	0.14 - 0.17	2.1E+00	4.2E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	2.2E+00	8.3E+00	MG/KG	CBD-S04-SS15-000H	11/11	N/A	8.3E+00	6.4E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	6.3E+00	8.5E+01	MG/KG	CBD-S04-SS16-000H	11/11	N/A	8.5E+01	5.8E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	2.3E-01 J	8.0E-01	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	8.0E-01	8.1E-01	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	4.4E-02 J	3.2E-01	MG/KG	CBD-S04-SS16-000H	7/11	0.14 - 0.17	3.2E-01	1.7E+00	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	2.1E+02	8.9E+02 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	8.9E+02	9.4E+03	N/A	N/A		NO	NUT

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Screening [4] Toxicity Value			Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
	18540-29-9	Chromium (hexavalent)	5.0E-02 J	3.5E-01 J	MG/KG	CBD-S04-SS01P-1012	4/4	N/A	3.5E-01	4.0E-01	3.0E-01 C	6.7E-04	SSL	NO	BSL
	7440-47-3	Chromium	7.8E+00	3.2E+01 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	3.2E+01	3.1E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	5.5E-01	4.0E+00	MG/KG	CBD-S04-SS05-1012	11/11	N/A	4.0E+00	1.2E+01	2.3E+00 N	2.7E-02	SSL	NO	BSL
	7440-50-8	Copper	2.8E+00	4.6E+01	MG/KG	CBD-S04-SS16-000H	11/11	N/A	4.6E+01	2.7E+01	3.1E+02 N	2.8E+00	SSL	NO	BSL
	57-12-5	Cyanide	2.6E-02 J	2.6E-02 J	MG/KG	CBD-S04-SS06-1012	1/6	0.055 - 0.057	2.6E-02	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	7.6E+03	3.7E+04 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	3.7E+04	4.0E+04	5.5E+03 N	3.5E+01	SSL	NO	BSL
	7439-92-1	Lead	3.2E+00	1.6E+02	MG/KG	CBD-S04-SS16-000H	11/11	N/A	1.6E+02	5.0E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	4.9E+02	1.7E+03 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	1.7E+03	3.8E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	6.4E+00	1.2E+02	MG/KG	CBD-S04-SS05-1012	11/11	N/A	1.2E+02	2.0E+02	1.8E+02 N	2.8E+00	SSL	NO	BSL
	7439-97-6	Mercury	6.4E-03 J	1.8E-01 J	MG/KG	CBD-S04-SS16-000H	6/11	0.017 - 0.17	1.8E-01	1.9E-01	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	9.9E-01	1.1E+01	MG/KG	CBD-S04-SS16-000H	11/11	N/A	1.1E+01	1.2E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	3.5E+02	1.2E+03 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	1.2E+03	1.5E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	2.2E-01	1.3E+00 J-	MG/KG	CBD-S04-SS12-000H	11/11	N/A	1.3E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	3.3E-02 J	1.6E+00	MG/KG	CBD-S04-SS16-000H	8/11	0.14 - 0.17	1.6E+00	1.4E+00	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.9E+01 J+	1.9E+01 J+	MG/KG	CBD-S04-SS13P-000H	1/11	7.2 - 10.4	1.9E+01	3.1E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	6.5E-02 J	2.7E-01	MG/KG	CBD-S04-SS05-1012	11/11	N/A	2.7E-01	1.3E+00	7.8E-02 N	1.4E-03	SSL	NO	BSL
	7440-62-2	Vanadium	1.4E+01	3.2E+01 J	MG/KG	CBD-S04-SS13P-000H	11/11	N/A	3.2E+01	3.0E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	1.5E+01	1.7E+02 J	MG/KG	CBD-S04-SS16-000H	7/11	N/A	1.7E+02	7.9E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium(III) used for chromium since four soil samples were also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

n: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

J- = Biased Low

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.1a. Step 2 Surface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) MG/KG	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-6	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)anthracene	8 / 11	3.1E+00	CBD-S04-SS03-1012	N/A	1.1E+00	N/A	3E-06	N/A
Benzo(a)pyrene	7 / 11	3.5E+00	CBD-S04-SS03-1012	1.8E+01	1.1E-01	0.2	3E-05	Developmental
Benzo(b)fluoranthene	7 / 11	3.9E+00	CBD-S04-SS03-1012	N/A	1.1E+00	N/A	4E-06	N/A
Dibenz(a,h)anthracene	6 / 11	2.3E-01 J	CBD-S04-SS03-1012	N/A	1.1E-01	N/A	2E-06	N/A
Aroclor-1260	4 / 11	2.6E-01	CBD-S04-SS03-1012	N/A	2.4E-01	N/A	1E-06	N/A
Aluminum	11 / 11	2.1E+04 J	CBD-S04-SS13P-000H	7.7E+04	N/A	0.3	N/A	Neurological
Arsenic	11 / 11	8.3E+00	CBD-S04-SS15-000H	3.5E+01	6.8E-01	0.2	1E-05	Cardiovascular, Dermal
Cumulative Hazard Index ^c	•	•				0.7		
Cumulative Cancer Risk ^d							5E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text. Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient J = Estimated Value MDE = Maryland Department of the Environment N/A = Not available/not applicable RSL = Regional Screening Levels, November 2019 USEPA = US Environmental Protection Agency

MG/KG = milligrams per kilogram

Total Developmental HI = 0.2

Total Neurological HI = 0.3

Total Cardiovascular HI = 0.2

Total Dermal HI = 0.2

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.1b. Step 3 Surface Soil Screening - Risk Ratio, 95% UCL, Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-6	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)anthracene	8 / 11	3.1E+00	Maximum	5	N/A	1.1E+00	N/A	3E-06	N/A
Benzo(a)pyrene	7 / 11	3.5E+00	Maximum	5	1.8E+01	1.1E-01	0.2	3E-05	Developmental
Benzo(b)fluoranthene	7 / 11	3.7E+00	95% Gamma Adjusted KM-UCL	1, 3	N/A	1.1E+00	N/A	3E-06	N/A
Dibenz(a,h)anthracene	6 / 11	2.3E-01	Maximum	5	N/A	1.1E-01	N/A	2E-06	N/A
Aroclor-1260 ^e	4 / 11	2.1E-01	95% Gamma Adjusted KM-UCL	1, 3	N/A	2.4E-01	N/A	9E-07	N/A
Arsenic	11 / 11	5.6E+00	95% Student's-t UCL	1, 2, 3	3.5E+01	6.8E-01	0.2	8E-06	Cardiovascular, Dermal
Cumulative Hazard Index ^c							0.4		
Cumulative Cancer Risk ^d		•		•		•		5E-05	
							Tota	Developmental HI =	0.2
^a Hazard Index equals maximum detected	d concentration div	ded by the nor	carcinogenic RSL divided by the ac	ceptable hazard	level of 1.		Tota	Cardiovascular HI =	0.2

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text. Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

UCL = Upper Confidence Limit

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogoroy-Smirnoy Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).
- (5) Recommended 95% UCL exceeds maximum detected concentration.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

e The contribution from Aroclor-1260 to the carcinogenic risk is minimal, and therefore, Aroclor-1260 wasn't identified as a COPC based on cumulative carcinogenic risk. Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Table 2.1c. Comparison of Concentrations of COPCs to Background Concentrations - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	concentration [2] Used for Screening	Background Value	3] Exceeds Background?
Surface Soil	7440-38-2	Arsenic	2.2E+00	8.3E+00	MG/KG	CBD-S04-SS15-000H	11/11	N/A	8.3E+00	6.4E+00	YES

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 20 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Subsurface Soil	67-64-1	Acetone	2.3E-02	2.8E-02 J	MG/KG	CBD-S04-SB02-1618	2/5	0.0052 - 0.012	2.8E-02	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
Gubsuriace Goil	76-13-1	Trichlorofluoromethane (Freon-11)	3.2E-04 J	3.2E-04 J	MG/KG	CBD-S04-SB02-1618	1/5	0.0026 - 0.0062	3.2E-04	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	534-52-1	4,6-Dinitro-2-methylphenol	2.2E-02 J	2.2E-02 J	MG/KG	CBD-S04-SB04-1012	1/10	0.019 - 2.26	2.2E-02	N/A	5.1E-01 N	2.6E-04	SSL	NO	BSL
	106-47-8	4-Chloroaniline	1.8E-02 J	1.8E-02 J	MG/KG	CBD-S04-SB04-1012	1/10	0.019 - 0.226	1.8E-02	N/A	2.7E+00 C	1.6E-04	SSL	NO	BSL
	83-32-9	Acenaphthene	5.6E-02	5.6E-02	MG/KG	CBD-S04-SB16-0810	1/10	0.001 - 0.002	5.6E-02	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	5.0E-03 J	5.0E-03 J	MG/KG	CBD-S04-SB16-0810	1/10	0.001 - 0.002	5.0E-03	N/A	3.6E+02 N	N/A		NO	BSL
	120-12-7	Anthracene	1.7E-01	1.7E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0019 - 0.005	1.7E-01	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	100-52-7	Benzaldehyde	4.7E-02 L	4.7E-02 L	MG/KG	CBD-S04-SB04-1012	1/6	0.38 - 0.68	4.7E-02	N/A	1.7E+02 C	4.1E-03	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	4.9E-01	4.9E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0019 - 0.005	4.9E-01	N/A	1.1E+00 C	1.1E-02	SSL	NO	BSL
	50-32-8	Benzo(a)pyrene	4.7E-01	4.7E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.00076 - 0.005	4.7E-01	N/A	1.1E-01 C	2.9E-02	SSL	YES	ASL
	205-99-2	Benzo(b)fluoranthene	6.2E-01	6.2E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0037 - 0.0076	6.2E-01	N/A	1.1E+00 C	3.0E-01	SSL	NO	BSL
	191-24-2	Benzo(g,h,i)perylene	3.4E-01	3.4E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0019 - 0.0076	3.4E-01	N/A	1.8E+02 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	2.3E-01	2.3E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0037 - 0.005	2.3E-01	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
	218-01-9	Chrysene	1.5E-03 J	4.7E-01	MG/KG	CBD-S04-SB16-0810	2/10	0.0019 - 0.005	4.7E-01	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	8.9E-02	8.9E-02	MG/KG	CBD-S04-SB16-0810	1/10	0.00076 - 0.0076	8.9E-02	N/A	1.1E-01 C	9.6E-02	SSL	NO	BSL
	131-11-3	Dimethyl phthalate	2.4E-03 J	2.4E-03 J	MG/KG	CBD-S04-SB05-1315	1/10	0.0037 - 0.45	2.4E-03	N/A	N/A	N/A		NO	NTX
	206-44-0	Fluoranthene	2.7E-03 J	8.5E-01	MG/KG	CBD-S04-SB16-0810	2/10	0.0019 - 0.005	8.5E-01	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	4.8E-02	4.8E-02	MG/KG	CBD-S04-SB16-0810	1/10	0.0019 - 0.0031	4.8E-02	N/A	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	4.2E-01	4.2E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0037 - 0.0076	4.2E-01	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	91-20-3	Naphthalene	1.9E-02	1.9E-02	MG/KG	CBD-S04-SB16-0810	1/10	0.0019 - 0.0042	1.9E-02	N/A	3.8E+00 C	5.4E-04	SSL	NO	BSL
	621-64-7	n-Nitroso-di-n-propylamine	4.9E-02	4.9E-02	MG/KG	CBD-S04-SB04-1012	1/10	0.0037 - 0.226	4.9E-02	N/A	7.8E-02 C	8.1E-06	SSL	NO	BSL
	85-01-8	Phenanthrene	1.2E-03 J	6.3E-01	MG/KG	CBD-S04-SB16-0810	3/10	0.0019 - 0.0076	6.3E-01	N/A	1.8E+03 N	N/A		NO	BSL
	108-95-2	Phenol	1.9E-03 J	1.9E-03 J	MG/KG	CBD-S04-SB04-1012	1/10	0.0037 - 0.226	1.9E-03	N/A	1.9E+03 N	3.3E-01	SSL	NO	BSL
	129-00-0	Pyrene	1.9E-03 J	6.7E-01	MG/KG	CBD-S04-SB16-0810	2/10	0.0037 - 0.0076	6.7E-01	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	72-54-8	4,4'-DDD	3.5E-04 J	3.5E-04 J	MG/KG	CBD-S04-SB12-0810	1/10	0.000123 - 0.000245	3.5E-04	N/A	1.9E-01 N	1.5E-03	SSL	NO	BSL
	72-55-9	4,4'-DDE	5.1E-04	8.3E-03	MG/KG	CBD-S04-SB16-0810	2/10	0.000123 - 0.000245	8.3E-03	N/A	2.0E+00 C	1.1E-02	SSL	NO	BSL
	50-29-3	4,4'-DDT	7.5E-03 J	7.5E-03 J	MG/KG	CBD-S04-SB12-0810	1/10	0.000245 - 0.000491	7.5E-03	N/A	1.9E+00 C	7.7E-02	SSL	NO	BSL
	5103-71-9	alpha-Chlordane	2.8E-04 J	2.8E-04 J	MG/KG	CBD-S04-SB12-0810	1/10	0.000123 - 0.000245	2.8E-04	N/A	1.7E+00 C	2.7E-03	SSL	NO	BSL
	11096-82-5	Aroclor-1260	1.6E-01	1.6E-01	MG/KG	CBD-S04-SB16-0810	1/10	0.0062 - 0.015	1.6E-01	N/A	2.4E-01 C	5.5E-03	SSL	NO	BSL
	60-57-1	Dieldrin	6.3E-03 J	6.3E-03 J	MG/KG	CBD-S04-SB12-0810	1/10	0.000123 - 0.000245	6.3E-03	N/A	3.4E-02 C	7.1E-05	SSL	NO	BSL
	7429-90-5	Aluminum	1.6E+03	8.3E+03 J-	MG/KG	CBD-S04-SB16-0810	10/10	N/A	8.3E+03	1.6E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	5.4E-02 J	7.9E-01	MG/KG	CBD-S04-SB16-0810	7/10	0.13 - 0.18	7.9E-01	5.5E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	1.6E+00	5.7E+00	MG/KG	CBD-S04-SB15-0810	10/10	N/A	5.7E+00	9.8E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	4.1E+00	1.5E+02	MG/KG	CBD-S04-SB16-0810	10/10	N/A	1.5E+02	5.7E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.2E-01	1.1E+00	MG/KG	CBD-S04-SB02-1618	10/10	N/A	1.1E+00	1.2E+00	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	2.7E-02 J	1.5E+01	MG/KG	CBD-S04-SB16-0810	8/10	0.13 - 0.18	1.5E+01	8.1E-01	7.1E+00 N	6.9E-02	SSL	YES	ASL

Table 2.2. Occurrence. Distribution and Selection of Chemicals of Potential Concern - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 20 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	"	Screening [4] Toxicity Value		Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
	7440-70-2	Calcium	2.3E+01	3.7E+03	MG/KG	CBD-S04-SB16-0810	10/10	N/A	3.7E+03	1.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	1.0E-01 J	1.5E+00	MG/KG	CBD-S04-SB01-1820	4/4	N/A	1.5E+00	4.9E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL
	7440-47-3	Chromium	6.5E+00	3.3E+01	MG/KG	CBD-S04-SB16-0810	10/10	N/A	3.3E+01	5.8E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	5.8E-01	1.8E+01	MG/KG	CBD-S04-SB16-0810	10/10	N/A	1.8E+01	5.9E+00	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	8.3E-01	4.8E+02	MG/KG	CBD-S04-SB16-0810	10/10	N/A	4.8E+02	7.9E+00	3.1E+02 N	2.8E+00	SSL	YES	ASL
	57-12-5	Cyanide	6.2E-02 J	6.2E-02 J	MG/KG	CBD-S04-SB04-1012	1/5	0.056 - 0.06	6.2E-02	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	3.5E+03	4.6E+04	MG/KG	CBD-S04-SB16-0810	10/10	N/A	4.6E+04	3.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	1.3E+00	6.9E+02	MG/KG	CBD-S04-SB16-0810	10/10	N/A	6.9E+02	1.2E+01	4.0E+02 L*	1.4E+01	SSL	YES	ASL
	7439-95-4	Magnesium	3.6E+02	1.4E+03	MG/KG	CBD-S04-SB16-0810	10/10	N/A	1.4E+03	3.4E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	2.3E+00	5.7E+02	MG/KG	CBD-S04-SB16-0810	10/10	N/A	5.7E+02	2.3E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7439-97-6	Mercury	1.1E-02 J	1.2E+00	MG/KG	CBD-S04-SB16-0810	2/10	0.017 - 0.18	1.2E+00	4.0E-02	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	9.8E-01	4.8E+01	MG/KG	CBD-S04-SB16-0810	10/10	N/A	4.8E+01	1.3E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	2.9E+02	4.1E+02	MG/KG	CBD-S04-SB01-1820	10/10	N/A	4.1E+02	1.6E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	1.8E-01	8.3E-01 J-	MG/KG	CBD-S04-SB13-0810	6/10	0.1 - 0.1	8.3E-01	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	2.6E-02 J	8.6E-01	MG/KG	CBD-S04-SB16-0810	8/10	0.13 - 0.18	8.6E-01	2.3E-01	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.3E+02	1.3E+02	MG/KG	CBD-S04-SB16-0810	1/10	2.6 - 5.5	1.3E+02	1.4E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	7.0E-02	2.9E-01	MG/KG	CBD-S04-SB03-1416	9/10	0.13 - 0.18	2.9E-01	4.1E-01	7.8E-02 N	1.4E-03	SSL	YES	ASL
						CBD-S04-SB13-0810, CBD									
	7440-62-2	Vanadium	3.5E+00	-	MG/KG	S04-SB16-0810	10/10	N/A	1.2E+01	3.6E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	7.2E+00	2.0E+03	MG/KG	CBD-S04-SB16-0810	6/10	N/A	2.0E+03	6.4E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for chromium(III) used for chromium since four soil samples were also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

L, J- = Biased Low

C = Carcinogenic

N = Noncarcinogenic

L* = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.2a. Step 2 Subsurface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)pyrene	1 / 10	4.7E-01	CBD-S04-SB16-0810	1.8E+01	1.1E-01	0.03	4E-06	Developmental
Aluminum	10 / 10	8.3E+03 J-	CBD-S04-SB16-0810	7.7E+04	N/A	0.1	N/A	Neurological
Arsenic	10 / 10	5.7E+00	CBD-S04-SB15-0810	3.5E+01	6.8E-01	0.2	8E-06	Cardiovascular, Dermal
Cadmium	8 / 10	1.5E+01	CBD-S04-SB16-0810	7.1E+01	2.1E+03	0.2	7E-09	Urinary, Kidney
Chromium (hexavalent)	4 / 4	1.5E+00	CBD-S04-SB01-1820	2.3E+02	3.0E-01	0.007	5E-06	None Reported, Respiratory
Cobalt	10 / 10	1.8E+01	CBD-S04-SB16-0810	2.3E+01	4.2E+02	0.8	4E-08	Thyroid, Respiratory
Copper	10 / 10	4.8E+02	CBD-S04-SB16-0810	3.1E+03	N/A	0.2	N/A	Gastrointestinal
Iron	10 / 10	4.6E+04	CBD-S04-SB16-0810	5.5E+04	N/A	0.8	N/A	Gastrointestinal
Lead ^e	10 / 10	6.9E+02	CBD-S04-SB16-0810	N/A	N/A	N/A	N/A	N/A
Manganese	10 / 10	5.7E+02	CBD-S04-SB16-0810	1.8E+03	N/A	0.3	N/A	Nervous
Thallium	9 / 10	2.9E-01	CBD-S04-SB03-1416	7.8E-01	N/A	0.4	N/A	Dermal
Cumulative Hazard Index ^c						3		
Cumulative Cancer Risk ^d							2E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

	2E-05	
То	tal Developmental HI =	0.03
Total Neu	ırological/Nervous HI =	0.4
То	tal Cardiovascular HI =	0.2
	Total Dermal HI =	0.5
To	tal Urinary/Kidney HI =	0.2
	Total Respiratory HI =	0.8
	Total Thyroid HI =	0.8
Tot	al Gastrointestinal HI =	1

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

^e Exposure to lead evaluated using the Integrated Exposure Uptake Biokinetic Model.

Table 2.2b. Step 3 Subsurface Soil Screening - Risk Ratio, 95% UCL, Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)pyrene	1 / 10	4.7E-01	Maximum	7	1.8E+01	1.1E-01	0.03	4E-06	Developmental
Arsenic	10 / 10	3.8E+00	95% Student's-t UCL	1, 3	3.5E+01	6.8E-01	0.1	6E-06	Cardiovascular, Dermal
Chromium (hexavalent)	4 / 4	1.5E+00	Maximum	8	2.3E+02	3.0E-01	0.01	5E-06	None Reported, Respiratory
Cobalt	10 / 10	1.4E+01	Maximum	1	2.3E+01	4.2E+02	0.6	3E-08	Thyroid, Respiratory
Copper	10 / 10	4.8E+02	Maximum	5	3.1E+03	N/A	0.2	N/A	Gastrointestinal
Iron	10 / 10	2.0E+04	95% H-UCL	1	5.5E+04	N/A	0.4	N/A	Gastrointestinal
Lead ^e	10 / 10	7.1E+01	Mean	6	N/A	N/A	N/A	N/A	N/A
Cumulative Hazard Index ^c			·				1		
Cumulative Cancer Risk ^d	•			•				1E-05	

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

UCL = Upper Confidence Limit

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).
- (5) Recommended 95% UCL exceeds maximum detected concentration.
- (6) Mean value used as exposure point concentration in lead model.
- (7) Maximum detected concentration used because the detection frequency was less than 15 percent.
- (8) Sample number insufficient to estimate a UCL; the maximum detected concentration was used.

Total Developental HI 0.03 Total Cardiovascular HI 0.1 Total Dermal HI = 0.1 Total Respiratory HI = 0.6 Total Thyroid HI = 0.6 Total Gastrointestinal HI 0.5

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

^e Exposure to lead evaluated using the Integrated Exposure Uptake Biokinetic Model.

Table 2.2c. Comparison of Concentrations of COPCs to Background Concentrations - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 20 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	-	Concentration [2] Used for Screening	Background [3] Value	Exceeds Background?
Subsurface Soil	18540-29-9 7440-48-4	Arsenic Chromium (hexavalent) Cobalt Copper Iron	1.6 0.1 J 5.8E-01 8.3E-01 3.5E+03		MG/KG MG/KG MG/KG MG/KG MG/KG	CBD-S04-SB15-0810 CBD-S04-SB01-1820 CBD-S04-SB16-0810 CBD-S04-SB16-0810 CBD-S04-SB16-0810	10/10 4/4 10/10 10/10 10/10	N/A N/A N/A N/A	5.7E+00 1.5E+00 1.8E+01 4.8E+02 4.6E+04	9.8E+00 4.9E-01 5.9E+00 7.9E+00 3.0E+04	NO YES YES YES YES

[1] Minimum/Maximum detected concentrations.

Maximum concentration is used for screening.

[2] [3] Background value is the subsurface soil background threshold value (BTV). bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

Table 2.2d. IEUBK- Site 4 Subsurface Soil and Groundwater, Child Resident

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

LEAD MODEL FOR WINDOWS Version 1.1

Model Version: 1.1 Build11

User Name: Jacobs Date: 01/09/2019

Site Name: Naval Research Laboratory - Chesapeake Bay Detachment

Operable Unit: Site 4

Run Mode: Site Risk Assessment

Water Data

mean lead groundwater concentration

Soil/Dust Data

Mean lead soil concentration

Maternal Data

value from OLEM Directive 9285.6-56

GSD, Cutoff and Age Type

12-72 months

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time	Ventilation	Lung	Outdoor Air
	Outdoors	Rate	Absorption	Pb Conc
	(hours)	(m³/day)	(%)	$\left(\mu g\;Pb/m^3\right)$
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

***** Diet *****

Age	Diet Intake(µg/day)
.5-1	2.260
1-2	1.960
2-3	2.130
3-4	2.040
4-5	1.950
5-6	2.050
6-7	2.220

Table 2.2d. IEUBK- Site 4 Subsurface Soil and Groundwater, Child Resident

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)
.5-1	0.200
1-2	0.500
2-3	0.520
3-4	0.530
4-5	0.550
5-6	0.580
6-7	0.590

Drinking Water Concentration: 6.850 µg Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: $59.490 \mu g/g$

Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

Age	Soil (µg Pb/g)	House Dust ($\mu g Pb/g$)
.5-1	70.700	59.490
1-2	70.700	59.490
2-3	70.700	59.490
3-4	70.700	59.490
4-5	70.700	59.490
5-6	70.700	59.490
6-7	70.700	59.490

***** Alternate Intake *****

Age Alternate (µg Pb/day)

QC Completed by: N. Gowadia (11/08/2019)
Updated by: Jo Hayes/CHC (11/09/2019)

- 2-3 0.000
- 3-4 0.000
- 4-5 0.000
- 5-6 0.000
- 6-7 0.000

***** Maternal Contribution: Infant Model *****

Maternal Blood Concentration: 0.600 µg Pb/dL

Table 2.2d. IEUBK- Site 4 Subsurface Soil and Groundwater, Child Resident

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year	Air (μg/day)	Diet (μg/day)		
.5-1 1-2 2-3 3-4	0.034 0.062 0.067	1.088 0.938 1.024 0.987	0.000 0.000 0.000 0.000	1.638 1.713 1.756
4-5 5-6 6-7	0.093	0.950 1.002 1.087	0.000 0.000 0.000	1.942
Year (Total (µg/day)	Blood (μg/dL)	
1-2 2-3	2.514 2.528	3.353 5.111 5.313 5.337 4.741 4.742 4.772	1.8 2.1 2.0 1.9 1.6 1.5	

Table 2.3. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
Groundwater	91-57-6	2-Methylnaphthalene	5.4E-03 J	5.4E-03 J	UG/L	CBD-S04-GW02-0518	1/3	0.013 - 0.014	5.4E-03	ND	3.6E+00 N	N/A		NO	BSL
	56-55-3	Benzo(a)anthracene	3.2E-03 J	3.2E-03 J	UG/L	CBD-S04-GW02P-0518	1/3	0.013 - 0.014	3.2E-03	ND	3.0E-02 C	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	2.1E-02 J	2.1E-02 J	UG/L	CBD-S04-GW01-0518	1/3	0.012 - 0.013	2.1E-02	ND	2.5E+00 C	N/A		NO	BSL
	218-01-9	Chrysene	4.0E-03 J	6.1E-03 J	UG/L	CBD-S04-GW02-0518	2/3	0.013 - 0.013	6.1E-03	1.3E-02	2.5E+01 C	N/A		NO	BSL
	206-44-0	Fluoranthene	5.4E-03 J	6.2E-03 J	UG/L	CBD-S04-GW01-0518	2/3	0.013 - 0.013	6.2E-03	2.6E-02	8.0E+01 N	N/A		NO	BSL
	91-20-3	Naphthalene	7.5E-03 J	1.0E-02 J	UG/L	CBD-S04-GW01-0518	3/3	N/A	1.0E-02	4.1E-02	1.7E-01 C	N/A		NO	BSL
	85-01-8	Phenanthrene	1.4E-02 J	1.4E-02 J	UG/L	CBD-S04-GW02-0518	1/3	0.021 - 0.023	1.4E-02	3.8E-02	1.8E+02 N	N/A		NO	BSL
	7429-90-5	Aluminum	3.1E+01	1.3E+04	UG/L	CBD-S04-GW01-0518	3/3	N/A	1.3E+04	5.0E+03	2.0E+03 N	N/A		YES	ASL
		Arsenic	2.1E-01 J	1.5E+00	UG/L	CBD-S04-GW01-0518	2/3	0.13 - 0.13	1.5E+00	6.1E+00	5.2E-02 C	1.0E+01	MCL	YES	ASL
	7440-39-3	Barium	3.4E+01	4.1E+01	UG/L	CBD-S04-GW01-0518	3/3	N/A	4.1E+01	1.6E+02	3.8E+02 N	2.0E+03	MCL	NO	BSL
	7440-41-7	Beryllium	4.3E-01 J	7.9E-01 J-	UG/L	CBD-S04-GW01-0518	2/3	0.13 - 0.13	7.9E-01	3.0E+00	2.5E+00 N	4.0E+00	MCL	NO	BSL
	7440-43-9	Cadmium	5.1E-01	2.9E+00	UG/L	CBD-S04-GW01-0518	3/3	N/A	2.9E+00	6.4E+01	9.2E-01 N	5.0E+00	MCL	YES	ASL
	7440-70-2	Calcium	4.3E+03	2.2E+04	UG/L	CBD-S04-GW03-0518	3/3	N/A	2.2E+04	1.3E+05	N/A	N/A		NO	NUT
	7440-47-3	Chromium	2.4E-01 J	5.7E+00	UG/L	CBD-S04-GW01-0518	3/3	N/A	5.7E+00	2.5E+01	3.5E-02 C	1.0E+02	MCL	YES	ASL
	7440-48-4	Cobalt	2.2E+00	9.8E+00	UG/L	CBD-S04-GW01-0518	3/3	N/A	9.8E+00	4.0E+01	6.0E-01 N	N/A		YES	ASL
	7440-50-8 7439-89-6	Copper Iron	7.2E-01 2.6E+02	6.9E+00 2.8E+03	UG/L UG/L	CBD-S04-GW01-0518 CBD-S04-GW01-0518	2/3 2/3	0.42 - 0.42 7.8 - 7.8	6.9E+00 2.8E+03	1.1E+01 2.3E+04	8.0E+01 N 1.4E+03 N	1.3E+03 N/A	MCL	NO YES	BSL ASL
	7439-09-0	Lead	1.8E+00 J-	2.8E+03 1.8E+00 J-	UG/L	CBD-S04-GW01-0516 CBD-S04-GW01-0518	1/3	0.13 - 0.13	1.8E+00	1.4E+00	1.4E+03 N 1.5E+01 L*	1.5E+01	MCL	NO NO	BSL
	7439-95-4	Magnesium	2.6E+03	1.0E+04	UG/L	CBD-S04-GW03-0518	3/3	0.13 - 0.13 N/A	1.0E+04	3.8E+04	N/A	N/A	WICL	NO	NUT
		Manganese	1.3E+01	1.2E+02	UG/L	CBD-S04-GW03-0518	3/3	N/A	1.2E+02	4.0E+03	4.3E+01 N	N/A		YES	ASL
		Nickel	8.0E+00	1.3E+01	UG/L	CBD-S04-GW01-0518	3/3	N/A	1.3E+01	2.6E+02	3.9E+01 N	N/A		NO	BSL
1	7440-09-7	Potassium	2.3E+03	2.8E+03	UG/L	CBD-S04-GW01-0518, CBD-S04-GW03-0518	3/3	N/A	2.8E+03	1.2E+04	N/A	N/A		NO	NUT
	7440-23-5	Sodium	5.5E+03	1.3E+04	UG/L	CBD-S04-GW03-0518	3/3	N/A	1.3E+04	5.5E+04	N/A	N/A		NO	NUT
	7440-28-0	Thallium	2.0E-01 J	5.4E-01 J	UG/L	CBD-S04-GW01-0518	2/3	0.5 - 0.5	5.4E-01	3.1E+00	2.0E-02 N	2.0E+00	MCL	YES	ASL
	7440-62-2	Vanadium	6.1E-02 J	4.6E+00	UG/L	CBD-S04-GW01-0518	3/3	N/A	4.6E+00	4.7E+00	8.6E+00 N	N/A		NO	BSL
	7440-66-6	Zinc	2.3E+01	1.2E+02	UG/L	CBD-S04-GW01-0518	3/3	N/A	1.2E+02	3.2E+02	6.0E+02 N	N/A		NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value (95 percent upper tolerance limit).
- [4] USEPA. November, 2018. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).
 - Tap Water RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium (hexavalent) used for chromium.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Essential Nutrient (NUT)

Below Screening Level (BSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

- J = Estimated Value
- J- = Estimated Value, Potential low bias
- C = Carcinogenic
- N = Noncarcinogenic
- MCL = USEPA Maximum Contaminant Level
- L* = Lead screening level from November 2019 RSL Table
- UG/L = Micrograms per liter
- N/A = Not available/not applicable
- ND = Not detected

Table 2.3a. Step 2 Groundwater Screening - Risk Ratio, Maximum Detected Concentration, Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) (UG/L)	Sample Location of Maximum Water RSL		Carcinogenic Tap Water RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aluminum	3 / 3	1.3E+04	CBD-S04-GW01-0518	2.0E+04	N/A	0.7	N/A	Neurological
Arsenic	2 / 3	1.5E+00	CBD-S04-GW01-0518	6.0E+00	5.2E-02	0.3	3E-05	Cardiovascular, Dermal
Cadmium	3 / 3	2.9E+00	CBD-S04-GW01-0518	9.2E+00	N/A	0.3	N/A	Urinary, Kidney
Chromium	3 / 3	5.7E+00	CBD-S04-GW01-0518	4.4E+01	3.5E-02	0.1	2E-04	None Reported, Respiratory
Cobalt	3 / 3	9.8E+00	CBD-S04-GW01-0518	6.0E+00	N/A	2	N/A	Thyroid, Respiratory
Iron	2 / 3	2.8E+03	CBD-S04-GW01-0518	1.4E+04	N/A	0.2	N/A	Gastrointestinal
Manganese	3 / 3	1.2E+02	CBD-S04-GW03-0518	4.3E+02	N/A	0.3	N/A	Nervous
Thallium	2 / 3	5.4E-01 J	CBD-S04-GW01-0518	2.0E-01	N/A	3	N/A	Dermal
Cumulative Hazard Index ^c						6		
Cumulative Cancer Risk ^d	•		_				2E-04	

Notes:

Constituent selected as Navy COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as COPCs based on Navy criteria are indicated by bold text. Constituents selected as COPCs based on USEPA criteria are indicated by italic text. Constituents selected as COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index HQ = Hazard Quotient UG/L = micrograms per liter MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.3b. Comparison of Concentrations of COPCs to Background Concentrations - Site 4

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Exceeds Background?
Groundwater	7429-90-5 7440-38-2 7440-47-3 7440-48-4 7439-96-5 7440-28-0	Aluminum Arsenic Chromium Cobalt Manganese Thallium	3.1E+01 2.1E-01 J 2.4E-01 J 2.2E+00 1.3E+01 2.0E-01 J	1.3E+04 1.5E+00 5.7E+00 9.8E+00 1.2E+02 5.4E-01 J	UG/L UG/L UG/L UG/L UG/L UG/L	CBD-S04-GW01-0518 CBD-S04-GW01-0518 CBD-S04-GW01-0518 CBD-S04-GW01-0518 CBD-S04-GW03-0518 CBD-S04-GW01-0518	2/3 3/3 3/3 3/3	N/A 0.13 - 0.13 N/A N/A N/A 0.5 - 0.5	1.3E+04 1.5E+00 5.7E+00 9.8E+00 1.2E+02 5.4E-01	5.0E+03 6.1E+00 2.5E+01 4.0E+01 4.0E+03 3.1E+00	YES NO NO NO NO

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

COPC = Chemical of Potential Concern

UG/L = microgram per liter

N/A = not applicable

Table Lead.1 **RAGS D IEUBK LEAD WORKSHEET** Child (Age 12 – 72 Months) Expanded Site Investigation Report - Site 4

Naval Research Laboratory - Chesapeake Bay Detachment, Chesapeake Beach, Maryland

1. Lead Screening Questions

Medium		ncentration Model Run	Basis for Lead Concentration Used	Lead Screening Concentration		
	Value	Units	For Model Run	Value	Units	Basis for Lead Screening Level
Subsurface Soil	70.7	mg/kg	Average Detected Value in Soil	400	mg/kg	Recommended Soil Screening Level
Water	6.85	μg/L	Average of Detected Concentrations in Groundwater	15	μg/L	Recommended Drinking Water Action Level

2. Lead Model Questions

Question	Response for Residential Lead Model
What lead model (version and date was used)?	Lead Model for Windows, Version 1.1 Build 11 (February, 2010)
Where are the input values located in the risk assessment report?	Located in IEUBKwin OUTPUT (Attached as Table Lead.1b and Figure Lead 1)
What range of media concentrations were used for the model?	1.3 – 690 mg/kg (subsurface soil) 0.74 – 18 μg/L (groundwater)
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic Mean Concentration, Arithmetic mean of detected concentrations only for groundwater. For subsurface soil, all samples had detected concentrations; Data are located in Appendix D.
Was soil sample taken from top 2 cm? If not, why?	Yes, however since no exceedances of screening level in surface soil only evaluated subsurface soil in IEUBK.
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	No – Samples were collected for multiple analyses.
What was the point of exposure/location?	Site 4
Where are the output values located in the risk assessment report?	IEUBKwin OUTPUT (Attached as Table Lead.1b and Figure Lead.1)
Was the model run using default values only?	No – Assumed site-specific arithmetic mean concentration of lead in subsurface soil and groundwater, and maternal blood lead concentration of 0.6 μg Pb/dL.
Was the default soil bioavailability used?	Yes Default is 30%
Was the default soil ingestion rate used?	Yes Default values for 7 age groups are 85, 135, 135, 100, 090, and 85 mg/day
If non-default values were used, where is the rationale for the values located in the risk assessment report?	Section 5.

3. Final Result

Medium	Result	Comment/PRG ¹
Subsurface soil and groundwater	70.7 mg/kg lead in subsurface soil and 6.85 μg/L lead in groundwater results in 0.015 % of children above a blood lead level of 10 μg/dL. Geometric mean blood lead = 1.82 μg/dL. This is below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 μg/dL blood lead.	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

Cutoff = $10.000 \mu g/dl$ Geo Mean = 1.822GSD = 1.600% Above = 0.015 Age Range = User Designated: Ages 12 - 72 months

Run Mode = Site Risk Assessment

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/3/2019 5:49:00 PM

From File ProUCL input.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Benzo(a)anthracene (UG/KG)

General Statistics

Total Number of Observations	11	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	3
Number of Distinct Detects	8	Number of Distinct Non-Detects	2
Minimum Detect	1.9	Minimum Non-Detect	1.9
Maximum Detect	3100	Maximum Non-Detect	5.1
Variance Detects	1165738	Percent Non-Detects	27.27%
Mean Detects	430.8	SD Detects	1080
Median Detects	39	CV Detects	2.506
Skewness Detects	2.816	Kurtosis Detects	7.948
Mean of Logged Detects	3.786	SD of Logged Detects	2.211

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.458	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.478	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	313.8	KM Standard Error of Mean	284.4
KM SD	882.2	95% KM (BCA) UCL	869.2
95% KM (t) UCL	829.2	95% KM (Percentile Bootstrap) UCL	861.5
95% KM (z) UCL	781.5	95% KM Bootstrap t UCL	9605
90% KM Chebyshev UCL	1167	95% KM Chebyshev UCL	1553
97.5% KM Chebyshev UCL	2090	99% KM Chebyshev UCL	3143

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.895	Anderson-Darling GOF Test
5% A-D Critical Value	0.797	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.324	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.317	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.272	k star (bias corrected MLE)	0.302	k hat (MLE)
1583	Theta star (bias corrected MLE)	1426	Theta hat (MLE)
4.354	nu star (bias corrected)	4.834	nu hat (MLE)
		430.8	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

313.3	Mean	0.01	Minimum
19	Median	3100	Maximum
2.954	CV	925.5	SD
0.189	k star (bias corrected MLE)	0.177	k hat (MLE)
1658	Theta star (bias corrected MLE)	1775	Theta hat (MLE)
4.158	nu star (bias corrected)	3.884	nu hat (MLE)
		0.0278	Adjusted Level of Significance (β)
0.58	Adjusted Chi Square Value (4.16, β)	0.785	Approximate Chi Square Value (4.16, α)
2244	95% Gamma Adjusted UCL (use when n<50)	1659	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	313.8	SD (KM)	882.2
Variance (KM)	778314	SE of Mean (KM)	284.4
k hat (KM)	0.127	k star (KM)	0.153
nu hat (KM)	2.783	nu star (KM)	3.358
theta hat (KM)	2480	theta star (KM)	2056
80% gamma percentile (KM)	346.4	90% gamma percentile (KM)	932.7
95% gamma percentile (KM)	1721	99% gamma percentile (KM)	4002

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.36, α)	0.486	Adjusted Chi Square Value (3.36, β)	0.346
95% Gamma Approximate KM-UCL (use when n>=50)	2169	95% Gamma Adjusted KM-UCL (use when n<50)	3049

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	313.4	Mean in Log Scale	2.374
SD in Original Scale	925.4	SD in Log Scale	3.071
95% t UCL (assumes normality of ROS data)	819.1	95% Percentile Bootstrap UCL	870.9
95% BCA Bootstrap UCL	1168	95% Bootstrap t UCL	9642
95% H-UCL (Log ROS) 2	2038137		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.928	KM Geo Mean	18.69
KM SD (logged)	2.252	95% Critical H Value (KM-Log)	5.733
KM Standard Error of Mean (logged)	0.726	95% H-UCL (KM -Log)	13976
KM SD (logged)	2.252	95% Critical H Value (KM-Log)	5.733
KM Standard Error of Mean (logged)	0.726		

DL/2 Statistics

DL/2 Normai		DL/2 Log-1 ransformed	
Mean in Original Scale	313.7	Mean in Log Scale	2.829

 SD in Original Scale
 925.3
 SD in Log Scale
 2.484

 95% t UCL (Assumes normality)
 819.4
 95% H-Stat UCL
 51154

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 3143

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene (UG/KG)

Genera	I Statistics
--------	--------------

Total Number of Observations	11	Number of Distinct Observations	11
Number of Detects	7	Number of Non-Detects	4
Number of Distinct Detects	7	Number of Distinct Non-Detects	4
Minimum Detect	8	Minimum Non-Detect	0.77
Maximum Detect	3500	Maximum Non-Detect	5.1
Variance Detects	1691268	Percent Non-Detects	36.36%
Mean Detects	553.7	SD Detects	1300
Median Detects	71	CV Detects	2.349
Skewness Detects	2.635	Kurtosis Detects	6.955
Mean of Logged Detects	4.309	SD of Logged Detects	1.982

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.491	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.47	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	352.6	KM Standard Error of Mean	324.6
KM SD	996.6	95% KM (BCA) UCL	986.3
95% KM (t) UCL	940.9	95% KM (Percentile Bootstrap) UCL	977
95% KM (z) UCL	886.5	95% KM Bootstrap t UCL	12860
90% KM Chebyshev UCL	1326	95% KM Chebyshev UCL	1767
97.5% KM Chebyshev UCL	2380	99% KM Chebyshev UCL	3582

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.96	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.778	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.34	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.334	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.337	k star (bias corrected MLE)	0.288
Theta hat (MLE)	1643	Theta star (bias corrected MLE)	1924
nu hat (MLE)	4.719	nu star (bias corrected)	4.03
Mean (detects)	553.7		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

352.4	Mean	0.01	Minimum
21	Median	3500	Maximum
2.967	CV	1045	SD
0.176	k star (bias corrected MLE)	0.159	k hat (MLE)
2000	Theta star (bias corrected MLE)	2218	Theta hat (MLE)
3.875	nu star (bias corrected)	3.495	nu hat (MLE)
		0.0278	Adjusted Level of Significance (β)
0.491	Adjusted Chi Square Value (3.88, β)	0.673	Approximate Chi Square Value (3.88, α)
2781	95% Gamma Adjusted UCL (use when n<50)	2029	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	352.6	SD (KM)	996.6
Variance (KM)	993261	SE of Mean (KM)	324.6
k hat (KM)	0.125	k star (KM)	0.152
nu hat (KM)	2.754	nu star (KM)	3.337
theta hat (KM)	2817	theta star (KM)	2325
80% gamma percentile (KM)	387.3	90% gamma percentile (KM)	1047
95% gamma percentile (KM)	1937	99% gamma percentile (KM)	4512

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.34, α)	0.479	Adjusted Chi Square Value (3.34, β)	0.34
95% Gamma Approximate KM-UCL (use when n>=50)	2458	95% Gamma Adjusted KM-UCL (use when n<50)	3458

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.218	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	352.5	Mean in Log Scale	2.47
SD in Original Scale	1045	SD in Log Scale	2.978
95% t UCL (assumes normality of ROS data)	923.8	95% Percentile Bootstrap UCL	979.1
95% BCA Bootstrap UCL	1297	95% Bootstrap t UCL	12993
95% H-UCL (Log ROS)	1097911		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.647	KM Geo Mean	14.12
KM SD (logged)	2.641	95% Critical H Value (KM-Log)	6.643

KM Standard Error of Mean (logged)	0.86	95% H-UCL (KM -Log) 118701
KM SD (logged)	2.641	95% Critical H Value (KM-Log) 6.643
KM Standard Error of Mean (logged)	0.86	

DL/2 Statistics

DL/2 Normai	DL/2 Log-1 ransformed	
M O	Maria Callan Ocala	

Mean in Original Scale353Mean in Log Scale2.855SD in Original Scale1045SD in Log Scale2.57895% t UCL (Assumes normality)924.195% H-Stat UCL96293

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 2380 99% KM (Chebyshev) UCL 3582

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene (UG/KG)

Total Number of Observations	11	Number of Distinct Observations	9
Number of Detects	7	Number of Non-Detects	4
Number of Distinct Detects	7	Number of Distinct Non-Detects	2
Minimum Detect	15	Minimum Non-Detect	3.8
Maximum Detect	3900	Maximum Non-Detect	7.8
Variance Detects	2074805	Percent Non-Detects	36.36%
Mean Detects	639.3	SD Detects	1440
Median Detects	80	CV Detects	2.253
Skewness Detects	2.626	Kurtosis Detects	6.919
Mean of Logged Detects	4.743	SD of Logged Detects	1.811

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.504	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.458	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	408.2	KM Standard Error of Mean	360.5
KM SD	1107	95% KM (BCA) UCL	1100
95% KM (t) UCL	1062	95% KM (Percentile Bootstrap) UCL	1101
95% KM (z) UCL	1001	95% KM Bootstrap t UCL	10716
90% KM Chebyshev UCL	1490	95% KM Chebyshev UCL	1979
97.5% KM Chebyshev UCL	2659	99% KM Chebyshev UCL	3995

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.918	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.77	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.322	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.332	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.315	k star (bias corrected MLE)	0.385	k hat (MLE)
2026	Theta star (bias corrected MLE)	1659	Theta hat (MLE)
4.417	nu star (bias corrected)	5.396	nu hat (MLE)
		639.3	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	406.8
Maximum	3900	Median	38
SD	1161	CV	2.855
k hat (MLE)	0.163	k star (bias corrected MLE)	0.179
Theta hat (MLE)	2499	Theta star (bias corrected MLE)	2273
nu hat (MLE)	3.581	nu star (bias corrected)	3.938
Adjusted Level of Significance (β)	0.0278		
Approximate Chi Square Value (3.94, α)	0.697	Adjusted Chi Square Value (3.94, β)	0.51
95% Gamma Approximate UCL (use when n>=50)	2297	95% Gamma Adjusted UCL (use when n<50)	3140

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	408.2	SD (KM)	1107
Variance (KM)	1225163	SE of Mean (KM)	360.5
k hat (KM)	0.136	k star (KM)	0.16
nu hat (KM)	2.992	nu star (KM)	3.509
theta hat (KM)	3001	theta star (KM)	2559
80% gamma percentile (KM)	466.3	90% gamma percentile (KM)	1220
95% gamma percentile (KM)	2219	99% gamma percentile (KM)	5083

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.51, α)	0.538	Adjusted Chi Square Value (3.51, β)	0.385
95% Gamma Approximate KM-UCL (use when n>=50)	2662	95% Gamma Adjusted KM-UCL (use when n<50)	3716

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.904	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	407.3	Mean in Log Scale	3.018
SD in Original Scale	1161	SD in Log Scale	2.824

Site 4 Surface Soil

95% t UCL (assumes normality of ROS data)	1042	95% Percentile Bootstrap UCL	1102
95% BCA Bootstrap UCL	1454	95% Bootstrap t UCL	10796
95% H-UCL (Log ROS) 6	310682		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.504	KM Geo Mean	33.24
KM SD (logged)	2.116	95% Critical H Value (KM-Log)	5.419
KM Standard Error of Mean (logged)	0.689	95% H-UCL (KM -Log)	11708
KM SD (logged)	2.116	95% Critical H Value (KM-Log)	5.419
KM Standard Error of Mean (logged)	0.689		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
-------------	----------------------

Mean in Original Scale	407.7	Mean in Log Scale	3.317
SD in Original Scale	1161	SD in Log Scale	2.433
95% t UCL (Assumes normality)	1042	95% H-Stat UCL	60718

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 10716 a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 3716

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenz(a,h)anthracene (UG/KG)

General	Statistics

Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	6	Number of Non-Detects	5
Number of Distinct Detects	6	Number of Distinct Non-Detects	5
Minimum Detect	3.8	Minimum Non-Detect	0.77
Maximum Detect	230	Maximum Non-Detect	7.8
Variance Detects	8123	Percent Non-Detects	45.45%
Mean Detects	47.53	SD Detects	90.13
Median Detects	6.15	CV Detects	1.896
Skewness Detects	2.365	Kurtosis Detects	5.645
Mean of Logged Detects	2.591	SD of Logged Detects	1.596

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.582	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.393	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	26.75	KM Standard Error of Mean	21.44
KM SD	64.9	95% KM (BCA) UCL	69.13
95% KM (t) UCL	65.61	95% KM (Percentile Bootstrap) UCL	67.02
95% KM (z) UCL	62.01	95% KM Bootstrap t UCL	634.6
90% KM Chebyshev UCL	91.07	95% KM Chebyshev UCL	120.2
97.5% KM Chebyshev UCL	160.6	99% KM Chebyshey UCL	240.1

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.885	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.736	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.37	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.349	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.361	k star (bias corrected MLE)	0.5	k hat (MLE)
131.6	Theta star (bias corrected MLE)	95.06	Theta hat (MLE)
4.333	nu star (bias corrected)	6	nu hat (MLE)
		47.53	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	25.93
Maximum	230	Median	3.8
SD	68.39	CV	2.637
k hat (MLE)	0.189	k star (bias corrected MLE)	0.198
Theta hat (MLE)	137.4	Theta star (bias corrected MLE)	131.1
nu hat (MLE)	4.151	nu star (bias corrected)	4.352
Adjusted Level of Significance (β)	0.0278		
Approximate Chi Square Value (4.35, α)	0.866	Adjusted Chi Square Value (4.35, β)	0.646
95% Gamma Approximate UCL (use when n>=50)	130.4	95% Gamma Adjusted UCL (use when n<50)	174.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	26.75	SD (KM)	64.9
Variance (KM)	4213	SE of Mean (KM)	21.44
k hat (KM)	0.17	k star (KM)	0.184
nu hat (KM)	3.736	nu star (KM)	4.051
theta hat (KM)	157.5	theta star (KM)	145.3
80% gamma percentile (KM)	33.65	90% gamma percentile (KM)	80.75
95% gamma percentile (KM)	140.7	99% gamma percentile (KM)	308.2

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.05, α)	0.742	Adjusted Chi Square Value (4.05, β)	0.546
95% Gamma Approximate KM-UCL (use when n>=50)	146.1	95% Gamma Adjusted KM-UCL (use when n<50)	198.5

Shapiro Wilk Test Statistic	8.0	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.327	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	26.38	Mean in Log Scale	1.264
SD in Original Scale	68.21	SD in Log Scale	1.98
95% t UCL (assumes normality of ROS data)	63.65	95% Percentile Bootstrap UCL	65.31
95% BCA Bootstrap UCL	88.44	95% Bootstrap t UCL	733.2
95% H-UCL (Log ROS)	616.4		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

n 4.449	KM Geo Mean	1.493	KM Mean (logged)
g) 4.482	95% Critical H Value (KM-Log)	1.703	KM SD (logged)
J) 212.3	95% H-UCL (KM -Log)	0.583	KM Standard Error of Mean (logged)
J) 4.482	95% Critical H Value (KM-Log)	1.703	KM SD (logged)
		0.583	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal			
Mean in Original Scale	26.99	Mean in Log Scale	1.681
SD in Original Scale	67.97	SD in Log Scale	1.647
95% t UCL (Assumes normality)	64.13	95% H-Stat UCL	201.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 160.6 99% KM (Chebyshev) UCL 240.1

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Aroclor-1260 (UG/KG)

General Statistics

Total Number of Observations	11	Number of Distinct Observations	9
Number of Detects	4	Number of Non-Detects	7
Number of Distinct Detects	4	Number of Distinct Non-Detects	5
Minimum Detect	7.2	Minimum Non-Detect	6.5
Maximum Detect	260	Maximum Non-Detect	15
Variance Detects	14919	Percent Non-Detects	63.64%
Mean Detects	77.05	SD Detects	122.1
Median Detects	20.5	CV Detects	1.585
Skewness Detects	1.982	Kurtosis Detects	3.943
Mean of Logged Detects	3.39	SD of Logged Detects	1.531

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.681	Shapiro Wilk Test Statistic
Detected Data Not Normal at 5% Significance Lev	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.421	Lilliefors Test Statistic
Detected Data Not Normal at 5% Significance Lev	0.375	5% Lilliefors Critical Value

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	32.19	KM Standard Error of Mean	25.15
KM SD	72.24	95% KM (BCA) UCL	N/A
95% KM (t) UCL	77.78	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	73.56	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	107.6	95% KM Chebyshev UCL	141.8
97.5% KM Chebyshev UCL	189.3	99% KM Chebyshev UCL	282.4

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.556	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.675	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.392	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.407	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.327	k star (bias corrected MLE)	0.641	k hat (MLE)
235.6	Theta star (bias corrected MLE)	120.2	Theta hat (MLE)
2.616	nu star (bias corrected)	5.13	nu hat (MLE)
		77.05	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

28.02	Mean	0.01	Minimum
0.01	Median	260	Maximum
2.761	CV	77.37	SD
0.171	k star (bias corrected MLE)	0.152	k hat (MLE)
163.5	Theta star (bias corrected MLE)	183.9	Theta hat (MLE)
3.772	nu star (bias corrected)	3.353	nu hat (MLE)
		0.0278	Adjusted Level of Significance (β)
0.46	Adjusted Chi Square Value (3.77, β)	0.634	Approximate Chi Square Value (3.77, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	166.8	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

32.19	SD (KM)	72.24
5219	SE of Mean (KM)	25.15
0.199	k star (KM)	0.205
4.369	nu star (KM)	4.511
162.1	theta star (KM)	157
42.97	90% gamma percentile (KM)	97.37
	5219 0.199 4.369 162.1	5219 SE of Mean (KM) 0.199 k star (KM) 4.369 nu star (KM) 162.1 theta star (KM)

95% gamma percentile (KM)	164.8	99% gamma percentile (KM)	349.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.51, α) 0.933 Adjusted Chi Square Value (4.51, β) 0.701 95% Gamma Approximate KM-UCL (use when n>=50) 155.6 95% Gamma Adjusted KM-UCL (use when n<50) 207.1

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.893	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.316	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	28.32	Mean in Log Scale	0.55
SD in Original Scale	77.26	SD in Log Scale	2.494
95% t UCL (assumes normality of ROS data)	70.54	95% Percentile Bootstrap UCL	73.97
95% BCA Bootstrap UCL	98.98	95% Bootstrap t UCL	387.7
95% H-UCL (Log ROS)	5568		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.43	KM Geo Mean	11.35
KM SD (logged)	1.08	95% Critical H Value (KM-Log)	3.154
KM Standard Error of Mean (logged)	0.376	95% H-UCL (KM -Log)	59.78
KM SD (logged)	1.08	95% Critical H Value (KM-Log)	3.154
KM Standard Error of Mean (logged)	0.376		

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed	
	Mean in Original Scale	31.14	Mean in Log Scale	2.2
	SD in Original Scale	76.18	SD in Log Scale	1.3
	95% t UCL (Assumes normality)	72.77	95% H-Stat UCL	92.42

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 207.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic (MG/KG)

General Statistics

Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	0
Minimum	22	Mean	4 509

Maximum	8.3	Median	3.5
SD	2.085	Std. Error of Mean	0.629
Coefficient of Variation	0.462	Skewness	0.801

Normal GOF Test

Shapiro Wilk Test Statistic	0.889	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.231	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5.649	95% Adjusted-CLT UCL (Chen-1995)	5.706
		95% Modified-t UCL (Johnson-1978)	5.674

Gamma GOF Test

A-D Test Statistic	0.405	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.21	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.256	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.518	k star (bias corrected MLE)	4.074
Theta hat (MLE)	0.817	Theta star (bias corrected MLE)	1.107
nu hat (MLE)	121.4	nu star (bias corrected)	89.62
MLE Mean (bias corrected)	4.509	MLE Sd (bias corrected)	2.234
		Approximate Chi Square Value (0.05)	68.79
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	65.82

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	5.874	95% Adjusted Gamma UCL (use when n<50)	6.139

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.184	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.788	Mean of logged Data	1.413
Maximum of Logged Data	2.116	SD of logged Data	0.45

Assuming Lognormal Distribution

95% H-UCL	6.136	90% Chebyshev (MVUE) UCL	6.362
95% Chebyshev (MVUE) UCL	7.205	97.5% Chebyshev (MVUE) UCL	8.376
99% Chebyshev (MVUE) UCL	10.68		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

5.649	95% Jackknife UCL	5.543	95% CLT UCL
5.995	95% Bootstrap-t UCL	5.484	95% Standard Bootstrap UCL
5.573	95% Percentile Bootstrap UCL	5.889	95% Hall's Bootstrap UCL
		5.655	95% BCA Bootstrap UCL
7.25	95% Chebyshev(Mean, Sd) UCL	6.395	90% Chebyshev(Mean, Sd) UCL
10.77	99% Chebyshev(Mean, Sd) UCL	8.436	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 5.649

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/3/2019 7:55:01 PM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Cobalt (MG/KG)

A		Sta	41-4	
Caer	ıeraı	I OIA	usi	10:5

Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	0.58	Mean	4.97
Maximum	18	Median	1.85
SD	6.32	Std. Error of Mean	1.998
Coefficient of Variation	1.272	Skewness	1.357

Normal GOF Test

Shapiro Wilk Test Statistic	0.73	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.375	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	8.633	95% Adjusted-CLT UCL (Chen-1995)	9.173	
		95% Modified-t UCL (Johnson-1978)	8.776	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.846	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.756	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.304	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.276	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.778	k star (bias corrected MLE)	0.611
Theta hat (MLE)	6.389	Theta star (bias corrected MLE)	8.131
nu hat (MLE)	15.56	nu star (bias corrected)	12.22
MLE Mean (bias corrected)	4.97	MLE Sd (bias corrected)	6.357
		Approximate Chi Square Value (0.05)	5.375
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	4.611

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 11.3 95% Adjusted Gamma UCL (use when n<50) 13.18

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.867 Shapiro Wilk Lognormal GOF Test

Site 4 Subsurface Soil

5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.229	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.545	Mean of logged Data	0.838
Maximum of Logged Data	2.89	SD of logged Data	1.295

Assuming Lognormal Distribution

95% H-UCL	26.88	90% Chebyshev (MVUE) UCL	10.81
95% Chebyshev (MVUE) UCL	13.57	97.5% Chebyshev (MVUE) UCL	17.41
99% Chebyshev (MVUE) UCL	24.96		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	8.257	95% Jackknife UCL	8.633
95% Standard Bootstrap UCL	8.098	95% Bootstrap-t UCL	11.18
95% Hall's Bootstrap UCL	7.885	95% Percentile Bootstrap UCL	8.318
95% BCA Bootstrap UCL	8.905		
90% Chebyshev(Mean, Sd) UCL	10.97	95% Chebyshev(Mean, Sd) UCL	13.68
97.5% Chebyshev(Mean, Sd) UCL	17.45	99% Chebyshev(Mean, Sd) UCL	24.85

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 13.68

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Copper (MG/KG)

General Statistics

10	Number of Distinct Observations	10	Total Number of Observations
0	Number of Missing Observations		
49.62	Mean	0.83	Minimum
1.8	Median	480	Maximum
47.82	Std. Error of Mean	151.2	SD
3.162	Skewness	3.047	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.37	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.521	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95%	Normal	LICE
33/0	INVIIIIAI	UUL

95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 137.3 95% Adjusted-CLT UCL (Chen-1995) 179.4 95% Modified-t UCL (Johnson-1978) 145.3

Gamma GOF Test

Anderson-Darling Gamma GOF Test	2.773	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.834	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.51	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.291	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.243	k star (bias corrected MLE)	0.251	k hat (MLE)
204.5	Theta star (bias corrected MLE)	197.3	Theta hat (MLE)
4.854	nu star (bias corrected)	5.029	nu hat (MLE)
100.7	MLE Sd (bias corrected)	49.62	MLE Mean (bias corrected)
1.085	Approximate Chi Square Value (0.05)		
0.812	Adjusted Chi Square Value	0.0267	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 221.9 95% Adjusted Gamma UCL (use when n<50) 296.8

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.576	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.382	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.186	Mean of logged Data	1.082
Maximum of Logged Data	6.174	SD of logged Data	1.83

Assuming Lognormal Distribution

95% H-UCL	330.5	90% Chebyshev (MVUE) UCL	31.89
95% Chebyshev (MVUE) UCL	41.19	97.5% Chebyshev (MVUE) UCL	54.1
99% Chebyshev (MVUE) UCL	79.46		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	128.3	95% Jackknife UCL	137.3
95% Standard Bootstrap UCL	123.1	95% Bootstrap-t UCL	15172
95% Hall's Bootstrap UCL	5857	95% Percentile Bootstrap UCL	145.2
95% BCA Bootstrap UCL	193.2		
90% Chebyshev(Mean, Sd) UCL	193.1	95% Chebyshev(Mean, Sd) UCL	258.1
97.5% Chebyshev(Mean, Sd) UCL	348.3	99% Chebyshev(Mean, Sd) UCL	525.4

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 525.4

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Iron (MG/KG)

General Statistics

Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	3500	Mean	10570
Maximum	46000	Median	5700
SD	12949	Std. Error of Mean	4095
Coefficient of Variation	1.225	Skewness	2.772

Normal GOF Test

Shapiro Wilk Test Statistic	0.567	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.373	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 18077 95% Adjusted-CLT UCL (Chen-1995) 21141 95% Modified-t UCL (Johnson-1978) 18675

Gamma GOF Test

A-D Test Statistic	1.249	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.739	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.308	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.271	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.514	k star (bias corrected MLE)	1.127
Theta hat (MLE)	6981	Theta star (bias corrected MLE)	9382
nu hat (MLE)	30.28	nu star (bias corrected)	22.53
MLE Mean (bias corrected)	10570	MLE Sd (bias corrected)	9958
		Approximate Chi Square Value (0.05)	12.74
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	11.48

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 18697 95% Adjusted Gamma UCL (use when n<50) 20751

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.806	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.262 Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.161 Mean of logged Data 8.901

Maximum of Logged Data 10.74 SD of logged Data 0.77

Assuming Lognormal Distribution

 95% H-UCL
 19527
 90% Chebyshev (MVUE) UCL
 16733

 95% Chebyshev (MVUE) UCL
 19998
 97.5% Chebyshev (MVUE) UCL
 24531

 99% Chebyshev (MVUE) UCL
 33434

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	17306	95% Jackknife UCL	18077
95% Standard Bootstrap UCL	16868	95% Bootstrap-t UCL	61150
95% Hall's Bootstrap UCL	47645	95% Percentile Bootstrap UCL	17660
95% BCA Bootstrap UCL	21380		
90% Chebyshev(Mean, Sd) UCL	22855	95% Chebyshev(Mean, Sd) UCL	28420
97.5% Chebyshev(Mean, Sd) UCL	36143	99% Chebyshev(Mean, Sd) UCL	51314

Suggested UCL to Use

95% H-UCL 19527

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Lead (MG/KG)

	General Statistics		
Total Number of Observations	10	Number of Distinct Observations	8
		Number of Missing Observations	0
Minimum	1.3	Mean	70.67
Maximum	690	Median	1.8
SD	217.6	Std. Error of Mean	68.81
Coefficient of Variation	3.079	Skewness	3.162
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.368	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.523	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL			95% UCLs (Adjusted for Skewness)		
	95% Student's-t UCL	196.8	95% Adjusted-CLT UCL (Chen-1995)	257.4	
			95% Modified-t UCL (Johnson-1978)	208.3	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	3.065	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.841	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.539	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.292	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.234	k star (bias corrected MLE)	0.23
Theta hat (MLE)	302.1	Theta star (bias corrected MLE)	306.7
nu hat (MLE)	4.678	nu star (bias corrected)	4.608
MLE Mean (bias corrected)	70.67	MLE Sd (bias corrected)	147.2
		Approximate Chi Square Value (0.05)	0.976
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	0.722

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 333.8 95% Adjusted Gamma UCL (use when n<50) 451.1

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.475	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.449	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.262	Mean of logged Data	1.189
Maximum of Logged Data	6.537	SD of logged Data	1.891

Assuming Lognormal Distribution

95% H-UCL	499.4	90% Chebyshev (MVUE) UCL	39.23
95% Chebyshev (MVUE) UCL	50.78	97.5% Chebyshev (MVUE) UCL	66.82
99% Chebyshev (MVUE) UCL	98.33		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

.9 95% Jackknife UCL 19	95% CLT UCL 1	196.8	
4 95% Bootstrap-t UCL 478	95% Standard Bootstrap UCL 1	7818	
3 95% Percentile Bootstrap UCL 20	95% Hall's Bootstrap UCL 20	208.2	
1	95% BCA Bootstrap UCL 2		
.1 95% Chebyshev(Mean, Sd) UCL 37	90% Chebyshev(Mean, Sd) UCL 2	370.6	
.4 99% Chebyshev(Mean, Sd) UCL 75	7.5% Chebyshev(Mean, Sd) UCL 5	755.4	

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 755.4

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.111/21/2019 12:32:48 PM

From File S4ArsenicProUCLInput.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Arsenic (MG/KG)

General	I Statistics
---------	--------------

Total Number of Observations	10	Number of Distinct Observations	8
		Number of Missing Observations	0
Minimum	1.6	Mean	2.98
Maximum	5.7	Median	2.7
SD	1.374	Std. Error of Mean	0.435
Coefficient of Variation	0.461	Skewness	0.79

Normal GOF Test

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.215	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	3.777	95% Adjusted-CLT UCL (Chen-1995)	3.811
		95% Modified-t UCL (Johnson-1978)	3.795

Gamma GOF Test

8 Anderson-Darling Gamma GOF Test	0.438	A-D Test Statistic
9 Detected data appear Gamma Distributed at 5% Significance	0.729	5% A-D Critical Value
3 Kolmogorov-Smirnov Gamma GOF Test	0.203	K-S Test Statistic
7 Detected data appear Gamma Distributed at 5% Significant	0.267	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.937	k star (bias corrected MLE)	5.529	k hat (MLE)
0.757	Theta star (bias corrected MLE)	0.539	Theta hat (MLE)
78.74	nu star (bias corrected)	110.6	nu hat (MLE)
1.502	MLE Sd (bias corrected)	2.98	MLE Mean (bias corrected)
59.3	Approximate Chi Square Value (0.05)		
56.37	Adjusted Chi Square Value	0.0267	Adjusted Level of Significance

Assuming Gamma Distribution

3.957 95% Approximate Gamma UCL (use when n>=50)) 95% Adjusted Gamma UCL (use when n<50) 4.162

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.913 **Shapiro Wilk Lognormal GOF Test**

Site 4 Subsurface Soil

5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.179	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.47	Mean of logged Data	0.999
Maximum of Logged Data	1.74	SD of logged Data	0.453

Assuming Lognormal Distribution

95% H-UCL	4.166	90% Chebyshev (MVUE) UCL	4.273
95% Chebyshev (MVUE) UCL	4.861	97.5% Chebyshev (MVUE) UCL	5.678
99% Chebyshev (MVUE) UCL	7.281		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.695	95% Jackknife UCL	3.777
95% Standard Bootstrap UCL	3.662	95% Bootstrap-t UCL	3.977
95% Hall's Bootstrap UCL	3.8	95% Percentile Bootstrap UCL	3.67
95% BCA Bootstrap UCL	3.77		
90% Chebyshev(Mean, Sd) UCL	4.284	95% Chebyshev(Mean, Sd) UCL	4.874
97.5% Chebyshev(Mean, Sd) UCL	5.694	99% Chebyshev(Mean, Sd) UCL	7.304

Suggested UCL to Use

95% Student's-t UCL 3.777

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/4/2019 9:29:26 AM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Aluminum (UG/L)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	0
Minimum	24	Mean	4600
Maximum	13000	Median	44
SD	6349	Std. Error of Mean	2839
Coefficient of Variation	1.38	Skewness	0.742

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.751	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.363	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adju	sted for Skewness)
-------------------------------	--------------------

95% Student's-t UCL 10653 95% Adjusted-CLT UCL (Chen-1995) 10277 95% Modified-t UCL (Johnson-1978) 10810

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.767	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.751	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.376	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.383	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

0.241	k star (bias corrected MLE)	0.268	k hat (MLE)
19121	Theta star (bias corrected MLE)	17159	Theta hat (MLE)
2.406	nu star (bias corrected)	2.681	nu hat (MLE)
9378	MLE Sd (bias corrected)	4600	MLE Mean (bias corrected)
0.221	Approximate Chi Square Value (0.05)		
0.0882	Adjusted Chi Square Value	0.0086	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 50168

95% Adjusted Gamma UCL (use when n<50) 125524

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.747	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.335	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 3.178 Mean of logged Data 5.814 Maximum of Logged Data 9.473 SD of logged Data 3.224

Assuming Lognormal Distribution

95% H-UCL 1.933E+15 90% Chebyshev (MVUE) UCL 21537 95% Chebyshev (MVUE) UCL 28691 97.5% Chebyshev (MVUE) UCL 38620 99% Chebyshev (MVUE) UCL 58125

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 9270	95% Jackknife UCL 10653
95% Standard Bootstrap UCL 8830	95% Bootstrap-t UCL 3241161
95% Hall's Bootstrap UCL 3619781	95% Percentile Bootstrap UCL 9166
95% BCA Bootstrap UCL 9169	
90% Chebyshev(Mean, Sd) UCL 13117	95% Chebyshev(Mean, Sd) UCL 16976
97.5% Chebyshev(Mean, Sd) UCL 22331	99% Chebyshev(Mean, Sd) UCL 32850

Suggested UCL to Use

95% Adjusted Gamma UCL 125524

Recommended UCL exceeds the maximum observation

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic (UG/L)

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	5
Number of Detects	3	Number of Non-Detects	2
Number of Distinct Detects	3	Number of Distinct Non-Detects	2
Minimum Detect	0.21	Minimum Non-Detect	0.13
Maximum Detect	17	Maximum Non-Detect	0.5
Variance Detects	87.3	Percent Non-Detects	40%

Mean Detects	6.237	SD Detects	9.344
Median Detects	1.5	CV Detects	1.498
Skewness Detects	1.695	Kurtosis Detects	N/A
Mean of Logged Detects	0.559	SD of Logged Detects	2.201

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.807	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.361	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

rror of Mean	KM Standard	3.802	KM Mean
I (BCA) UCL	95% K	6.619	KM SD
otstrap) UCL	95% KM (Percentile Bo	11.53	95% KM (t) UCL
tstrap t UCL	95% KM Bo	9.765	95% KM (z) UCL
byshev UCL	95% KM Ch	14.68	90% KM Chebyshev UCL
byshev UCL	99% KM Ch	26.44	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	0.5	k hat (MLE)
N/A	Theta star (bias corrected MLE)	12.48	Theta hat (MLE)
N/A	nu star (bias corrected)	2.998	nu hat (MLE)
		6.237	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	3.746
Maximum	17	Median	0.21
SD	7.435	CV	1.985
k hat (MLE)	0.251	k star (bias corrected MLE)	0.234
Theta hat (MLE)	14.92	Theta star (bias corrected MLE)	16.02
nu hat (MLE)	2.511	nu star (bias corrected)	2.338
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (2.34, α)	0.207	Adjusted Chi Square Value (2.34, β)	0.0843

Estimates	of Gamma	Parameters	using KM	Estimates
Louinateo	oi Gaillilla	i alallicicio	usiliu ivivi	Louinateo

Mean (KM)	3.802	SD (KM)	6.619
Variance (KM)	43.81	SE of Mean (KM)	3.625
k hat (KM)	0.33	k star (KM)	0.265
nu hat (KM)	3.299	nu star (KM)	2.653
theta hat (KM)	11.52	theta star (KM)	14.33
80% gamma percentile (KM)	5.633	90% gamma percentile (KM)	11.36
95% gamma percentile (KM)	18.08	99% gamma percentile (KM)	35.81

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.65, α)	0.278	Adjusted Chi Square Value (2.65, β)	0.105
95% Gamma Approximate KM-UCL (use when n>=50)	36.35	95% Gamma Adjusted KM-UCL (use when n<50)	95.66

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.996	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.195	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	3.752	Mean in Log Scale	-1.271
SD in Original Scale	7.431	SD in Log Scale	3.017
95% t UCL (assumes normality of ROS data)	10.84	95% Percentile Bootstrap UCL	10.21
95% BCA Bootstrap UCL	10.54	95% Bootstrap t UCL	278.3
95% H-UCL (Log ROS) 4	.211E+10		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.649	KM Geo Mean	-0.433	KM Mean (logged)
8.714	95% Critical H Value (KM-Log)	1.852	KM SD (logged)
11531	95% H-UCL (KM -Log)	1.017	KM Standard Error of Mean (logged)
8.714	95% Critical H Value (KM-Log)	1.852	KM SD (logged)
		1.017	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	3.805	Mean in Log Scale	-0.488	
SD in Original Scale	7.399	SD in Log Scale	2.17	
95% t UCL (Assumes normality)	10.86	95% H-Stat UCL	394889	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 11.53

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium (UG/L)

General Statistics

T . IN 1 (O) .:	_	N 1 (D) (1 (O) (1	_
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	0
Minimum	0.24	Mean	19.86
Maximum	92	Median	0.87
SD	40.39	Std. Error of Mean	18.06
Coefficient of Variation	2.034	Skewness	2.219

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.594	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.437	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL	58.37	95% Adjusted-CLT UCL (Chen-1995)	68.72
		95% Modified-t UCL (Johnson-1978)	61.35

Gamma GOF Test

A-D Test Statistic	0.594	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.308	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.379	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.311	k star (bias corrected MLE)	0.258
Theta hat (MLE)	63.75	Theta star (bias corrected MLE)	76.98
nu hat (MLE)	3.115	nu star (bias corrected)	2.579
MLE Mean (bias corrected)	19.86	MLE Sd (bias corrected)	39.1
		Approximate Chi Square Value (0.05)	0.26
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	0.0997

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 197.3 95% Adjusted Gamma UCL (use when n<50) 513.6

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.903	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.251	Lilliefors Lognormal GOF Test

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.427	Mean of logged Data	0.788
Maximum of Logged Data	4.522	SD of logged Data	2.398

Assuming Lognormal Distribution

95% H-UCL 26	484348	90% Chebyshev (MVUE) UCL	44.9
95% Chebyshev (MVUE) UCL	59.34	97.5% Chebyshev (MVUE) UCL	79.39
99% Chebyshev (MVUE) UCL	118.8		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	49.57	95% Jackknife UCL	58.37
95% Standard Bootstrap UCL	46.5	95% Bootstrap-t UCL	2814
95% Hall's Bootstrap UCL	1640	95% Percentile Bootstrap UCL	55.34
95% BCA Bootstrap UCL	56.51		
90% Chebyshev(Mean, Sd) UCL	74.05	95% Chebyshev(Mean, Sd) UCL	98.6
97.5% Chebyshev(Mean, Sd) UCL	132.7	99% Chebyshev(Mean, Sd) UCL	199.6

Suggested UCL to Use

95% Adjusted Gamma UCL 513.6

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Lead (UG/L)

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	2
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.74	Minimum Non-Detect	0.13
Maximum Detect	18	Maximum Non-Detect	0.13
Variance Detects	93.58	Percent Non-Detects	40%
Mean Detects	6.847	SD Detects	9.674
Median Detects	1.8	CV Detects	1.413
Skewness Detects	1.709	Kurtosis Detects	N/A
Mean of Logged Detects	1.059	SD of Logged Detects	1.647

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.796	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.366	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.16	KM Standard Error of Mean	3.805
KM SD	6.947	95% KM (BCA) UCL	N/A
95% KM (t) UCL	12.27	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	10.42	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	15.57	95% KM Chebyshev UCL	20.75
97.5% KM Chebyshev UCL	27.92	99% KM Chebyshev UCL	42.02

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	0.699	k hat (MLE)
N/A	Theta star (bias corrected MLE)	9.795	Theta hat (MLE)
N/A	nu star (bias corrected)	4.194	nu hat (MLE)
		6.847	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

4.112	Mean	0.01	Minimum
0.74	Median	18	Maximum
1.896	CV	7.798	SD
0.241	k star (bias corrected MLE)	0.268	k hat (MLE)
17.1	Theta star (bias corrected MLE)	15.34	Theta hat (MLE)
2.405	nu star (bias corrected)	2.68	nu hat (MLE)
		0.0086	Adjusted Level of Significance (β)
0.0881	Adjusted Chi Square Value (2.41, β)	0.221	Approximate Chi Square Value (2.41, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	44.85	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	4.16	SD (KM)	6.947
Variance (KM)	48.26	SE of Mean (KM)	3.805
k hat (KM)	0.359	k star (KM)	0.277
nu hat (KM)	3.586	nu star (KM)	2.768
theta hat (KM)	11.6	theta star (KM)	15.03
80% gamma percentile (KM)	6.243	90% gamma percentile (KM)	12.38
95% gamma percentile (KM)	19.52	99% gamma percentile (KM)	38.28

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.77, α)	0.307	Adjusted Chi Square Value (2.77, β)	0.115
95% Gamma Approximate KM-UCL (use when n>=50)	37.5	95% Gamma Adjusted KM-UCL (use when n<50)	99.83

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	4.118	Mean in Log Scale	-0.97
SD in Original Scale	7.794	SD in Log Scale	3.075
95% t UCL (assumes normality of ROS data)	11.55	95% Percentile Bootstrap UCL	10.8
95% BCA Bootstrap UCL	11.31	95% Bootstrap t UCL	80.42
95% H-UCL (Log ROS) 1	1.538E+11		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.181	KM Geo Mean	0.835
KM SD (logged)	1.841	95% Critical H Value (KM-Log)	8.664
KM Standard Error of Mean (logged)	1.009	95% H-UCL (KM -Log)	13247
KM SD (logged)	1.841	95% Critical H Value (KM-Log)	8.664
KM Standard Error of Mean (logged)	1.009		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	4.134	Mean in Log Scale	-0.458
SD in Original Scale	7.784	SD in Log Scale	2.381
95% t UCL (Assumes normality)	11.55	95% H-Stat UCL	6120330

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 12.27

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix F.3 Site 5 Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: CurrentFuture

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Surface Soil	67-64-1	Acetone	9.8E-02	4.0E-01 J	MG/KG	CBD-S05-SS02-1012	6/6	N/A	4.0E-01	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
ourrace con	71-43-2	Benzene	3.2E-04 J	3.2E-04 J	MG/KG	CBD-S05-SS06-1012	1/6	0.00044 - 0.00064	3.2E-04	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	79-20-9	Methyl acetate	3.1E-02	3.1E-02	MG/KG	CBD-S05-SS05-1012	1/5	N/A	3.1E-02	N/A	7.8E+03 N	4.1E-01	SSL	NO	BSL
	108-88-3	Toluene	2.4E-04 J	1.8E-03 J	MG/KG	CBD-S05-SS05-1012	6/6	N/A	1.8E-03	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	76-13-1	Trichlorofluoromethane (Freon-11)	2.6E-04 J	2.6E-04 J	MG/KG	CBD-S05-SS02-1012	1/6	0.00022 - 0.00033	2.6E-04	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	91-57-6	2-Methylnaphthalene	1.3E-02 J	3.3E-01 J	MG/KG	CBD-S05-SS03-1012	3/18	0.0017 - 0.1	3.3E-01	N/A	2.4E+01 N	1.9E-02	SSL	NO	BSL
	83-32-9	Acenaphthene	9.5E-04 J	2.6E+00	MG/KG	CBD-S05-SS03-1012	12/18	0.0011 - 0.1	2.6E+00	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	8.3E-04 J	1.5E-02 J	MG/KG	CBD-S05-SS15-000H	11/18	0.0011 - 0.1	1.5E-02	N/A	3.6E+02 N	N/A		NO	BSL
	120-12-7	Anthracene	3.2E-03 J	6.4E+00	MG/KG	CBD-S05-SS03-1012	12/18	0.0017 - 0.0052	6.4E+00	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	4.8E-03 J	3.0E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0017 - 0.0052	3.0E+01	N/A	1.1E+00 C	1.1E-02	SSL	YES	ASL
	50-32-8	Benzo(a)pyrene	5.2E-03 J	3.7E+00	MG/KG	CBD-S05-SS03-1012	16/18	0.0034 - 0.233	3.7E+00	N/A	1.1E-01 C	2.9E-02	SSL	YES	ASL
	205-99-2	Benzo(b)fluoranthene	6.6E-03 J	3.2E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0034 - 0.233	3.2E+01	N/A	1.1E+00 C	3.0E-01	SSL	YES	ASL
	191-24-2	Benzo(g,h,i)perylene	2.9E-03 J	1.3E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0017 - 0.1	1.3E+01	N/A	1.8E+02 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	3.3E-03 J	1.1E+01	MG/KG	CBD-S05-SS03-1012	15/18	0.0034 - 0.233	1.1E+01	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
	85-68-7	Butylbenzylphthalate	6.1E-02 J	6.1E-02 J	MG/KG	CBD-S05-SS01P-1012	1/18	0.0034 - 0.308	6.1E-02	N/A	2.9E+02 C	2.4E-01	SSL	NO	BSL
	86-74-8	Carbazole	6.4E-02 J	3.1E+00 J	MG/KG	CBD-S05-SS03-1012	2/18	0.034 - 2	3.1E+00	N/A	N/A	N/A		NO	NTX
	218-01-9	Chrysene	4.9E-03 J	2.6E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0017 - 0.1	2.6E+01	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	4.6E-03 J	4.2E-01 J	MG/KG	CBD-S05-SS03-1012	13/18	0.0034 - 0.2	4.2E-01	N/A	1.1E-01 C	9.6E-02	SSL	YES	ASL
	132-64-9	Dibenzofuran	3.9E-02	1.2E+00	MG/KG	CBD-S05-SS03-1012	2/18	0.0017 - 0.308	1.2E+00	N/A	7.3E+00 N	1.5E-02	SSL	NO	BSL
	131-11-3	Dimethyl phthalate	2.6E-03 J	2.6E-03 J	MG/KG	CBD-S05-SS04-1012	1/18	0.034 - 0.62	2.6E-03	N/A	N/A	N/A		NO	NTX
	84-74-2	Di-n-butylphthalate	1.3E-01 J	1.3E-01 J	MG/KG	CBD-S05-SS21-000H	1/18	0.017 - 1	1.3E-01	N/A	6.3E+02 N	2.3E-01	SSL	NO	BSL
	206-44-0	Fluoranthene	1.0E-03 J	4.5E+01	MG/KG	CBD-S05-SS03-1012	17/18	0.0017 - 0.1	4.5E+01	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	1.7E-03 J	2.1E+00	MG/KG	CBD-S05-SS03-1012	12/18	0.0017 - 0.1	2.1E+00	N/A	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	4.9E-03 J	1.3E+01	MG/KG	CBD-S05-SS03-1012	14/18	0.0034 - 0.2	1.3E+01	N/A	1.1E+00 C	9.8E-01	SSL	YES	ASL
	91-20-3	Naphthalene	2.1E-02	1.5E+00	MG/KG	CBD-S05-SS03-1012	4/18	0.0017 - 0.1	1.5E+00	N/A	3.8E+00 C	5.4E-04	SSL	NO	BSL
	85-01-8	Phenanthrene	3.5E-03 J	2.7E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0017 - 0.1	2.7E+01	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	7.3E-03 J	4.8E+01	MG/KG	CBD-S05-SS03-1012	16/18	0.0034 - 0.2	4.8E+01	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	72-54-8	4,4'-DDD	6.9E-04	5.2E-03 J-	MG/KG	CBD-S05-SS09-000H	4/17	0.000121 - 0.000464	5.2E-03	N/A	1.9E-01 N	1.5E-03	SSL	NO	BSL
	72-55-9	4,4'-DDE	4.3E-04 J-	1.5E-01	MG/KG	CBD-S05-SS10-000H	7/17	0.000121 - 0.000464	1.5E-01	N/A	2.0E+00 C	1.1E-02	SSL	NO	BSL
	50-29-3	4,4'-DDT	1.5E-03 J	1.8E-01	MG/KG	CBD-S05-SS10-000H	4/17	0.000241 - 0.000928	1.8E-01	N/A	1.9E+00 C	7.7E-02	SSL	NO	BSL
	5103-71-9	alpha-Chlordane	2.7E-04 J	6.2E-04	MG/KG	CBD-S05-SS23-000H	2/17	0.000121 - 0.000464	6.2E-04	N/A	1.7E+00 C	2.7E-03	SSL	NO	BSL
	11097-69-1	Aroclor-1254	9.1E-03 J	4.6E-02	MG/KG	CBD-S05-SS03-1012	3/18	0.0062 - 0.023	4.6E-02	N/A	1.2E-01 N	2.0E-03	SSL	NO	BSL
	11096-82-5	Aroclor-1260	5.6E-03 J	8.0E-02	MG/KG	CBD-S05-SS03-1012	4/18	0.0062 - 0.023	8.0E-02	N/A	2.4E-01 C	5.5E-03	SSL	NO	BSL

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: CurrentFuture

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5 Contaminant Deletion or Selection
	7429-90-5	Aluminum	2.3E+03	1.5E+04 J	MG/KG	CBD-S05-SS18-000H	18/18	N/A	1.5E+04	1.3E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	5.6E-02 J	2.4E+00	MG/KG	CBD-S05-SS03-1012	11/18	0.14 - 0.2	2.4E+00	4.2E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	9.1E-01	6.0E+00	MG/KG	CBD-S05-SS13P-000H	18/18	N/A	6.0E+00	6.4E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	6.0E+00	7.6E+01	MG/KG	CBD-S05-SS21-000H	18/18	N/A	7.6E+01	5.8E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.5E-01	1.4E+00	MG/KG	CBD-S05-SS06-1012	17/18	0.32 - 0.32	1.4E+00	8.1E-01	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	3.3E-02 J	1.2E+00	MG/KG	CBD-S05-SS21-000H	15/18	0.14 - 0.2	1.2E+00	1.7E+00	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	2.5E+01 J	6.3E+03	MG/KG	CBD-S05-SS21-000H	18/18	N/A	6.3E+03	9.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	1.7E-01 J	1.7E-01 J	MG/KG	CBD-S05-SS01-1012	1/1	N/A	1.7E-01	4.0E-01	3.0E-01 C	6.7E-04	SSL	NO	BSL
	7440-47-3	Chromium	4.4E+00	2.4E+01	MG/KG	CBD-S05-SS17-000H	18/18	N/A	2.4E+01	3.1E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	7.0E-01	6.9E+00	MG/KG	CBD-S05-SS06-1012	18/18	N/A	6.9E+00	1.2E+01	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.7E+00	2.3E+02	MG/KG	CBD-S05-SS03-1012	18/18	N/A	2.3E+02	2.7E+01	3.1E+02 N	2.8E+00	SSL	NO	BSL
	57-12-5	Cyanide	3.2E-02 J	6.5E-02 J	MG/KG	CBD-S05-SS03-1012	5/6	0.054 - 0.062	6.5E-02	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	2.6E+03	2.8E+04 J	MG/KG	CBD-S05-SS18-000H	17/18	N/A	2.8E+04	4.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	2.9E+00	2.7E+02	MG/KG	CBD-S05-SS21-000H	18/18	N/A	2.7E+02	5.0E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	2.2E+02	2.4E+03	MG/KG	CBD-S05-SS17-000H	18/18	N/A	2.4E+03	3.8E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	1.3E+01	2.9E+02	MG/KG	CBD-S05-SS21-000H	18/18	N/A	2.9E+02	2.0E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7439-97-6	Mercury	6.6E-03 J	3.5E-01 J	MG/KG	CBD-S05-SS21-000H CBD-S05-SS18-000H,	8/18	0.017 - 0.34	3.5E-01	1.9E-01	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	1.4E+00	2.6E+01	MG/KG	CBD-S05-SS18P-000H	18/18	N/A	2.6E+01	1.2E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	1.8E+02	1.6E+03	MG/KG	CBD-S05-SS17-000H	18/18	N/A	1.6E+03	1.5E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	1.0E-01	1.5E+00	MG/KG	CBD-S05-SS13P-000H	16/18	0.28 - 0.28	1.5E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	7.6E-02	1.0E+00	MG/KG	CBD-S05-SS18-000H	18/18	N/A	1.0E+00	1.4E+00	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.3E+01 J+	4.1E+01 J+	MG/KG	CBD-S05-SS17-000H	8/18	4.7 - 16	4.1E+01	3.1E+02	N/A	N/A		NO	NUT

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: CurrentFuture

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

														Step 1	
Exposu	e CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	COPC	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion
															or Selection
						CBD-S05-SS12-000H,									
	7440-28-0	Thallium	4.5E-02 J	1.8E-01 J	MG/KG	CBD-S05-SS20-000H	15/18	0.14 - 0.14	1.8E-01	1.3E+00	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	6.0E+00	3.8E+02	MG/KG	CBD-S05-SS23-000H	18/18	N/A	3.8E+02	3.0E+01	3.9E+01 N	8.6E+00	SSL	YES	ASL
	7440-66-6	Zinc	5.9E+00	2.8E+02	MG/KG	CBD-S05-SS21-000H	13/18	N/A	2.8E+02	7.9E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for technical chlordane used as surrogate for alpha-chlordane.

RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalent).

RSL value for Mercury (inorganic salts) used as surrogate for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

J- = Biased Low

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.1a. Step 2 Surface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) MG/KG	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)anthracene	16 / 18	3.0E+01	CBD-S05-SS03-1012	N/A	1.1E+00	N/A	3E-05	N/A
Benzo(a)pyrene	16 / 18	3.7E+00	CBD-S05-SS03-1012	1.8E+01	1.1E-01	0.2	3E-05	Developmental
Benzo(b)fluoranthene	16 / 18	3.2E+01	CBD-S05-SS03-1012	N/A	1.1E+00	N/A	3E-05	N/A
Dibenz(a,h)anthracene	13 / 18	4.2E-01 J	CBD-S05-SS03-1012	N/A	1.1E-01	N/A	4E-06	N/A
Indeno(1,2,3-cd)pyrene	14 / 18	1.3E+01	CBD-S05-SS03-1012	N/A	1.1E+00	N/A	1E-05	N/A
Aluminum	18 / 18	1.5E+04 J	CBD-S05-SS18-000H	7.7E+04	N/A	0.2	N/A	Neurological
Arsenic	18 / 18	6.0E+00	CBD-S05-SS13P-000H	3.5E+01	6.8E-01	0.2	9E-06	Cardiovascular, Dermal
Cobalt	18 / 18	6.9E+00	CBD-S05-SS06-1012	2.3E+01	4.2E+02	0.3	2E-08	Thyroid,Respiratory
Iron	17 / 18	2.8E+04 J	CBD-S05-SS18-000H	5.5E+04	N/A	0.5	N/A	Gastrointestinal
Manganese	18 / 18	2.9E+02	CBD-S05-SS21-000H	1.8E+03	N/A	0.2	N/A	Nervous
Thallium	15 / 18	1.8E-01 J	CBD-S05-SS12-000H, CBD-S05-SS20-000H	7.8E-01	N/A	0.2	N/A	Dermal
Vanadium	18 / 18	3.8E+02	CBD-S05-SS23-000H	3.9E+02	N/A	1	N/A	Hair
Cumulative Hazard Index ^c						3		
Cumulative Cancer Risk ^d							1E-04	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MG/KG = milligrams per kilogram

ELCR = Excess Lifetime Cancer Risk MDE = Maryland Department of the Environment

HI = Hazard Index N/A = Not available/not applicable

HQ = Hazard Quotient RSL = Regional Screening Levels, November 2019
J = Estimated Value USEPA = US Environmental Protection Agency

1E-04	
Total Developmental HI =	0.2
Total Neurological/Nervous HI =	0.4
Total Cardiovascular HI =	0.2
Total Dermal HI =	0.4
Total Thyroid HI =	0.3
Total Respiratory HI =	0.3
Total Gastrointestinal HI =	0.5
Total Hair HI =	1

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.1b. Step 3 Surface Soil Screening - Risk Ratio, 95% UCL, Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Benzo(a)anthracene	16 / 18	1.8E+01	99% KM (Chebyshev) UCL	1	N/A	1.1E+00	N/A	2E-05	N/A
Benzo(a)pyrene	16 / 18	1.4E+00	95% Gamma Adjusted KM-UCL	1, 3	1.8E+01	1.1E-01	0.1	1E-05	Developmental
Benzo(b)fluoranthene	16 / 18	2.0E+01	99% KM Chebyshev UCL	1	N/A	1.1E+00	N/A	2E-05	N/A
Dibenz(a,h)anthracene	13 / 18	1.6E-01	95% Gamma Adjusted KM-UCL	1, 3	N/A	1.1E-01	N/A	1E-06	N/A
Indeno(1,2,3-cd)pyrene	14 / 18	8.1E+00	99% KM Chebyshev UCL	1	N/A	1.1E+00	N/A	7E-06	N/A
Arsenic	18 / 18	7.7E+00	95% Student's-t UCL	3	3.5E+01	6.8E-01	0.2	1E-05	Cardiovascular, Dermal
Vanadium	18 / 18	5.4E+01	95% H-UCL	1	3.9E+02	N/A	0.1	N/A	Hair
Cumulative Hazard Index ^c							0.4		
Cumulative Cancer Risk ^d								7E-05	
							Tota	Developmental HI =	0.1

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MDE = Maryland Department of the Environment

ELCR = Excess Lifetime Cancer Risk N/A = Not available/not applicable

HI = Hazard Index RSL = Regional Screening Levels, November 2019
HQ = Hazard Quotient USEPA = US Environmental Protection Agency

MG/KG = milligrams per kilogram
UCL = Upper Confidence Limit

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).
- (5) Recommended 95% UCL exceeds maximum detected concentration.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.1c. Comparison of Concentrations of COPCs to Background Concentrations - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Exceeds Background?
Surface Soil	7440-38-2	Arsenic	9.1E-01	6.0E+00	MG/KG	CBD-S05-SS13P-000H	18/18	N/A	6.0E+00	6.4E+00	NO

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 22 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
							ı								
Subsurface Soil	78-93-3	2-Butanone	2.1E-01 J	2.1E-01 J	MG/KG	CBD-S05-SB03-1820	1/5	0.0005 - 0.0006	2.1E-01	N/A	2.7E+03 N	1.2E-01	SSL	NO	BSL
	67-64-1	Acetone	1.6E-02	4.3E-01 J	MG/KG	CBD-S05-SB03-1820	4/5	0.005 - 0.006	4.3E-01	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	71-43-2	Benzene	2.0E-04 J	2.0E-04 J	MG/KG	CBD-S05-SB04-2022	1/5	0.0005 - 0.0006	2.0E-04	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	100-41-4	Ethylbenzene	3.1E-01	3.1E-01	MG/KG	CBD-S05-SB03-1820	1/5	0.0005 - 0.0006	3.1E-01	N/A	5.8E+00 C	1.7E-03	SSL	NO	BSL
	98-82-8	Isopropylbenzene	2.6E+00	2.6E+00	MG/KG	CBD-S05-SB03-1820	1/5	0.00025 - 0.0003	2.6E+00	N/A	1.9E+02 N	7.4E-02	SSL	NO	BSL
	m&pXYLENE	m- and p-Xylene	3.9E-01	3.9E-01	MG/KG	CBD-S05-SB03-1820	1/5	0.0005 - 0.0006	3.9E-01	N/A	5.8E+01 N	1.9E-02	SSL	NO	BSL
	79-20-9	Methyl acetate	2.0E-03 J	1.3E+00	MG/KG	CBD-S05-SB03-1820	2/5	0.0005 - 0.0006	1.3E+00	N/A	7.8E+03 N	4.1E-01	SSL	NO	BSL
	108-87-2	Methylcyclohexane	1.6E-01 J	1.6E-01 J	MG/KG	CBD-S05-SB03-1820	1/5	0.0005 - 0.0006	1.6E-01	N/A	6.1E+01 N	N/A		NO	BSL
	95-47-6	o-Xylene	6.5E-01	6.5E-01	MG/KG	CBD-S05-SB03-1820	1/5	0.00025 - 0.0003	6.5E-01	N/A	6.5E+01 N	1.9E-02	SSL	NO	BSL
	108-88-3	Toluene	7.5E-04 J	7.5E-04 J	MG/KG	CBD-S05-SB04-2022	1/5	0.0005 - 0.0006	7.5E-04	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	76-13-1	Trichlorofluoromethane (Freon-11)	4.3E-04 J	4.3E-04 J	MG/KG	CBD-S05-SB05-2022	1/5	0.00025 - 0.0003	4.3E-04	N/A	6.7E+02 N	2.6E+00	SSL	NO	BSL
	92-52-4	1,1-Biphenyl	4.5E-02	4.5E-02	MG/KG	CBD-S05-SB03-1820	1/10	0.02 - 0.8	4.5E-02	N/A	4.7E+00 N	8.7E-04	SSL	NO	BSL
	91-57-6	2-Methylnaphthalene	7.2E-01	7.2E-01	MG/KG	CBD-S05-SB03-1820	1/10	0.002 - 0.0079	7.2E-01	N/A	2.4E+01 N	1.9E-02	SSL	NO	BSL
	83-32-9	Acenaphthene	9.3E-02	9.3E-02	MG/KG	CBD-S05-SB03-1820	1/10	0.0012 - 0.002	9.3E-02	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	120-12-7	Anthracene	2.4E-03 J	2.4E-03 J	MG/KG	CBD-S05-SB03-1820	1/10	0.002 - 0.0058	2.4E-03	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	2.1E-03 J	5.6E-03 J	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0058	5.6E-03	N/A	1.1E+00 C	1.1E-02	SSL	NO	BSL
	205-99-2	Benzo(b)fluoranthene	4.5E-03 J	1.0E-02 J	MG/KG	CBD-S05-SB03-1820	2/10	0.0039 - 0.0089	1.0E-02	N/A	1.1E+00 C	3.0E-01	SSL	NO	BSL
	191-24-2	Benzo(g,h,i)perylene	2.8E-03 J	1.3E-02 J	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0089	1.3E-02	N/A	1.8E+02 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	3.6E-03 J	4.0E-03 J	MG/KG	CBD-S05-SB03-1820	2/10	0.0039 - 0.0059	4.0E-03	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
	218-01-9	Chrysene	3.4E-03 J	5.2E-03 J	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0058	5.2E-03	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	3.4E-03 J	3.4E-03 J	MG/KG	CBD-S05-SB15-0810	1/10	0.00079 - 0.0089	3.4E-03	N/A	1.1E-01 C	9.6E-02	SSL	NO	BSL
	132-64-9	Dibenzofuran	5.9E-02	5.9E-02	MG/KG	CBD-S05-SB03-1820	1/10	0.002 - 0.266	5.9E-02	N/A	7.3E+00 N	1.5E-02	SSL	NO	BSL
	131-11-3	Dimethyl phthalate	2.3E-03 J	2.3E-03 J	MG/KG	CBD-S05-SB01-2022	1/10	0.0039 - 0.266	2.3E-03	N/A	N/A	N/A		NO	NTX
	206-44-0	Fluoranthene	4.2E-03 J	4.4E-03 J	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0058	4.4E-03	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	1.1E-03 J	2.5E-02	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0036	2.5E-02	N/A	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	3.7E-03 J	6.8E-03 J	MG/KG	CBD-S05-SB03-1820	2/10	0.0039 - 0.0089	6.8E-03	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	91-20-3	Naphthalene	8.9E-04 J	8.2E-02	MG/KG	CBD-S05-SB03-1820	2/10	0.002 - 0.0027	8.2E-02	N/A	3.8E+00 C	5.4E-04	SSL	NO	BSL
	85-01-8	Phenanthrene	1.2E-03 J	1.3E-02 J	MG/KG	CBD-S05-SB03-1820	3/10	0.002 - 0.0089	1.3E-02	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	1.3E-02 J	1.3E-02 J	MG/KG	CBD-S05-SB03-1820	1/10	0.0039 - 0.0089	1.3E-02	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	309-00-2	Aldrin	8.8E-04 J	8.8E-04 J	MG/KG	CBD-S05-SB12-0810	1/10	0.000136 - 0.000272	8.8E-04	N/A	3.9E-02 C	1.5E-04	SSL	NO	BSL
	33213-65-9	Endosulfan II	2.7E-04 J	2.7E-04 J	MG/KG	CBD-S05-SB15-0810	1/10	0.000136 - 0.000272	2.7E-04	N/A	4.7E+01 N	1.4E-01	SSL	NO	BSL
	7429-90-5	Aluminum	1.8E+03	1.5E+04	MG/KG	CBD-S05-SB15-0810	10/10	N/A	1.5E+04	1.6E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	1.3E-01	3.3E-01	MG/KG	CBD-S05-SB03-1820	5/10	0.15 - 0.17	3.3E-01	5.5E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	2.6E+00	1.3E+01	MG/KG	CBD-S05-SB16-0810	10/10	N/A	1.3E+01	9.8E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	4.3E+00	4.9E+01	MG/KG	CBD-S05-SB14-0810	10/10	N/A	4.9E+01	5.7E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 22 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	-	Concentration [2] Used for Screening		Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
	7440-41-7	Beryllium	2.5E-01 J	3.6E+00	MG/KG	CBD-S05-SB04-2022	10/10	N/A	3.6E+00	1.2E+00	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	1.9E-01	4.6E-01	MG/KG	CBD-S05-SB04-2022	5/10	0.15 - 0.17	4.6E-01	8.1E-01	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	4.6E+01	4.5E+02	MG/KG	CBD-S05-SB05-2022	10/10	N/A	4.5E+02	1.4E+03	N/A	N/A		NO	NUT
	7440-47-3	Chromium	7.4E+00	3.0E+01	MG/KG	CBD-S05-SB12P-0810	10/10	N/A	3.0E+01	5.8E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	7.7E-01	1.1E+02	MG/KG	CBD-S05-SB04-2022	10/10	N/A	1.1E+02	5.9E+00	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.0E+00	8.5E+00	MG/KG	CBD-S05-SB12P-0810	10/10	N/A	8.5E+00	7.9E+00	3.1E+02 N	2.8E+00	SSL	NO	BSL
	7439-89-6	Iron	3.8E+03	4.6E+04	MG/KG	CBD-S05-SB16-0810	10/10	N/A	4.6E+04	3.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	1.6E+00	1.1E+01	MG/KG	CBD-S05-SB12P-0810	10/10	N/A	1.1E+01	1.2E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	5.6E+02	2.1E+03	MG/KG	CBD-S05-SB14-0810	10/10	N/A	2.1E+03	3.4E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	5.0E+00	2.9E+02	MG/KG	CBD-S05-SB04-2022	10/10	N/A	2.9E+02	2.3E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7440-02-0	Nickel	1.2E+00	3.2E+01	MG/KG	CBD-S05-SB04-2022	10/10	N/A	3.2E+01	1.3E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	3.8E+02	1.4E+03	MG/KG	CBD-S05-SB14-0810	10/10	N/A	1.4E+03	1.6E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	7.1E-02 J	1.3E+00	MG/KG	CBD-S05-SB14-0810	10/10	N/A	1.3E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	2.3E-02 J	2.9E-01	MG/KG	CBD-S05-SB03-1820	6/10	0.15 - 0.17	2.9E-01	2.3E-01	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.5E+01 J+	4.4E+01 J+	MG/KG	CBD-S05-SB15-0810	6/10	N/A	4.4E+01	1.4E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	9.2E-02 J	3.1E-01	MG/KG	CBD-S05-SB04-2022	10/10	N/A	3.1E-01	4.1E-01	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	4.6E+00	2.4E+01	MG/KG	CBD-S05-SB13-0810	10/10	N/A	2.4E+01	3.6E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	1.0E+01 J	7.8E+01	MG/KG	CBD-S05-SB01P-2022	6/10	N/A	7.8E+01	6.4E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for xylenes used for m- and p-xylene.

RSL value for n-hexane used as surrogate for methylcyclohexane.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for endosulfan used as surrogate for endosulfan II.

RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalent). Chromium (hexavalent) not detected in the soil sample.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

n: No Toxicity Information (NTX)
Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.2a. Step 2 Subsurface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

	Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Step 1 COPC								
Aluminum	10 / 10	1.5E+04	CBD-S05-SB15-0810	7.70E+04	N/A	0.2	N/A	Neurological
Arsenic	10 / 10	1.3E+01	CBD-S05-SB16-0810	3.50E+01	6.8E-01	0.4	2E-05	Cardiovascular, Dermal
Cobalt	10 / 10	1.1E+02	CBD-S05-SB04-2022	2.30E+01	4.2E+02	5	3E-07	Thyroid, Respiratory
Iron	10 / 10	4.6E+04	CBD-S05-SB16-0810	5.50E+04	N/A	0.8	N/A	Gastrointestinal
Manganese	10 / 10	2.9E+02	CBD-S05-SB04-2022	1.80E+03	N/A	0.2	N/A	Nervous
Thallium	10 / 10	3.1E-01	CBD-S05-SB04-2022	7.80E-01	N/A	0.4	N/A	Dermal
Cumulative Hazard Index ^c	•					7		
Cumulative Cancer Risk ^d							2E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MDE

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019 USEPA = US Environmental Protection Agency

	2E-05	
otal Neu	ırological/Nervous HI =	0.4
To	tal Cardiovascular HI =	0.4
	Total Dermal HI =	0.8
	Total Thyroid HI =	5
Total Respiratory HI =		5
Tot	al Gastrointestinal HI =	0.8

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2b. Step 3 Subsurface Soil Screening - Risk Ratio, 95% UCL, Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Arsenic	10 / 10	7.7E+00	95% Student's-t UCL	1, 2, 3	3.5E+01	6.8E-01	0.2	1E-05	Cardiovascular, Dermal
Cobalt	10 / 10	6.1E+01	95% Chebyshev(Mean, Sd) UCL	1	2.3E+01	4.2E+02	3	1E-07	Thyroid, Respiratory
Iron	10 / 10	3.7E+04	95% Chebyshev(Mean, Sd) UCL	4	5.5E+04	N/A	0.7	N/A	Gastrointestinal
Thallium	10 / 10	2.1E-01	95% Student's-t UCL	1	7.8E-01	N/A	0.3	N/A	Dermal
Cumulative Hazard Index ^c	·		·		·	_	4		
Cumulative Cancer Risk ^d								1E-05	

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MDE = Maryland Department of the Environment

ELCR = Excess Lifetime Cancer Risk N/A = Not available/not applicable

HI = Hazard Index RSL = Regional Screening Levels, November 2019
HQ = Hazard Quotient USEPA = US Environmental Protection Agency

MG/KG = milligrams per kilogram
UCL = Upper Confidence Limit

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users quide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).
- (5) Recommended 95% UCL exceeds maximum detected concentration.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2c. Comparison of Concentrations of COPCs to Background Concentrations - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 22 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Exceeds Background?
Subsurface Soil		Cobalt Iron	7.7E-01 3.8E+03	1.1E+02 4.6E+04	MG/KG MG/KG	CBD-S05-SB04-2022 CBD-S05-SB16-0810	10/10 10/10	N/A N/A	1.1E+02 4.6E+04	5.9E+00 3.0E+04	YES YES

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

Table 2.3. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	Step 1	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for		Toxicity Value				Contaminant
			Qualifier	Qualifier		Concentration	oquooy	Limits	Screening	74.45	Toxioney runus	Value	Source	9	Deletion
			Qualifici	Quanter		Concentiation		Lillito	Corconning			Value	Cource		or Selection
Groundwater	75-15-0	Carbon disulfide	1.0E+00	1.5E+00	UG/L	CBD-S05-GW03-0418	2/3	1 - 1	1.5E+00	N/A	8.1E+01 N	N/A		NO	BSL
	56-55-3	Benzo(a)anthracene	4.6E-03 J	9.0E-03 J	UG/L	CBD-S05-GW02-0418	2/3	0.012 - 0.012	9.0E-03	ND	3.0E-02 C	N/A		NO	BSL
	218-01-9	Chrysene	6.5E-03 J	9.5E-03 J	UG/L	CBD-S05-GW02-0418	2/3	0.012 - 0.012	9.5E-03	1.3E-02	2.5E+01 C	N/A		NO	BSL
	206-44-0	Fluoranthene	5.1E-03 J	8.5E-03 J	UG/L	CBD-S05-GW02-0418	3/3	0.02 - 0.02	8.5E-03	2.6E-02	8.0E+01 N	N/A		NO	BSL
	7429-90-5	Aluminum	2.6E+01 J+	4.3E+02	UG/L	CBD-S05-GW02-0418	3/3	N/A	4.3E+02	5.0E+03	2.0E+03 N	N/A		NO	BSL
	7440-38-2	Arsenic	1.6E-01 J	7.7E-01	UG/L	CBD-S05-GW02-0418	3/3	N/A	7.7E-01	6.1E+00	5.2E-02 C	1.0E+01	MCL	YES	ASL
	7440-39-3	Barium	2.9E+01	6.0E+01	UG/L	CBD-S05-GW02-0418	3/3	N/A	6.0E+01	1.6E+02	3.8E+02 N	2.0E+03	MCL	NO	BSL
	7440-41-7	Beryllium	1.5E-01 J	1.5E-01 J	UG/L	CBD-S05-GW02-0418	1/3	0.13 - 0.13	1.5E-01	3.0E+00	2.5E+00 N	4.0E+00	MCL	NO	BSL
	7440-43-9	Cadmium	5.0E-01	8.1E-01	UG/L	CBD-S05-GW03-0418	3/3	N/A	8.1E-01	6.4E+01	9.2E-01 N	5.0E+00	MCL	NO	BSL
	7440-70-2	Calcium	6.2E+04	1.6E+05	UG/L	CBD-S05-GW01-0418	3/3	N/A	1.6E+05	1.3E+05	N/A	N/A		NO	NUT
	7440-47-3	Chromium	5.2E-01	1.1E+00	UG/L	CBD-S05-GW02-0418	2/3	0.3 - 0.3	1.1E+00	2.5E+01	3.5E-02 C	1.0E+02	MCL	YES	ASL
	7440-48-4	Cobalt	1.0E+00	6.5E+00	UG/L	CBD-S05-GW03-0418	3/3	N/A	6.5E+00	4.0E+01	6.0E-01 N	N/A		YES	ASL
	7440-50-8	Copper	3.3E-01 J	8.2E-01	UG/L	CBD-S05-GW02-0418	2/3	0.3 - 0.3	8.2E-01	1.1E+01	8.0E+01 N	1.3E+03	MCL	NO	BSL
	7439-89-6	Iron	4.8E+01	4.8E+02	UG/L	CBD-S05-GW02-0418	3/3	N/A	4.8E+02	2.3E+04	1.4E+03 N	N/A		NO	BSL
	7439-92-1	Lead	4.2E-01 J	4.2E-01 J	UG/L	CBD-S05-GW02-0418	1/3	0.13 - 0.13	4.2E-01	1.4E+00	1.5E+01 L	1.5E+01	MCL	NO	BSL
	7439-95-4	Magnesium	2.7E+03	7.8E+03	UG/L	CBD-S05-GW03-0418	3/3	N/A	7.8E+03	3.8E+04	N/A	N/A		NO	NUT
	7439-96-5	Manganese	2.9E+01	5.6E+01	UG/L	CBD-S05-GW02-0418	3/3	N/A	5.6E+01	4.0E+03	4.3E+01 N	N/A		YES	ASL
	7440-02-0	Nickel	4.4E+00	2.1E+01	UG/L	CBD-S05-GW03-0418	3/3	N/A	2.1E+01	2.6E+02	3.9E+01 N	N/A		NO	BSL
	7440-09-7	Potassium	1.2E+03	2.4E+03	UG/L	CBD-S05-GW03-0418	3/3	N/A	2.4E+03	1.2E+04	N/A			NO	NUT
	7440-23-5	Sodium	5.7E+03	6.7E+03	UG/L	CBD-S05-GW02-0418	3/3	N/A	6.7E+03	5.5E+04	N/A	N/A		NO	NUT
	7440-28-0	Thallium	1.6E-01 J	1.6E-01 J	UG/L	CBD-S05-GW03-0418	1/3	0.5 - 0.5	1.6E-01	3.1E+00	2.0E-02 N	2.0E+00	MCL	YES	ASL
	7440-62-2	Vanadium	4.7E-01 J	1.5E+00	UG/L	CBD-S05-GW02-0418	3/3	N/A	1.5E+00	4.7E+00	8.6E+00 N	N/A		NO	BSL
	7440-66-6	Zinc	3.0E+00 J+	3.0E+01	UG/L	CBD-S05-GW03-0418	3/3	N/A	3.0E+01	3.2E+02	6.0E+02 N	N/A		NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory groundwater background threshold value (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs). Tap Water RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens). RSL value for chromium (hexavalent) used for chromium.
- [5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT) Below Screening Level (BSL) COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MCL = USEPA Maximum Contaminant Level

UG/L = Micrograms per liter

N/A = Not available/not applicable

ND = Not detected

Table 2.3a. Step 2 Groundwater Screening - Risk Ratio, Maximum Detected Concentration, Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Tap Water RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Metals (UG/L)	•							
Arsenic	3 / 3	7.7E-01	CBD-S05-GW02-0418	6.0E+00	5.2E-02	0.1	1E-05	Cardiovascular, Dermal
Chromium	2 / 3	1.1E+00	CBD-S05-GW02-0418	2.2E+04		0.0001	N/A	No effects observed
Cobalt	3 / 3	6.5E+00	CBD-S05-GW03-0418	6.0E+00	N/A	1	N/A	Thyroid, Respiratory
Manganese	3 / 3	5.6E+01	CBD-S05-GW02-0418	4.3E+02	N/A	0.1	N/A	Nervous
Thallium	1 / 3	1.6E-01 J	CBD-S05-GW03-0418	2.0E-01	N/A	1	N/A	Dermal
Cumulative Hazard Index ^c						2		
Cumulative Cancer Risk ^a						•	1E-05	
	•	·	·		·	Total Neurologi	cal/Nervous HI =	0.1

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

HI = Hazard Index MDE = Maryland Department of the Environment
UG/L = micrograms per liter USEPA = US Environmental Protection Agency

NA = Not available/not applicable

RSL = Regional Screening Levels, November 2019

	1E-05	
tal Neurologi	cal/Nervous HI =	0.1
Total Car	rdiovascular HI =	0.1
Т	otal Dermal HI =	1
Total Thyroid HI =		1
Total	Respiratory HI =	1

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

 $^{^{\}rm c}$ Cumulative Hazard Index equals sum of Hazard Indices for each constituent.

^d Cumulative Cancer Risk equals sum of Cancer Risks for each constituent.

Table 2.3b. Comparison of Concentrations of COPCs to Background Concentrations - Site 5

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Exceeds Background?
Groundwater	7440-38-2 7440-48-4 7440-28-0	Arsenic Cobalt Thallium	1.6E-01 J 1.0E+00 1.6E-01 J	7.7E-01 6.5E+00 1.6E-01 J	UG/L UG/L UG/L	CBD-S05-GW02-0418 CBD-S05-GW03-0418 CBD-S05-GW03-0418		N/A N/A 0.5 - 0.5	7.7E-01 6.5E+00 1.6E-01	6.1E+00 4.0E+01 3.1E+00	NO NO NO

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

COPC = Chemical of Potential Concern

UG/L = microgram per liter

N/A = not applicable

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/4/2019 11:45:51 AM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Benzo(a)anthracene (UG/KG)

General Statistics

18	Number of Distinct Observations	18	Total Number of Observations
2	Number of Non-Detects	16	Number of Detects
2	Number of Distinct Non-Detects	16	Number of Distinct Detects
1.8	Minimum Non-Detect	4.8	Minimum Detect
4.6	Maximum Non-Detect	30000	Maximum Detect
11.11%	Percent Non-Detects	55588455	Variance Detects
7456	SD Detects	2081	Mean Detects
3.583	CV Detects	85	Median Detects
15.89	Kurtosis Detects	3.981	Skewness Detects
2.377	SD of Logged Detects	4.388	Mean of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.305	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.463	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1850	KM Standard Error of Mean	1664
KM SD	6837	95% KM (BCA) UCL	5176
95% KM (t) UCL	4746	95% KM (Percentile Bootstrap) UCL	5124
95% KM (z) UCL	4588	95% KM Bootstrap t UCL	87187
90% KM Chebyshev UCL	6843	95% KM Chebyshev UCL	9105
97.5% KM Chebyshev UCL	12245	99% KM Chebyshev UCL	18411

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.087	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.873	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.296	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.237	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.222	k star (bias corrected MLE)	0.222	k hat (MLE)
9357	Theta star (bias corrected MLE)	9355	Theta hat (MLE)
7.117	nu star (bias corrected)	7.119	nu hat (MLE)
		2081	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	1850
Maximum	30000	Median	53.5
SD	7036	CV	3.803
k hat (MLE)	0.181	k star (bias corrected MLE)	0.188
Theta hat (MLE)	10232	Theta star (bias corrected MLE)	9856
nu hat (MLE)	6.508	nu star (bias corrected)	6.757
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (6.76, α)	2.038	Adjusted Chi Square Value (6.76, β)	1.799
95% Gamma Approximate UCL (use when n>=50)	6133	95% Gamma Adjusted UCL (use when n<50)	6948

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1850	SD (KM)	6837
Variance (KM)	46750729	SE of Mean (KM)	1664
k hat (KM)	0.0732	k star (KM)	0.098
nu hat (KM)	2.636	nu star (KM)	3.53
theta hat (KM)	25270	theta star (KM)	18869
80% gamma percentile (KM)	1247	90% gamma percentile (KM)	4883
95% gamma percentile (KM)	10750	99% gamma percentile (KM)	29679

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.53, α)	0.545	Adjusted Chi Square Value (3.53, β)	0.449
95% Gamma Approximate KM-UCL (use when n>=50)	11976	95% Gamma Adjusted KM-UCL (use when n<50)	14531
95% Gamma Adjuste	ed KM-UCI	(use when k<=1 and 15 < n < 50)	

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.12	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1850	Mean in Log Scale	3.776
SD in Original Scale	7036	SD in Log Scale	2.855
95% t UCL (assumes normality of ROS data)	4735	95% Percentile Bootstrap UCL	5142
95% BCA Bootstrap UCL	6869	95% Bootstrap t UCL	86365
95% H-UCL (Log ROS)	153164		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.965	KM Geo Mean	52.74
KM SD (logged)	2.476	95% Critical H Value (KM-Log)	5.192
KM Standard Error of Mean (logged)	0.603	95% H-UCL (KM -Log)	25598
KM SD (logged)	2.476	95% Critical H Value (KM-Log)	5.192
KM Standard Error of Mean (logged)	0.603		

DL/2 Statistics

DL/2 Normai		DL/2 Log-Transformed	
Mean in Original Scale	1850	Mean in Log Scale	3.94
SD in Original Scale	7036	SD in Log Scale	2.589
95% t UCL (Assumes normality)	4735	95% H-Stat UCL	43661

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 18411

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene (UG/KG)

General	Statistics
---------	------------

Total Number of Observations	18	Number of Distinct Observations	16
Number of Detects	16	Number of Non-Detects	2
Number of Distinct Detects	14	Number of Distinct Non-Detects	2
Minimum Detect	5.2	Minimum Non-Detect	3.5
Maximum Detect	3700	Maximum Non-Detect	4.6
Variance Detects	907809	Percent Non-Detects	11.11%
Mean Detects	454.6	SD Detects	952.8
Median Detects	96.5	CV Detects	2.096
Skewness Detects	3.082	Kurtosis Detects	9.945
Mean of Logged Detects	4.587	SD of Logged Detects	1.858

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.521	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	404.5	KM Standard Error of Mean	214.5
KM SD	881.3	95% KM (BCA) UCL	791.4
95% KM (t) UCL	777.7	95% KM (Percentile Bootstrap) UCL	778.6
95% KM (z) UCL	757.4	95% KM Bootstrap t UCL	2204
90% KM Chebyshev UCL	1048	95% KM Chebyshev UCL	1340
97.5% KM Chebyshev UCL	1744	99% KM Chebyshev UCL	2539

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.793	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.812	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.186	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.229	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.425	k star (bias corrected MLE)	0.387
Theta hat (MLE)	1069	Theta star (bias corrected MLE)	1175
nu hat (MLE)	13.6	nu star (bias corrected)	12.39
Mean (detects)	454.6		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	404.1
Maximum	3700	Median	84
SD	907	CV	2.244
k hat (MLE)	0.285	k star (bias corrected MLE)	0.275
Theta hat (MLE)	1416	Theta star (bias corrected MLE)	1470
nu hat (MLE)	10.27	nu star (bias corrected)	9.894
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (9.89, α)	3.875	Adjusted Chi Square Value (9.89, β)	3.521
95% Gamma Approximate UCL (use when n>=50)	1032	95% Gamma Adjusted UCL (use when n<50)	1136

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	404.5	SD (KM)	881.3
Variance (KM)	776609	SE of Mean (KM)	214.5
k hat (KM)	0.211	k star (KM)	0.213
nu hat (KM)	7.585	nu star (KM)	7.654
theta hat (KM)	1920	theta star (KM)	1903
80% gamma percentile (KM)	549.5	90% gamma percentile (KM)	1223
95% gamma percentile (KM)	2051	99% gamma percentile (KM)	4307

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.65, α)	2.536	Adjusted Chi Square Value (7.65, β)	2.262
95% Gamma Approximate KM-UCL (use when n>=50)	1221	95% Gamma Adjusted KM-UCL (use when n<50)	1369

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.138	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	404.3	Mean in Log Scale	4.101
SD in Original Scale	906.9	SD in Log Scale	2.246
95% t UCL (assumes normality of ROS data)	776.1	95% Percentile Bootstrap UCL	786.1
95% BCA Bootstrap UCL	979.7	95% Bootstrap t UCL	2118
95% H-UCL (Log ROS)	10080		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

	KM Mean (logged)	4.216	KM Geo Mean	67.77
	KM SD (logged)	1.993	95% Critical H Value (KM-Log)	4.302
ΚI	M Standard Error of Mean (logged)	0.485	95% H-UCL (KM -Log)	3953
	KM SD (logged)	1.993	95% Critical H Value (KM-Log)	4.302
K١	M Standard Error of Mean (logged)	0.485		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	404.3	Mean in Log Scale	4.154
SD in Original Scale	906.9	SD in Log Scale	2.152
95% t UCL (Assumes normality)	776.2	95% H-Stat UCL	7073

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Adjusted KM-UCL (use when $k \le 1$ and $15 \le n \le 50$ but $k \le 1$) 1369

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Benzo(b)fluoranthene (UG/KG)

		denoral otalistics		
Т	otal Number of Observations	18	Number of Distinct Observations	16
	Number of Detects	16	Number of Non-Detects	2
	Number of Distinct Detects	14	Number of Distinct Non-Detects	2
	Minimum Detect	6.6	Minimum Non-Detect	3.5
	Maximum Detect	32000	Maximum Non-Detect	7
	Variance Detects	63049419	Percent Non-Detects	11.11%
	Mean Detects	2302	SD Detects	7940
	Median Detects	118.5	CV Detects	3.45
	Skewness Detects	3.965	Kurtosis Detects	15.8
	Mean of Logged Detects	4.86	SD of Logged Detects	2.245

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.317	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.447	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2047	KM Standard Error of Mean	1773
KM SD	7284	95% KM (BCA) UCL	5595
95% KM (t) UCL	5131	95% KM (Percentile Bootstrap) UCL	5548
95% KM (z) UCL	4963	95% KM Bootstrap t UCL	67199
90% KM Chebyshev UCL	7366	95% KM Chebyshev UCL	9776
97.5% KM Chebyshev UCL	13121	99% KM Chebyshev UCL	19690

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.926	Anderson-Darling GOF Test
5% A-D Critical Value	0.862	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.296	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.236	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.242	k star (bias corrected MLE)	0.247	k hat (MLE)
9499	Theta star (bias corrected MLE)	9320	Theta hat (MLE)
7.755	nu star (bias corrected)	7.903	nu hat (MLE)
		2302	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2046
Maximum	32000	Median	73.5
SD	7496	CV	3.663
k hat (MLE)	0.194	k star (bias corrected MLE)	0.199
Theta hat (MLE)	10557	Theta star (bias corrected MLE)	10305
nu hat (MLE)	6.978	nu star (bias corrected)	7.148
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (7.15, α)	2.252	Adjusted Chi Square Value (7.15, β)	1.998
95% Gamma Approximate UCL (use when n>=50)	6494	95% Gamma Adjusted UCL (use when n<50)	7322

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2047	SD (KM)	7284
Variance (KM)	53062451	SE of Mean (KM)	1773
k hat (KM)	0.0789	k star (KM)	0.103
nu hat (KM)	2.842	nu star (KM)	3.701
theta hat (KM)	25927	theta star (KM)	19905
80% gamma percentile (KM)	1478	90% gamma percentile (KM)	5509
95% gamma percentile (KM)	11858	99% gamma percentile (KM)	32060

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.70, α)	0.607	Adjusted Chi Square Value (3.70, β)	0.503
95% Gamma Approximate KM-UCL (use when n>=50)	12471	95% Gamma Adjusted KM-UCL (use when n<50)	15054

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.11	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2046	Mean in Log Scale	4.338
SD in Original Scale	7496	SD in Log Scale	2.613
95% t UCL (assumes normality of ROS data)	5120	95% Percentile Bootstrap UCL	5491
95% BCA Bootstrap UCL	7371	95% Bootstrap t UCL	68200
95% H-UCL (Log ROS)	73319		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.483	KM Geo Mean	88.47
KM SD (logged)	2.313	95% Critical H Value (KM-Log)	4.886
KM Standard Error of Mean (logged)	0.563	95% H-UCL (KM -Log)	19869
KM SD (logged)	2.313	95% Critical H Value (KM-Log)	4.886
KM Standard Error of Mean (logged)	0.563		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
	Mean in Original Scale	2046	Mean in Log Scale	4.421
	SD in Original Scale	7496	SD in Log Scale	2.469
	95% t UCL (Assumes normality)	5120	95% H-Stat UCL	38874

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 19690

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Dibenz(a,h)anthracene (UG/KG)

General Statistics

Total Number of Observations	18	Number of Distinct Observations	17
Number of Detects	13	Number of Non-Detects	5
Number of Distinct Detects	13	Number of Distinct Non-Detects	4
Minimum Detect	4.6	Minimum Non-Detect	3.5
Maximum Detect	420	Maximum Non-Detect	8
Variance Detects	15932	Percent Non-Detects	27.78%
Mean Detects	79.41	SD Detects	126.2
Median Detects	25	CV Detects	1.59
Skewness Detects	2.165	Kurtosis Detects	4.189
Mean of Logged Detects	3.374	SD of Logged Detects	1.463

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.644	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.343	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	58.39	KM Standard Error of Mean	26.62
KM SD	108.5	95% KM (BCA) UCL	105.5
95% KM (t) UCL	104.7	95% KM (Percentile Bootstrap) UCL	103.4
95% KM (z) UCL	102.2	95% KM Bootstrap t UCL	205.1
90% KM Chebyshev UCL	138.2	95% KM Chebyshev UCL	174.4
97.5% KM Chebyshev UCL	224.6	99% KM Chebyshev UCL	323.2

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.758	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.781	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.229	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.248	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.615	k star (bias corrected MLE)	0.525
Theta hat (MLE)	129.1	Theta star (bias corrected MLE)	151.4
nu hat (MLE)	16	nu star (bias corrected)	13.64
Mean (detects)	79.41		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	57.35
Maximum	420	Median	16
SD	112.2	CV	1.956
k hat (MLE)	0.246	k star (bias corrected MLE)	0.242
Theta hat (MLE)	232.9	Theta star (bias corrected MLE)	236.8
nu hat (MLE)	8.864	nu star (bias corrected)	8.72
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (8.72, α)	3.159	Adjusted Chi Square Value (8.72, β)	2.845
95% Gamma Approximate UCL (use when n>=50)	158.3	95% Gamma Adjusted UCL (use when n<50)	175.8

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	58.39	SD (KM)	108.5
Variance (KM)	11770	SE of Mean (KM)	26.62
k hat (KM)	0.29	k star (KM)	0.278
nu hat (KM)	10.43	nu star (KM)	10.02
theta hat (KM)	201.6	theta star (KM)	209.7
80% gamma percentile (KM)	87.79	90% gamma percentile (KM)	173.6
95% gamma percentile (KM)	273.5	99% gamma percentile (KM)	535.5

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.02, α)	3.957	Adjusted Chi Square Value (10.02, β)	3.598
95% Gamma Approximate KM-UCL (use when n>=50)	147.9	95% Gamma Adjusted KM-UCL (use when n<50)	162.7

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.147	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	57.75	Mean in Log Scale	2.498
SD in Original Scale	112	SD in Log Scale	1.928
95% t UCL (assumes normality of ROS data)	103.7	95% Percentile Bootstrap UCL	101.9
95% BCA Bootstrap UCL	117.2	95% Bootstrap t UCL	198.3
95% H-UCL (Log ROS)	551.3		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.802	KM Geo Mean	16.48
KM SD (logged)	1.51	95% Critical H Value (KM-Log)	3.452
KM Standard Error of Mean (logged)	0.371	95% H-UCL (KM -Log)	182.6
KM SD (logged)	1.51	95% Critical H Value (KM-Log)	3.452
KM Standard Error of Mean (logged)	0.371		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	58.06	Mean in Log Scale	2.68
SD in Original Scale	111.8	SD in Log Scale	1.696
95% t UCL (Assumes normality)	103.9	95% H-Stat UCL	289.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 162.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene (UG/KG)

General Statistics

Total Number of Observations	18	Number of Distinct Observations	17
Number of Detects	14	Number of Non-Detects	4
Number of Distinct Detects	14	Number of Distinct Non-Detects	3
Minimum Detect	4.9	Minimum Non-Detect	3.5
Maximum Detect	13000	Maximum Non-Detect	7
Variance Detects	11803256	Percent Non-Detects	22.22%
Mean Detects	1126	SD Detects	3436
Median Detects	86.5	CV Detects	3.052
Skewness Detects	3.677	Kurtosis Detects	13.64
Mean of Logged Detects	4.629	SD of Logged Detects	2.069

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.363	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.418	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	876.2	KM Standard Error of Mean	723.2
KM SD	2957	95% KM (BCA) UCL	2280
95% KM (t) UCL	2134	95% KM (Percentile Bootstrap) UCL	2252
95% KM (z) UCL	2066	95% KM Bootstrap t UCL	17890
90% KM Chebyshev UCL	3046	95% KM Chebyshev UCL	4029
97.5% KM Chebyshev UCL	5393	99% KM Chebyshev UCL	8072

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.562	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.837	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.285	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.248	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.289	k star (bias corrected MLE)	0.275
Theta hat (MLE)	3889	Theta star (bias corrected MLE)	4093
nu hat (MLE)	8.103	nu star (bias corrected)	7.7
Mean (detects)	1126		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	875.4
Maximum	13000	Median	42.5
SD	3043	CV	3.476
k hat (MLE)	0.178	k star (bias corrected MLE)	0.186
Theta hat (MLE)	4906	Theta star (bias corrected MLE)	4713
nu hat (MLE)	6.424	nu star (bias corrected)	6.686
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (6.69, α)	2	Adjusted Chi Square Value (6.69, β)	1.764
95% Gamma Approximate UCL (use when n>=50)	2927	95% Gamma Adjusted UCL (use when n<50)	3319

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	876.2	SD (KM)	2957
Variance (KM)	8742150	SE of Mean (KM)	723.2
k hat (KM)	0.0878	k star (KM)	0.11
nu hat (KM)	3.162	nu star (KM)	3.968
theta hat (KM)	9977	theta star (KM)	7949
80% gamma percentile (KM)	694	90% gamma percentile (KM)	2419
95% gamma percentile (KM)	5048	99% gamma percentile (KM)	13250

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value $(3.97, \alpha)$ 0.709 Adjusted Chi Square Value $(3.97, \beta)$ 0.592 95% Gamma Approximate KM-UCL (use when n>=50) 4903 95% Gamma Adjusted KM-UCL (use when n<50) 5872

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.953 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.874 Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.129 Lilliefors GOF Test

5% Lilliefors Critical Value 0.226 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	875.7	Mean in Log Scale	3.573
SD in Original Scale	3043	SD in Log Scale	2.733
95% t UCL (assumes normality of ROS data)	2123	95% Percentile Bootstrap UCL	2268
95% BCA Bootstrap UCL	3066	95% Bootstrap t UCL	18061
95% H-UCL (Log ROS)	63914		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.884	KM Geo Mean	48.6
KM SD (logged)	2.245	95% Critical H Value (KM-Log)	4.761
KM Standard Error of Mean (logged)	0.549	95% H-UCL (KM -Log)	8071
KM SD (logged)	2.245	95% Critical H Value (KM-Log)	4.761
KM Standard Error of Mean (logged)	0.549		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	875.9	Mean in Log Scale	3.767
SD in Original Scale	3043	SD in Log Scale	2.46
95% t UCL (Assumes normality)	2123	95% H-Stat UCL	19395

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 8072

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

in (Marka)			
	0		
Total Number of Observations	General Statistics	Number of Distinct Observations	14
Total Number of Observations	10	Number of Missing Observations	0
Minimum	6	Mean	38.63
Maximum	380	Median	18
SD	85.78	Std. Error of Mean	20.22
Coefficient of Variation	2.221	Skewness	4.147
Coomoloni or variation		CKCIIIICCC	,
	Normal GOF Test	:	
Shapiro Wilk Test Statistic	0.354	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.438	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Signif	icance Level	
	suming Normal Distri		
95% Normal UCL	70.0	95% UCLs (Adjusted for Skewness)	00
95% Student's-t UCL	73.8	95% Adjusted-CLT UCL (Chen-1995)	93
		95% Modified-t UCL (Johnson-1978)	77.09
	Gamma GOF Tes	t	
A-D Test Statistic	2.229	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.775	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.288	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.211	Data Not Gamma Distributed at 5% Significance Leve	el .
Data Not Gamm	na Distributed at 5%	Significance Level	
	Gamma Statistics		0.704
k hat (MLE)	0.821	k star (bias corrected MLE)	0.721
Theta hat (MLE)	47.05	Theta star (bias corrected MLE)	53.56
nu hat (MLE)	29.56	nu star (bias corrected)	25.96
MLE Mean (bias corrected)	38.63	MLE Sd (bias corrected)	45.48
A.I	0.0057	Approximate Chi Square Value (0.05)	15.35
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	14.57
Ass	uming Gamma Distr	ibution	
95% Approximate Gamma UCL (use when n>=50))	65.33	95% Adjusted Gamma UCL (use when n<50)	68.83
	Lognormal GOF Te		
Shapiro Wilk Test Statistic	0.837	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.16	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level	
Data appear Approx	umate Lognormal at	5% Significance Level	
	Lognormal Statistic	25	
Minimum of Logged Data	1.792	Mean of logged Data	2.934
		san or rogged butt	,

Maximum of Logged Data

5.94

0.96

SD of logged Data

Assuming Lognormal Distribution

95% H-UCL	54.32	90% Chebyshev (MVUE) UCL	50.31
95% Chebyshev (MVUE) UCL	60.07	97.5% Chebyshev (MVUE) UCL	73.61
99% Chebyshev (MVUE) UCL	100.2		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

73.8	95% Jackknife UCL	71.88	95% CLT UCL
269.1	95% Bootstrap-t UCL	70.64	95% Standard Bootstrap UCL
78.77	95% Percentile Bootstrap UCL	222.6	95% Hall's Bootstrap UCL
		100.2	95% BCA Bootstrap UCL
126.8	95% Chebyshev(Mean, Sd) UCL	99.28	90% Chebyshev(Mean, Sd) UCL
239.8	99% Chebyshev(Mean, Sd) UCL	164.9	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 54.32

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.111/7/2019 10:20:54 AM

From File UCLInput_a.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Arsenic (MG/KG)

	General S	Statistics	
Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	2.6	Mean	5.79
Maximum	13	Median	5.1
SD	3.338	Std. Error of Mean	1.056
Coefficient of Variation	0.576	Skewness	1.287
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.227	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
Data appea	ır Normal at	5% Significance Level	
Ass	suming Norm	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	7.725	95% Adjusted-CLT UCL (Chen-1995)	7.985
		95% Modified-t UCL (Johnson-1978)	7.796
	Gamma G	GOF Test	
A-D Test Statistic	0.316	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.156	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	3.877	k star (bias corrected MLE)	2.78
Theta hat (MLE)	1.493	Theta star (bias corrected MLE)	2.082
nu hat (MLE)	77.54	nu star (bias corrected)	55.61
MLE Mean (bias corrected)	5.79	MLE Sd (bias corrected)	3.472
		Approximate Chi Square Value (0.05)	39.47
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	37.12
Ass	uming Gamı	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	8.157	95% Adjusted Gamma UCL (use when n<50)	8.674
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.131	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal a	at 5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	0.956	Mean of logged Data	1.622
Maximum of Logged Data	2.565	SD of logged Data	0.537

Assuming Lognormal Distribution

95% H-UCL	8.785	90% Chebyshev (MVUE) UCL	8.748
95% Chebyshev (MVUE) UCL	10.1	97.5% Chebyshev (MVUE) UCL	11.98
99% Chebyshev (MVUE) UCL	15.68		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	7.526	95% Jackknife UCL	7.725
95% Standard Bootstrap UCL	7.471	95% Bootstrap-t UCL	8.866
95% Hall's Bootstrap UCL	16.08	95% Percentile Bootstrap UCL	7.53
95% BCA Bootstrap UCL	7.9		
90% Chebyshev(Mean, Sd) UCL	8.957	95% Chebyshev(Mean, Sd) UCL	10.39
97.5% Chebyshev(Mean, Sd) UCL	12.38	99% Chebyshev(Mean, Sd) UCL	16.29

Suggested UCL to Use

95% Student's-t UCL 7.725

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/4/2019 1:17:33 PM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Arsenic (MG/KG)

Conora	I Statistics
Genera	LOBUSICS

Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	2.6	Mean	5.79
Maximum	13	Median	5.1
SD	3.338	Std. Error of Mean	1.056
Coefficient of Variation	0.576	Skewness	1.287

Normal GOF Test

Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.227	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

0 TO ()	AMO(1101 (A II . 14 01)
95% Normal UCL	95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 7.725
 95% Adjusted-CLT UCL (Chen-1995)
 7.985

 95% Modified-t UCL (Johnson-1978)
 7.796

Gamma GOF Test

A-D Test Statistic	0.316	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.156	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.877	k star (bias corrected MLE)	2.78
1.493	Theta star (bias corrected MLE)	2.082
77.54	nu star (bias corrected)	55.61
5.79	MLE Sd (bias corrected)	3.472
	Approximate Chi Square Value (0.05)	39.47
0.0267	Adjusted Chi Square Value	37.12
	1.493 77.54 5.79	1.493 Theta star (bias corrected MLE) 77.54 nu star (bias corrected) 5.79 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 8.157 95% Adjusted Gamma UCL (use when n<50) 8.674

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.131	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.956	Mean of logged Data	1.622
Maximum of Logged Data	2.565	SD of logged Data	0.537

Assuming Lognormal Distribution

95% H-UCL	8.785	90% Chebyshev (MVUE) UCL	8.748
95% Chebyshev (MVUE) UCL	10.1	97.5% Chebyshev (MVUE) UCL	11.98
99% Chebyshev (MVUE) UCL	15.68		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

7.526	95% Jackknife UCL	7.725
7.445	95% Bootstrap-t UCL	8.864
16.13	95% Percentile Bootstrap UCL	7.5
7.74		
8.957	95% Chebyshev(Mean, Sd) UCL	10.39
12.38	99% Chebyshev(Mean, Sd) UCL	16.29
	7.445 16.13 7.74 8.957	7.445 95% Bootstrap-t UCL 16.13 95% Percentile Bootstrap UCL 7.74 8.957 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 7.725

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt (MG/KG)

	General Statistics		
Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	0.77	Mean	13.82
Maximum	110	Median	2.25
SD	33.91	Std. Error of Mean	10.72
Coefficient of Variation	2.454	Skewness	3.124
	Normal GOF Test		

Shapiro Wilk Test Statistic	0.431	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.447	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

Ass	suming Norma	I Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	33.47	95% Adjusted-CLT UCL (Chen-1995)	42.77
		95% Modified-t UCL (Johnson-1978)	35.24
	Gamma GC	DE Toot	
A-D Test Statistic	1.475	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.786	Data Not Gamma Distributed at 5% Significance Level	ı
K-S Test Statistic	0.311	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.283	Data Not Gamma Distributed at 5% Significance Level	l
		at 5% Significance Level	
	Gamma St		
k hat (MLE)	0.452	k star (bias corrected MLE)	0.383
Theta hat (MLE)	30.56	Theta star (bias corrected MLE)	36.06
nu hat (MLE)	9.042	nu star (bias corrected)	7.663
MLE Mean (bias corrected)	13.82	MLE Sd (bias corrected)	22.32
		Approximate Chi Square Value (0.05)	2.541
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	2.059
Ass	suming Gamm	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	41.66	95% Adjusted Gamma UCL (use when n<50)	51.43
a	Lognormal G		
Shapiro Wilk Test Statistic	0.843	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic			
5% Lilliefors Critical Value 0.262 Data appear Lognormal at 5% Significance Level			
Data appear	Lognormai at	5% Significance Level	
	Lognormal S	tatistics	
Minimum of Logged Data	-0.261	Mean of logged Data	1.199
Maximum of Logged Data	4.7	SD of logged Data	1.463
Assu	ımina Loanorn	nal Distribution	
95% H-UCL	72.11	90% Chebyshev (MVUE) UCL	19.96
95% Chebyshev (MVUE) UCL	25.33	97.5% Chebyshev (MVUE) UCL	32.79
99% Chebyshev (MVUE) UCL	47.45		
•		n Free UCL Statistics	
Data appear to follow a D	Discernible Dis	stribution at 5% Significance Level	
Nonpar	ametric Distrit	oution Free UCLs	
95% CLT UCL	31.45	95% Jackknife UCL	33.47
95% Standard Bootstrap UCL	30.44	95% Bootstrap-t UCL	288
95% Hall's Bootstrap UCL	152.9	95% Percentile Bootstrap UCL	34.83
95% BCA Bootstrap UCL	46.02		
90% Chebyshev(Mean, Sd) UCL	45.98	95% Chebyshev(Mean, Sd) UCL	60.56
97.5% Chebyshev(Mean, Sd) UCL	80.78	99% Chebyshev(Mean, Sd) UCL	120.5

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 60.56

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Iron (MG/KG)

General Statistics

9	Number of Distinct Observations	10	Total Number of Observations	
0	Number of Missing Observations			
16100	Mean	3800	Minimum	
8550	Median	46000	Maximum	
4703	Std. Error of Mean	14872	SD	
റ ඉඉඉ	Skownoss	0 024	Coefficient of Variation	

Normal GOF Test

Shapiro Wilk Test Statistic	0.819	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.27	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 24721 95% Adjusted-CLT UCL (Chen-1995) 25423 95% Modified-t UCL (Johnson-1978) 24969

Gamma GOF Test

Test Statistic 0.784 Anderson-Dar	ling Gamma GOF Test
Critical Value 0.742 Data Not Gamma Distr	ributed at 5% Significance Level
Test Statistic 0.288 Kolmogorov-Sm	nirnov Gamma GOF Test
Critical Value 0.272 Data Not Gamma Distr	ributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.324	k star (bias corrected MLE)	0.993
Theta hat (MLE)	12160	Theta star (bias corrected MLE)	16206
nu hat (MLE)	26.48	nu star (bias corrected)	19.87
MLE Mean (bias corrected)	16100	MLE Sd (bias corrected)	16153
		Approximate Chi Square Value (0.05)	10.76
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	9.61

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 29744 95% Adjusted Gamma UCL (use when n<50) 33289

Site 5 Subsurface Soil

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.838	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.269	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	8.243	Mean of logged Data	9.264
Maximum of Logged Data	10.74	SD of logged Data	0.986

Assuming Lognormal Distribution

95% H-UCL 47091	90% Chebyshev (MVUE) UCL 31830
95% Chebyshev (MVUE) UCL 38966	97.5% Chebyshev (MVUE) UCL 48871
99% Chebyshey (MVUF) UCL 68328	

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% Jackknife UCL 24721	95% CLT UCL
95% Bootstrap-t UCL 26954	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 23800	95% Hall's Bootstrap UCL
	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 36600	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 62894	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 36600

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.111/7/2019 11:15:26 AM

From File UCLInput_bck at end_b.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Thallium (MG/KG)

_		_		
Ger	oro	C+o	tict	ioc

Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.092	Mean	0.17
Maximum	0.31	Median	0.16
SD	0.0601	Std. Error of Mean	0.019
Coefficient of Variation	0.353	Skewness	1.368

Normal GOF Test

Shapiro Wilk Test Statistic	0.902	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.171	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.205	95% Adjusted-CLT UCL (Chen-1995)	0.21

95% Modified-t UCL (Johnson-1978) 0.206

Gamma GOF Test

A-D Test Statistic	0.239	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.123	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

7.084	k star (bias corrected MLE)	10.02	k hat (MLE)
0.024	Theta star (bias corrected MLE)	0.017	Theta hat (MLE)
141.7	nu star (bias corrected)	200.5	nu hat (MLE)
0.0639	MLE Sd (bias corrected)	0.17	MLE Mean (bias corrected)
115.2	Approximate Chi Square Value (0.05)		
111	Adjusted Chi Square Value	0.0267	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.209 95% Adjusted Gamma UCL (use when n<50) 0.217

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.979	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Le	0.842	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.131	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Le	0.262	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.386	Mean of logged Data	-1.821
Maximum of Logged Data	-1.171	SD of logged Data	0.331

Assuming Lognormal Distribution

95% H-UCL	0.213	90% Chebyshev (MVUE) UCL	0.224
95% Chebyshev (MVUE) UCL	0.248	97.5% Chebyshev (MVUE) UCL	0.282
99% Chebyshev (MVUE) UCL	0.348		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.201	95% Jackknife UCL	0.205
95% Standard Bootstrap UCL	0.2	95% Bootstrap-t UCL	0.219
95% Hall's Bootstrap UCL	0.359	95% Percentile Bootstrap UCL	0.202
95% BCA Bootstrap UCL	0.208		
90% Chebyshev(Mean, Sd) UCL	0.227	95% Chebyshev(Mean, Sd) UCL	0.253
97.5% Chebyshev(Mean, Sd) UCL	0.289	99% Chebyshev(Mean, Sd) UCL	0.359

Suggested UCL to Use

95% Student's-t UCL 0.205

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix F.4 Site 7 Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
Surface Soil	78-93-3	2-Butanone	1.0E-03 J	8.7E-03 J	MG/KG	CBD-S07-SS08-1012	9/9	0.00043 - 0.0007	8.7E-03	N/A	2.7E+03 N	1.2E-01	SSL	NO	BSL
	591-78-6	2-Hexanone	5.5E-04 J	5.5E-04 J	MG/KG	CBD-S07-SS05-1012	1/9	0.00043 - 0.0007	5.5E-04	N/A	2.0E+01 N	8.8E-04	SSL	NO	BSL
	67-64-1	Acetone	1.2E-02 J	2.5E-01 J	MG/KG	CBD-S07-SS05-1012	9/9	N/A	2.5E-01	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	m&pXYLENE	m- and p-Xylene	4.0E-04 J	4.0E-04 J	MG/KG	CBD-S07-SS03-1012	1/9	0.00043 - 0.0007	4.0E-04	N/A	5.8E+01 N	1.9E-02	SSL	NO	BSL
	79-20-9	Methyl acetate	8.1E-03	8.1E-03	MG/KG	CBD-S07-SS05-1012	1/9	N/A	8.1E-03	N/A	7.8E+03 N	4.1E-01	SSL	NO	BSL
	95-47-6	o-Xylene	1.5E-04 J	1.5E-04 J	MG/KG	CBD-S07-SS03-1012	1/9	0.00021 - 0.00035	1.5E-04	N/A	6.5E+01 N	1.9E-02	SSL	NO	BSL
	108-88-3	Toluene	2.9E-03	2.9E-03	MG/KG	CBD-S07-SS01-1012 CBD-S07-SS07-1012, CBD-	1/9	0.00043 - 0.0007	2.9E-03	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	11097-69-1	Aroclor-1254	5.0E-02	5.0E-02	MG/KG	S07-SS08-1012	2/17	0.006 - 0.076	5.0E-02	N/A	1.2E-01 N	2.0E-03	SSL	NO	BSL
	11096-82-5	Aroclor-1260	4.2E-03 J	9.4E-01	MG/KG	CBD-S07-SS01P-1012	11/17	0.006 - 0.076	9.4E-01	N/A	2.4E-01 C	5.5E-03	SSL	YES	ASL
	7429-90-5	Aluminum	2.6E+03	6.6E+03	MG/KG	CBD-S07-SS01-1012, CBD- S07-SS03-1012, CBD-S07- SS21P-000H	17/17	N/A	6.6E+03	1.3E+04	7.7E+03 N	3.0E+03	SSL	NO	BSL
	7440-36-0	Antimony	6.3E-02 J	4.0E-01	MG/KG	CBD-S07-SS07-1012 CBD-S07-SS07-1012, CBD-	12/17	0.13 - 0.19	4.0E-01	4.2E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	1.3E+00	3.5E+00	MG/KG	S07-SS27-000H	17/17	N/A	3.5E+00	6.4E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	6.4E+00	3.3E+01	MG/KG	CBD-S07-SS07-1012	17/17	N/A	3.3E+01	5.8E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.5E-01	4.7E-01 J	MG/KG	CBD-S07-SS21P-000H	17/17	N/A	4.7E-01	8.1E-01	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	2.4E-02 J	5.2E-01	MG/KG	CBD-S07-SS07-1012	13/17	0.13 - 0.19	5.2E-01	1.7E+00	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	1.5E+02	4.0E+05	MG/KG	CBD-S07-SS26-000H	17/17	N/A	4.0E+05	9.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	3.0E-01 J	3.0E-01 J	MG/KG	CBD-S07-SS01P-1012	1/1	N/A	3.0E-01	4.0E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL
	7440-47-3	Chromium	5.0E+00	2.6E+01	MG/KG	CBD-S07-SS20-000H	17/17	N/A	2.6E+01	3.1E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	9.3E-01	2.8E+00	MG/KG	CBD-S07-SS21P-000H	17/17	N/A	2.8E+00	1.2E+01	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	2.2E+00	1.5E+01 J	MG/KG	CBD-S07-SS21-000H	17/17	N/A	1.5E+01	2.7E+01	3.1E+02 N	2.8E+00	SSL	NO	BSL
	57-12-5	Cyanide	2.7E-02 J	3.2E-01	MG/KG	CBD-S07-SS07-1012	5/9	0.053 - 0.058	3.2E-01	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	3.9E+03	1.5E+04	MG/KG	CBD-S07-SS07-1012	17/17	N/A	1.5E+04	4.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	2.7E+00	8.2E+01	MG/KG	CBD-S07-SS20-000H	17/17	N/A	8.2E+01	5.0E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	2.1E+02	6.3E+05	MG/KG	CBD-S07-SS26-000H	17/17	N/A	6.3E+05	3.8E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	1.6E+01	1.3E+02	MG/KG	CBD-S07-SS07-1012	17/17	N/A	1.3E+02	2.0E+02	1.8E+02 N	2.8E+00	SSL	NO	BSL
	7439-97-6	Mercury	6.2E-03 J	4.7E-02 J	MG/KG	CBD-S07-SS07-1012	8/17	0.017 - 0.19	4.7E-02	1.9E-01	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	1.2E+00	2.4E+01	MG/KG	CBD-S07-SS27-000H	17/17	N/A	2.4E+01	1.2E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-02-0	Potassium	2.4E+02	4.3E+05	MG/KG	CBD-S07-SS26-000H	17/17	N/A	4.3E+05	1.5E+03	N/A	N/A	002	NO	NUT
	7782-49-2	Selenium	3.4E-01	1.0E+00	MG/KG	S07-SS27-000H	9/17	N/A	1.0E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	1.9E-02 J	1.4E-01 J	MG/KG	CBD-S07-SS20-000H	11/17	0.13 - 0.19	1.4E-01	1.4E+00	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-22-4	Sodium	8.8E+00 J+	4.9E+03	MG/KG	CBD-S07-SS26-000H	7/17	5.9 - 25	4.9E+03	3.1E+02	3.9E+01 N N/A	0.0E-02 N/A	JJL	NO	NUT

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

														Step 1	
Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	COPC	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion
															or Selection
	7440-28-0	Thallium	4.2E-02 J	2.4E-01 J	MG/KG	CBD-S07-SS21P-000H	15/17	0.13 - 0.19	2.4E-01	1.3E+00	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	6.9E+00	1.2E+02	MG/KG	CBD-S07-SS27-000H	17/17	N/A	1.2E+02	3.0E+01	3.9E+01 N	8.6E+00	SSL	YES	ASL
	7440-66-6	Zinc	5.3E+00	2.6E+02	MG/KG	CBD-S07-SS07-1012	17/17	N/A	2.6E+02	7.9E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs). Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens). RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalent). RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available, used MCL-based SSL.

N/A = Not available/not applicable

Table 2.1a. Step 2 Surface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) MG/KG	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aroclor-1260	11 / 17	9.4E-01	CBD-S07-SS01P-1012	N/A	2.4E-01	N/A	4E-06	N/A
Arsenic	17 / 17	3.5E+00	CBD-S07-SS07-1012, CBD-S07-SS27-000H	3.5E+01	6.8E-01	0.1	5E-06	Cardiovascular, Dermal
Chromium (hexavalent)	1 / 1	3.0E-01 J	CBD-S07-SS01P-1012	2.3E+02	3.0E-01	0.001	1E-06	None Reported, Respiratory
Cobalt	17 / 17	2.8E+00	CBD-S07-SS21P-000H	2.3E+01	4.2E+02	0.1	7E-09	Thyroid, Respiratory
Iron	17 / 17	1.5E+04	CBD-S07-SS07-1012	5.5E+04	N/A	0.3	N/A	Gastrointestinal
Thallium	15 / 17	2.4E-01 J	CBD-S07-SS21P-000H	7.8E-01	N/A	0.3	N/A	Dermal
Vanadium	17 / 17	1.2E+02	CBD-S07-SS27-000H	3.9E+02	N/A	0.3	N/A	Hair
Cumulative Hazard Index ^c	•	•			•	1	·	
Cumulative Cancer Risk ^d							1E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 1E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

MG/KG = milligrams per kilogram

HI = Hazard Index

HQ = Hazard Quotient

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

0.3
0.4
0.1
0.1
0.3
0.3

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (2-8 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	
Subsurface Soil	78-93-3	2-Butanone	1.1E-03 J	4.1E-03 J	MG/KG	CBD-S07-SB09-0608	4/19	0.0004 - 0.00075	4.1E-03	N/A	2.7E+03 N	1.2E-01	SSL	NO	BSL
	591-78-6	2-Hexanone	6.9E-04 J	6.9E-04 J	MG/KG	CBD-S07-SB15-0204	1/19	0.0004 - 0.00075	6.9E-04	N/A	2.0E+01 N	8.8E-04	SSL	NO	BSL
	67-64-1	Acetone	2.4E-02 J	8.8E-02 J	MG/KG	CBD-S07-SB09-0608	4/19	0.004 - 0.0075	8.8E-02	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	71-43-2	Benzene	2.0E-04 J	1.7E-01 J	MG/KG	CBD-S07-SB01-0608	4/19	0.0004 - 0.00075	1.7E-01	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	74-83-9	Bromomethane	3.9E-04 J	1.2E-03 J	MG/KG	CBD-S07-SB15-0204	3/19	0.0004 - 0.00075	1.2E-03	N/A	6.8E-01 N	1.9E-04	SSL	NO	BSL
	75-15-0	Carbon disulfide	2.5E-04 J	2.5E-04 J	MG/KG	CBD-S07-SB19-0204	1/19	0.0004 - 0.00075	2.5E-04	N/A	7.7E+01 N	2.4E-02	SSL	NO	BSL
	110-82-7	Cyclohexane	1.3E-04 J	5.7E-01 J	MG/KG	CBD-S07-SB01-0608	3/19	0.0004 - 0.00075	5.7E-01	N/A	1.2E+02 SAT	1.3E+00	SSL	NO	BSL
	100-41-4	Ethylbenzene	1.8E-02 J	5.2E-01	MG/KG	CBD-S07-SB03-0608	3/19	0.0004 - 0.00075	5.2E-01	N/A	5.8E+00 C	1.7E-03	SSL	NO	BSL
	98-82-8	Isopropylbenzene	1.6E-01 J	4.1E-01	MG/KG	CBD-S07-SB03-0608	3/19	0.0002 - 0.00037	4.1E-01	N/A	1.9E+02 N	7.4E-02	SSL	NO	BSL
	m&pXYLENE	m- and p-Xylene	7.3E-02 J	2.5E+00	MG/KG	CBD-S07-SB03-0608	3/19	0.0004 - 0.00075	2.5E+00	N/A	5.8E+01 N	1.9E-02	SSL	NO	BSL
	79-20-9	Methyl acetate	9.5E-03	2.0E-02 J	MG/KG	CBD-S07-SB01-0608	2/19	0.0004 - 0.00075	2.0E-02	N/A	7.8E+03 N	4.1E-01	SSL	NO	BSL
	108-87-2	Methylcyclohexane	1.5E-04 J	1.2E+00	MG/KG	CBD-S07-SB02-0507	6/19	0.0004 - 0.00075	1.2E+00	N/A	6.1E+01 N	N/A		NO	BSL
	95-47-6	o-Xylene	4.1E-02 J	6.6E-01	MG/KG	CBD-S07-SB03-0608	3/19	0.0002 - 0.00037	6.6E-01	N/A	6.5E+01 N	1.9E-02	SSL	NO	BSL
	108-88-3	Toluene	4.3E-03	4.0E-02	MG/KG	CBD-S07-SB03-0608	2/19	0.0004 - 0.00075	4.0E-02	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	11096-82-5	Aroclor-1260	4.6E-03 J	8.5E-02	MG/KG	CBD-S07-SB01-0608	4/27	0.0063 - 0.023	8.5E-02	N/A	2.4E-01 C	5.5E-03	SSL	NO	BSL
	7429-90-5	Aluminum	1.6E+03	1.0E+04	MG/KG	CBD-S07-SB07-0608, CBD- S07-SB08-0608	27/27	N/A	1.0E+04	1.6E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	6.0E-02 J	2.1E-01	MG/KG	CBD-S07-SB08-0608	22/27	0.13 - 0.19	2.1E-01	5.5E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
		,				CBD-S07-SB09-0608, CBD-									
	7440-38-2	Arsenic	1.0E+00	5.5E+00 J	MG/KG	S07-SB25-0508	26/27	N/A	5.5E+00	9.8E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	6.5E+00	5.1E+01	MG/KG	CBD-S07-SB27-0508	27/27	N/A	5.1E+01	5.7E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.3E-01	1.3E+00	MG/KG	CBD-S07-SB21-0508	27/27	N/A	1.3E+00	1.2E+00	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	7.2E-03 J	7.1E-01	MG/KG	CBD-S07-SB01P-0608	24/27	0.13 - 0.19	7.1E-01	8.1E-01	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	1.2E+02	5.3E+05	MG/KG	CBD-S07-SB26-0508	27/27	N/A	5.3E+05	1.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	3.1E-01 J	3.1E-01 J	MG/KG	CBD-S07-SB01P-0608	1/1	N/A	3.1E-01	4.9E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL
	7440-47-3	Chromium	2.4E+00	4.1E+01	MG/KG	CBD-S07-SB09-0608	27/27	N/A	4.1E+01	5.8E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	3.5E-01	5.2E+00	MG/KG	CBD-S07-SB01P-0608	27/27	N/A	5.2E+00	5.9E+00	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.2E+00	2.5E+01 J	MG/KG	CBD-S07-SB23-0508	27/27	N/A	2.5E+01	7.9E+00	3.1E+02 N	2.8E+00	SSL	NO	BSL
	57-12-5	Cyanide	4.0E-02 J	6.5E-02 J	MG/KG	CBD-S07-SB09-0608	3/19	0.049 - 0.072	6.5E-02	N/A	2.3E+00 N	1.5E-03	SSL	NO	BSL
	7439-89-6	Iron	3.3E+03	2.3E+04	MG/KG	CBD-S07-SB21-0508	27/27	N/A	2.3E+04	3.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	2.0E+00	2.1E+01	MG/KG	CBD-S07-SB23-0508	27/27	N/A	2.1E+01	1.2E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	1.6E+02	6.4E+05	MG/KG	CBD-S07-SB25-0508	27/27	N/A	6.4E+05	3.4E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	7.5E+00	2.5E+02	MG/KG	CBD-S07-SB09-0608	27/27	N/A	2.5E+02	2.3E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7439-97-6	Mercury	6.7E-03 J	2.8E-02 J	MG/KG	CBD-S07-SB08-0608	9/27	0.13 - 0.19	2.8E-02	4.0E-02	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	6.6E-01	2.0E+01 K	MG/KG	CBD-S07-SB01-0608	27/27	N/A	2.0E+01	1.3E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	2.0E+02	4.0E+05	MG/KG	CBD-S07-SB24-0508	27/27	N/A	4.0E+05	1.6E+03	N/A	N/A		NO	NUT

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future

Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (2-8 feet bgs)

														Step 1	
Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	COPC	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion
															or Selection
	7782-49-2	Selenium	1.3E-01	1.7E+00	MG/KG	CBD-S07-SB27-0508	17/27	N/A	1.7E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	1.5E-02 J	1.6E-01 J	MG/KG	CBD-S07-SB23-0508	18/27	0.01 - 0.19	1.6E-01	2.3E-01	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.4E+01 J+	6.6E+03	MG/KG	CBD-S07-SB24-0508	22/27	7.2 - 25	6.6E+03	1.4E+02	N/A	N/A		NO	NUT
	7440-28-0	Thallium	2.7E-02 J	5.8E-01	MG/KG	CBD-S07-SB21-0508	27/27	N/A	5.8E-01	4.1E-01	7.8E-02 N	1.4E-03	SSL	YES	ASL
						CBD-S07-SB14-0204, CBD-									
	7440-62-2	Vanadium	1.3E+00	2.1E+01	MG/KG	S07-SB21-0508	27/27	N/A	2.1E+01	3.6E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	3.7E+00	1.9E+02	MG/KG	CBD-S07-SB01P-0608	16/27	N/A	1.9E+02	6.4E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for n-hexane used as surrogate for methylcyclohexane.

RSL value for chromium(III) used for chromium since one soil sample was also analyzed for chromium (hexavalentl).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

K, J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

SAT = soil saturation concentration less than residential soil RSL, therefor soil saturation concentration used as screening level.

Table 2.2a. Step 2 Subsurface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
27 / 27	1.0E+04	CBD-S07-SB07-0608, CBD-S07- SB08-0608	7.70E+04	N/A	0.1	N/A	Neurological
26 / 27	5.5E+00 J	CBD-S07-SB09-0608, CBD-S07- SB25-0508	3.50E+01	6.80E-01	0.2	8E-06	Cardiovascular, Dermal
1 / 1	3.1E-01 J	CBD-S07-SB01P-0608	2.30E+02	3.00E-01	0.001	1E-06	None Reported, Respiratory
27 / 27	5.2E+00	CBD-S07-SB01P-0608	2.30E+01	N/A	0.2	N/A	Thyroid, Respiratory
27 / 27	2.3E+04	CBD-S07-SB21-0508	5.50E+04	N/A	0.4	N/A	Gastrointestinal
27 / 27	2.5E+02	CBD-S07-SB09-0608	1.80E+03	N/A	0.1	N/A	Nervous
27 / 27	5.8E-01	CBD-S07-SB21-0508	7.80E-01	N/A	0.7	N/A	Dermal
					2		
					•	9E-06	
	Frequency 27 / 27 26 / 27 1 / 1 27 / 27 27 / 27 27 / 27 27 / 27	Detection Frequency Concentration (Qualifier) (MG/KG) 27 / 27 1.0E+04 26 / 27 5.5E+00 J 1 / 1 3.1E-01 J 27 / 27 5.2E+00 27 / 27 2.3E+04 27 / 27 2.5E+02	Detection Frequency	Detection Frequency	Detection Frequency	Detection Frequency Concentration (Qualifier) (MG/KG) Sample Location of Maximum Detected Concentration Residential Soil RSL HQ=1 Residential Soil RSL ELCR = 1E-06 Hazard Index ^a 27	Detection Frequency

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

3L-00	
Total Neurological/Nervous HI =	0.3
Total Cardiovascular HI =	0.2
Total Dermal HI =	0.9
Total Respiratory HI =	0.2
Total Thyroid HI =	0.2
Total Gastrointestinal HI =	0.4

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2b. Step 3 Subsurface Soil Screening - Risk Ratio, 95% UCL, Site 7

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-06	Hazard Index ^a	Cancer Risk ^b	Target Organ
Arsenic	27 / 27	3.2E+00	95% KM (t) UCL	1	3.5E+01	6.8E-01	0.09	5E-06	Cardiovascular, Dermal
Thallium	26 / 27	2.2E-01	95% Adjusted Gamma UCL	1, 3	7.8E-01	N/A	0.3	N/A	Dermal
Cumulative Hazard Index ^c							0.4		
Cumulative Cancer Risk ^d								5E-06	
								Total Dermal HI =	0.4

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituents selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs bas MDE = Maryland Department of the Environment

COPC = Chemical of Potential Concern

MDE = Maryland Department of the Environment

MDE = Maryland Department of the Environment

ELCR = Excess Lifetime Cancer Risk N/A = Not available/not applicable

HI = Hazard Index

RSL = Regional Screening Levels, November 2019

HQ = Hazard Quotient USEPA = US Environmental Protection Agency

HQ = Hazard Quotient USEPA = US Environmental Protection Agenc MG/KG = milligrams per kilogram

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. November, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

UCL = Upper Confidence Limit

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).
- (5) Recommended 95% UCL exceeds maximum detected concentration.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/7/2019 7:38:30 PM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Thallium (MG/KG)

General	Stati	stics
---------	-------	-------

Total Number of Observations	27	Number of Distinct Observations	21
		Number of Missing Observations	0
Minimum	0.027	Mean	0.177
Maximum	0.58	Median	0.14
SD	0.124	Std. Error of Mean	0.0238
Coefficient of Variation	0.698	Skewness	1.918

Normal GOF Test

Shapiro Wilk Test Statistic	0.808	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.211	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.218	95% Adjusted-CLT UCL (Chen-1995)	0.226
		95% Modified-t LICL (Johnson-1978)	0 219

Gamma GOF Test

0.561	A-D Test Statistic
0.753	5% A-D Critical Value
0.128	K-S Test Statistic
0.17	5% K-S Critical Value
	0.753 0.128

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.432	k star (bias corrected MLE)	2.708	k hat (MLE)
0.0729	Theta star (bias corrected MLE)	0.0655	Theta hat (MLE)
131.3	nu star (bias corrected)	146.2	nu hat (MLE)
0.114	MLE Sd (bias corrected)	0.177	MLE Mean (bias corrected)
105.8	Approximate Chi Square Value (0.05)		
104.4	Adjusted Chi Square Value	0.0401	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.22 95% Adjusted Gamma UCL (use when n<50) 0.223

Site 7 Subsurface Soil

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.923	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.12	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.167	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.612	Mean of logged Data	-1.925
Maximum of Logged Data	-0.545	SD of logged Data	0.644

Assuming Lognormal Distribution

95% H-UCL	0.234	90% Chebyshev (MVUE) UCL	0.248
95% Chebyshev (MVUE) UCL	0.28	97.5% Chebyshev (MVUE) UCL	0.325
99% Chebyshev (MVUE) UCL	0.412		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.217	95% Jackknife UCL	0.218
95% Standard Bootstrap UCL	0.215	95% Bootstrap-t UCL	0.242
95% Hall's Bootstrap UCL	0.255	95% Percentile Bootstrap UCL	0.217
95% BCA Bootstrap UCL	0.228		
90% Chebyshev(Mean, Sd) UCL	0.249	95% Chebyshev(Mean, Sd) UCL	0.281
97.5% Chebyshev(Mean, Sd) UCL	0.326	99% Chebyshev(Mean, Sd) UCL	0.414

Suggested UCL to Use

95% Adjusted Gamma UCL 0.223

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.111/7/2019 10:20:02 AM

From File UCLInput_b.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Arsenic (MG/KG)

General Statistics

Total Number of Observations	27	Number of Distinct Observations	25
Number of Detects	26	Number of Non-Detects	1
Number of Distinct Detects	24	Number of Distinct Non-Detects	1
Minimum Detect	1	Minimum Non-Detect	0.31
Maximum Detect	5.5	Maximum Non-Detect	0.31
Variance Detects	1.658	Percent Non-Detects	3.704%
Mean Detects	2.896	SD Detects	1.288
Median Detects	2.85	CV Detects	0.445
Skewness Detects	0.427	Kurtosis Detects	-0.546
Mean of Logged Detects	0.959	SD of Logged Detects	0.483

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0902	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.8	KM Standard Error of Mean	0.261
KM SD	1.332	95% KM (BCA) UCL	3.189
95% KM (t) UCL	3.246	95% KM (Percentile Bootstrap) UCL	3.219
95% KM (z) UCL	3.23	95% KM Bootstrap t UCL	3.275
90% KM Chebyshev UCL	3.585	95% KM Chebyshev UCL	3.94
97.5% KM Chebyshev UCL	4.433	99% KM Chebyshev UCL	5.401

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.208	Anderson-Darling GOF Test
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.082	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.172	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

4.4	k star (bias corrected MLE)	4.945	k hat (MLE)
0.658	Theta star (bias corrected MLE)	0.586	Theta hat (MLE)
228.8	nu star (bias corrected)	257.1	nu hat (MLE)
		2.896	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.552	Mean	2.809
Maximum	5.5	Median	2.8
SD	1.341	CV	0.477
k hat (MLE)	3.958	k star (bias corrected MLE)	3.543
Theta hat (MLE)	0.71	Theta star (bias corrected MLE)	0.793
nu hat (MLE)	213.7	nu star (bias corrected)	191.3
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (191.33, α)	160.3	Adjusted Chi Square Value (191.33, β)	158.5
95% Gamma Approximate UCL (use when n>=50)	3.353	95% Gamma Adjusted UCL (use when n<50)	3.391

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.8	SD (KM)	1.332
Variance (KM)	1.774	SE of Mean (KM)	0.261
k hat (KM)	4.421	k star (KM)	3.955
nu hat (KM)	238.7	nu star (KM)	213.6
theta hat (KM)	0.633	theta star (KM)	0.708
80% gamma percentile (KM)	3.866	90% gamma percentile (KM)	4.688
95% gamma percentile (KM)	5.445	99% gamma percentile (KM)	7.062

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (213.56, α)	180.7	Adjusted Chi Square Value (213.56, β)	178.8
95% Gamma Approximate KM-UCL (use when n>=50)	3.309	95% Gamma Adjusted KM-UCL (use when n<50)	3.345

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.113	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.818	Mean in Log Scale	0.914
SD in Original Scale	1.327	SD in Log Scale	0.527
95% t UCL (assumes normality of ROS data)	3.253	95% Percentile Bootstrap UCL	3.237
95% BCA Bootstrap UCL	3.258	95% Bootstrap t UCL	3.29
95% H-UCL (Log ROS)	3.523		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.88	KM Geo Mean	2.411
KM SD (logged)	0.615	95% Critical H Value (KM-Log)	2.076
KM Standard Error of Mean (logged)	0.121	95% H-UCL (KM -Log)	3.74
KM SD (logged)	0.615	95% Critical H Value (KM-Log)	2.076
KM Standard Error of Mean (logged)	0.121		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.795	Mean in Log Scale	0.854
SD in Original Scale	1.368	SD in Log Scale	0.721
95% t UCL (Assumes normality)	3.244	95% H-Stat UCL	4.147

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 3.246

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix F.5 Site 9 Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0 - 0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	Step 1 COPC Flag	Rationale for [5] Contaminant Deletion or Selection
						CBD-S09-SS01-1012, CBD-S09-									
Surface Soil	78-93-3	2-Butanone	4.0E-03 J	8.1E-03 J	MG/KG	SS04-1012	4/4	0.00047 - 0.00066	8.1E-03	N/A	2.7E+03 N	1.2E-01	SSL	NO	BSL
	591-78-6	2-Hexanone	7.4E-03 L	7.4E-03 L	MG/KG	CBD-S09-SS01-1012	1/4	0.00047 - 0.00066	7.4E-03	N/A	2.0E+01 N	8.8E-04	SSL	NO	BSL
	67-64-1	Acetone	3.5E-02	6.7E-02	MG/KG	CBD-S09-SS04-1012	4/4	N/A	6.7E-02	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	71-43-2	Benzene	2.1E-04 J	4.3E-03	MG/KG	CBD-S09-SS04-1012	2/4	0.00047 - 0.00066	4.3E-03	N/A	1.2E+00 C	2.3E-04	SSL	NO	BSL
	75-15-0	Carbon disulfide	1.1E-03 J	8.4E-03 J	MG/KG	CBD-S09-SS03-1012	2/4	0.00047 - 0.00066	8.4E-03	N/A	7.7E+01 N	2.4E-02	SSL	NO	BSL
	110-82-7	Cyclohexane	3.4E-03 J	3.4E-03 J	MG/KG	CBD-S09-SS04-1012	1/4	0.00047 - 0.00066	3.4E-03	N/A	1.2E+02 SAT	1.3E+00	SSL	NO	BSL
	100-41-4	Ethylbenzene	1.7E-03	1.7E-03	MG/KG	CBD-S09-SS04-1012	1/4	0.00047 - 0.00066	1.7E-03	N/A	5.8E+00 C	1.7E-03	SSL	NO	BSL
	98-82-8	Isopropylbenzene	1.1E-03 J	1.1E-03 J	MG/KG	CBD-S09-SS04-1012	1/4	0.00023 - 0.00033	1.1E-03	N/A	1.9E+02 N	7.4E-02	SSL	NO	BSL
	m&pXYLENE	m- and p-Xylene	4.3E-03	4.3E-03	MG/KG	CBD-S09-SS04-1012	1/4	0.00047 - 0.00066	4.3E-03	N/A	5.8E+01 N	1.9E-02	SSL	NO	BSL
	108-87-2	Methylcyclohexane	6.5E-03 J	6.5E-03 J	MG/KG	CBD-S09-SS04-1012	1/4	0.00047 - 0.00066	6.5E-03	N/A	6.1E+01 N	N/A		NO	BSL
	95-47-6	o-Xylene	2.9E-03	2.9E-03	MG/KG	CBD-S09-SS04-1012	1/4	0.00023 - 0.00033	2.9E-03	N/A	6.5E+01 N	1.9E-02	SSL	NO	BSL
	100-42-5	Styrene	1.8E-03	1.8E-03	MG/KG	CBD-S09-SS04-1012	1/4	0.00023 - 0.00033	1.8E-03	N/A	6.0E+02 N	1.3E-01	SSL	NO	BSL
	108-88-3	Toluene	8.6E-03	8.6E-03	MG/KG	CBD-S09-SS04-1012	1/4	0.00047 - 0.00066	8.6E-03	N/A	4.9E+02 N	7.6E-02	SSL	NO	BSL
	83-32-9	Acenaphthene	6.0E-04 J	6.0E-04 J	MG/KG	CBD-S09-SS08-000H	1/10	0.0011 - 0.045	6.0E-04	N/A	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	1.1E-03 J	3.6E-03 J	MG/KG	CBD-S09-SS07-000H	3/10	0.0011 - 0.045	3.6E-03	N/A	3.6E+02 N	N/A		NO	BSL
	120-12-7	Anthracene	2.0E-03 J	1.2E-02 J	MG/KG	CBD-S09-SS04-1012	4/10	0.0035 - 0.18	1.2E-02	N/A	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	1.0E-02 J	1.5E-01 J	MG/KG	CBD-S09-SS04-1012	4/10	0.0035 - 0.18	1.5E-01	N/A	1.1E+00 C	1.1E-02	SSL	NO	BSL
	50-32-8	Benzo(a)pyrene	1.8E-03 J	4.6E-02 J	MG/KG	CBD-S09-SS04-1012	7/10	0.014 - 0.18	4.6E-02	N/A	1.1E-01 C	2.9E-02	SSL	NO	BSL
	205-99-2	Benzo(b)fluoranthene	1.6E-02 J	3.7E-01 J	MG/KG	CBD-S09-SS04-1012	4/10	0.0071 - 0.28	3.7E-01	N/A	1.1E+00 C	3.0E-01	SSL	NO	BSL
	191-24-2	Benzo(g,h,i)perylene	1.4E-02 J	9.1E-02 J	MG/KG	CBD-S09-SS04-1012	5/10	0.0035 - 0.280	9.1E-02	N/A	1.8E+02 N	N/A		NO	BSL
	207-08-9	Benzo(k)fluoranthene	9.1E-02 J	9.1E-02 J	MG/KG	CBD-S09-SS04-1012	1/10	0.0071 - 0.18	9.1E-02	N/A	1.1E+01 C	2.9E+00	SSL	NO	BSL
	117-81-7	bis(2-Ethylhexyl)phthalate	1.2E-02 J	9.1E-02 J	MG/KG	CBD-S09-SS04-1012	3/10	0.036 - 0.804	9.1E-02	N/A	3.9E+01 C	1.3E+00	SSL	NO	BSL
	218-01-9	Chrysene	1.2E-02	1.7E-01 J	MG/KG	CBD-S09-SS04-1012	2/10	0.0036 - 0.18	1.7E-01	N/A	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	3.1E-03 J	3.1E-03 J	MG/KG	CBD-S09-SS08-000H	1/10	0.0071 - 0.28	3.1E-03	N/A	1.1E-01 C	9.6E-02	SSL	NO	BSL
	206-44-0	Fluoranthene	3.6E-03 J	2.1E-01	MG/KG	CBD-S09-SS04-1012	5/10	0.0035 - 0.18	2.1E-01	N/A	2.4E+02 N	8.9E+00	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.6E-02 J	8.8E-02 J	MG/KG	CBD-S09-SS04-1012	4/10	0.0071 - 0.28	8.8E-02	N/A	1.1E+00 C	9.8E-01	SSL	NO	BSL
	85-01-8	Phenanthrene	2.1E-03 J	1.3E-01	MG/KG	CBD-S09-SS04-1012	6/10	0.0035 - 0.280	1.3E-01	N/A	1.8E+03 N	N/A		NO	BSL
	129-00-0	Pyrene	5.7E-03 J	3.2E-01 J	MG/KG	CBD-S09-SS04-1012	8/10	0.0071 - 0.28	3.2E-01	N/A	1.8E+02 N	1.3E+00	SSL	NO	BSL
	7429-90-5	Aluminum	2.6E+03	8.1E+03	MG/KG	CBD-S09-SS06-000H	10/10	N/A	8.1E+03	1.3E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	9.8E-02 J	8.8E-01	MG/KG	CBD-S09-SS03-1012	5/10	0.14 - 0.17	8.8E-01	4.2E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	6.2E-01	3.0E+00	MG/KG	CBD-S09-SS08-000H	10/10	N/A	3.0E+00	6.4E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	8.9E+00	6.0E+01 J	MG/KG	CBD-S09-SS06-000H	10/10	N/A	6.0E+01	5.8E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.7E-01 J	5.0E-01 J	MG/KG	CBD-S09-SS06-000H	8/10	0.27 - 0.35	5.0E-01	8.1E-01	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	3.0E-02 J	3.4E-01	MG/KG	CBD-S09-SS06-000H	9/10	0.14 - 0.17	3.4E-01	1.7E+00	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	9.0E+02	7.9E+03	MG/KG	CBD-S09-SS04-1012	10/10	N/A	7.9E+03	9.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	1.5E-01 J	1.1E+00	MG/KG	CBD-S09-SS04-1012	4/4	N/A	1.1E+00	4.0E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL

Table 2.1. Occurrence. Distribution and Selection of Chemicals of Potential Concern - Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0 - 0.5 foot bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source		Rationale for [5] Contaminant Deletion or Selection
						CBD-S09-SS06-000H, CBD-S09-									
	7440-47-3	Chromium	7.8E+00	2.0E+01	MG/KG	SS08-000H	10/10	N/A	2.0E+01	3.1E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
	7440-48-4	Cobalt	6.4E-01	6.1E+00	MG/KG	CBD-S09-SS06-000H	10/10	N/A	6.1E+00	1.2E+01	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.8E+00	1.6E+01	MG/KG	CBD-S09-SS08-000H	10/10	N/A	1.6E+01	2.7E+01	3.1E+02 N	2.8E+00	SSL	NO	BSL
	7439-89-6	Iron	3.2E+03	1.6E+04	MG/KG	CBD-S09-SS08-000H	10/10	N/A	1.6E+04	4.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	1.9E+00	3.7E+01	MG/KG	CBD-S09-SS05-000H	10/10	N/A	3.7E+01	5.0E+01	4.0E+02 L*	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	6.1E+02	3.0E+03	MG/KG	CBD-S09-SS06-000H	10/10	N/A	3.0E+03	3.8E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	1.5E+01 J	2.3E+02	MG/KG	CBD-S09-SS06-000H	10/10	N/A	2.3E+02	2.0E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7439-97-6	Mercury	1.2E-02 J	1.4E-01 J	MG/KG	CBD-S09-SS06-000H	5/10	0.14 - 0.17	1.4E-01	1.9E-01	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	1.1E+00 J	2.3E+01	MG/KG	CBD-S09-SS08-000H	10/10	N/A	2.3E+01	1.2E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	2.3E+02	1.5E+03	MG/KG	CBD-S09-SS08-000H	10/10	N/A	1.5E+03	1.5E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	2.5E-01	1.1E+00	MG/KG	CBD-S09-SS06-000H	9/10	N/A	1.1E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	4.1E-02 J	3.9E+00 J	MG/KG	CBD-S09-SS01P-1012	8/10	0.14 - 0.17	3.9E+00	1.4E+00	3.9E+01 N	8.0E-02	SSL	NO	BSL
	7440-23-5	Sodium	1.8E+01 J+	1.4E+02	MG/KG	CBD-S09-SS05-000H	6/10	25 - 25	1.4E+02	3.1E+02	N/A	N/A		NO	NUT
						CBD-S09-SS01-1012, CBD-S09-									
	7440-28-0	Thallium	7.7E-02 J	1.5E-01	MG/KG	SS02-1012, CBD-S09-SS04-1012	6/10	0.14 - 0.17	1.5E-01	1.3E+00	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	4.7E+00	2.4E+01	MG/KG	CBD-S09-SS06-000H	10/10	N/A	2.4E+01	3.0E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	6.1E+00	5.1E+01	MG/KG	CBD-S09-SS06-000H	9/10	N/A	5.1E+01	7.9E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).
- [4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10⁻⁶ for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for xylenes used for m- and p-xylene.

RSL value for n-hexane used as surrogate for methylcyclohexane.

RSL value for acenaphthene used as surrogate for aenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium(III) used for chromium since four soil samples were also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

L = Biased Low

C = Carcinogenic

N = Noncarcinogenic

L* = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available, used MCL-based SSL.

N/A = Not available/not applicable

SAT = soil saturation concentration less than residential soil RSL, therefor soil saturation concentration used as screening level.

Table 2.1a. Step 2 Surface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) MG/KG	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-6	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aluminum	10 / 10	8.1E+03	CBD-S09-SS06-000H	7.7E+04	N/A	0.1	N/A	Neurological
Arsenic	10 / 10	3.0E+00	CBD-S09-SS08-000H	3.5E+01	6.8E-01	0.09	4E-06	Cardiovascular, Dermal
Chromium (hexavalent)	4 / 4	1.1E+00	CBD-S09-SS04-1012	2.3E+02	3.0E-01	0.005	4E-06	None Reported, Respiratory
Cobalt	10 / 10	6.1E+00	CBD-S09-SS06-000H	2.3E+01	4.2E+02	0.3	1E-08	Thyroid, Respiratory
Iron	10 / 10	1.6E+04	CBD-S09-SS08-000H	5.5E+04	N/A	0.3	N/A	Gastrointestinal
Manganese	10 / 10	2.3E+02	CBD-S09-SS06-000H	1.8E+03	N/A	0.1	N/A	Nervous
Thallium	6 / 10	1.5E-01	CBD-S09-SS01-1012, CBD-S09- SS02-1012, CBD-S09-SS04-1012	7.8E-01	N/A	0.2	N/A	Dermal
Cumulative Hazard Index ^c Cumulative Cancer Risk ^d						1	05.00	
Cumulative Cancer Risk							8E-06	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05. Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04. Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 15 feet bgs)

														Step 1	
Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]		• • • •	Potential	Potential	COPC	
Point	Number		Concentration Qualifier	Concentration Qualifier		of Maximum	Frequency	Detection Limits	Used for	Value	Toxicity Value		ARAR/TBC	Flag	Contaminant Deletion
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		or Selection
															0. 00.000.000
Subsurface Soil	78-93-3	2-Butanone	2.1E-03 J	1.1E-02 J	MG/KG	CBD-S09-SB01-1315	2/4	0.00077 - 0.00089	1.1E-02	N/A	2.7E+03 N	1.2E-01	SSL	NO	BSL
	67-64-1	Acetone	1.4E-02 J	1.4E-01	MG/KG	CBD-S09-SB01-1315	2/4	0.0077 - 0.0089	1.4E-01	N/A	6.1E+03 N	2.9E-01	SSL	NO	BSL
	75-15-0	Carbon disulfide	1.3E-02 J	1.3E-02 J	MG/KG	CBD-S09-SB01-1315	1/4	N/A	1.3E-02	N/A	7.7E+01 N	2.4E-02	SSL	NO	BSL
	127-18-4	Tetrachloroethene	1.3E-03 J	1.3E-03 J	MG/KG	CBD-S09-SB02-1315	1/4	0.00077 - 0.00089	1.3E-03	N/A	8.1E+00 N	1.8E-03	SSL	NO	BSL
	534-52-1	4,6-Dinitro-2-methylphenol	3.5E-02 J	3.5E-02 J	MG/KG	CBD-S09-SB03-1315	1/10	0.029 - 2.39	3.5E-02	N/A	5.1E-01 N	2.6E-04	SSL	NO	BSL
	117-81-7	bis(2-Ethylhexyl)phthalate	1.1E-02 J	1.4E-02 J	MG/KG	CBD-S09-SB01-1315	3/10	0.239 - 1.22	1.4E-02	N/A	3.9E+01 C	1.3E+00	SSL	NO	BSL
	85-01-8	Phenanthrene	6.0E-03 J	6.0E-03 J	MG/KG	CBD-S09-SB08-0810	1/10	0.0029 - 0.011	6.0E-03	N/A	1.8E+03 N	N/A		NO	BSL
	7429-90-5	Aluminum	3.1E+03	1.5E+04	MG/KG	CBD-S09-SB08-0810	10/10	N/A	1.5E+04	1.6E+04	7.7E+03 N	3.0E+03	SSL	YES	ASL
	7440-36-0	Antimony	9.7E-02 J	3.0E-01	MG/KG	CBD-S09-SB02-1315	2/10	0.17 - 0.2	3.0E-01	5.5E-02	3.1E+00 N	3.5E-02	SSL	NO	BSL
	7440-38-2	Arsenic	9.3E-01	5.8E+00 J	MG/KG	CBD-S09-SB10-0810	10/10	N/A	5.8E+00	9.8E+00	6.8E-01 C	1.5E-03	SSL	YES	ASL
	7440-39-3	Barium	4.9E+00	5.3E+01 J	MG/KG	CBD-S09-SB10P-0810	10/10	N/A	5.3E+01	5.7E+01	1.5E+03 N	1.6E+01	SSL	NO	BSL
	7440-41-7	Beryllium	1.8E-01	1.4E+00	MG/KG	CBD-S09-SB03-1315	9/10	0.36 - 0.36	1.4E+00	1.2E+00	1.6E+01 N	1.9E+00	SSL	NO	BSL
	7440-43-9	Cadmium	1.4E-01 J	1.5E+00	MG/KG	CBD-S09-SB01-1315	8/10	0.17 - 0.2	1.5E+00	8.1E-01	7.1E+00 N	6.9E-02	SSL	NO	BSL
	7440-70-2	Calcium	1.0E+03	3.5E+03	MG/KG	CBD-S09-SB01-1315	10/10	N/A	3.5E+03	1.4E+03	N/A	N/A		NO	NUT
	18540-29-9	Chromium (hexavalent)	2.9E-01 J	9.8E-01	MG/KG		3/4	0.31 - 0.31	9.8E-01	4.9E-01	3.0E-01 C	6.7E-04	SSL	YES	ASL
	7440-47-3	Chromium	1.6E+01	2.8E+01	MG/KG	CBD-S09-SB01-1315, CBD-S09- SB04-1315	10/10	N/A	2.8E+01	5.8E+01	1.2E+04 N	4.0E+06	SSL	NO	BSL
		Cobalt	4.9E-01	4.4E+01	MG/KG	CBD-S09-SB02-1315	10/10	N/A	4.4E+01	5.9E+00	2.3E+00 N	2.7E-02	SSL	YES	ASL
	7440-50-8	Copper	1.7E+00	4.6E+00	MG/KG	CBD-S09-SB03-1315	10/10	N/A	4.6E+00	7.9E+00	3.1E+02 N	2.8E+00	SSL	NO	BSL
	7439-89-6	Iron	4.3E+03	1.8E+04	MG/KG	CBD-S09-SB05-0810	10/10	N/A	1.8E+04	3.0E+04	5.5E+03 N	3.5E+01	SSL	YES	ASL
	7439-92-1	Lead	2.0E+00	9.2E+00 J	MG/KG	CBD-S09-SB10P-0810	10/10	N/A	9.2E+00	1.2E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL
	7439-95-4	Magnesium	1.1E+03	3.5E+03	MG/KG	CBD-S09-SB01-1315	10/10	N/A	3.5E+03	3.4E+03	N/A	N/A		NO	NUT
	7439-96-5	Manganese	2.0E+00	2.6E+02	MG/KG	CBD-S09-SB02-1315	10/10	N/A	2.6E+02	2.3E+02	1.8E+02 N	2.8E+00	SSL	YES	ASL
	7439-97-6	Mercury	6.5E-03 J	1.5E-02 J	MG/KG	CBD-S09-SB02-1315	3/10	0.017 - 0.2	1.5E-02	4.0E-02	2.3E+00 N	3.3E-03	SSL	NO	BSL
	7440-02-0	Nickel	1.1E+00	1.2E+01	MG/KG	CBD-S09-SB08-0810	10/10	N/A	1.2E+01	1.3E+01	1.5E+02 N	2.6E+00	SSL	NO	BSL
	7440-09-7	Potassium	6.1E+02	1.9E+03	MG/KG	CBD-S09-SB01-1315	10/10	N/A	1.9E+03	1.6E+03	N/A	N/A		NO	NUT
	7782-49-2	Selenium	4.0E-01 J	2.3E+00 J	MG/KG	CBD-S09-SB10P-0810	7/10	N/A	2.3E+00	2.1E+00	3.9E+01 N	5.2E-02	SSL	NO	BSL
	7440-22-4	Silver	5.5E-02	1.6E-01 J	MG/KG	CBD-S09-SB09-0810	5/10	0.17 - 0.2	1.6E-01	2.3E-01	3.9E+01 N	8.0E-02	SSL	NO	BSL
						CBD-S09-SB02-1315, CBD-S09-									
	7440-23-5	Sodium	6.7E+01 J+	1.2E+02	MG/KG	SB08-0810	7/10	N/A	1.2E+02	1.4E+02	N/A	N/A		NO	NUT

Table 2.2. Occurrence. Distribution and Selection of Chemicals of Potential Concern - Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 15 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	1 -	Screening [4] Toxicity Value				Rationale for [5] Contaminant Deletion or Selection
	7440-28-0	Thallium	7.9E-02 J	3.4E-01 J	MG/KG	CBD-S09-SB05-0810	10/10	N/A	3.4E-01	4.1E-01	7.8E-02 N	1.4E-03	SSL	YES	ASL
	7440-62-2	Vanadium	6.6E+00	1.5E+01	MG/KG	CBD-S09-SB04-1315	10/10	N/A	1.5E+01	3.6E+01	3.9E+01 N	8.6E+00	SSL	NO	BSL
	7440-66-6	Zinc	1.4E+01	1.5E+02	MG/KG	CBD-S09-SB03-1315	10/10	N/A	1.5E+02	6.4E+01	2.3E+03 N	3.7E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

Residential Soil RSLs (based on cancer risk of 10-6 for carcinogens and hazard quotient of 0.1 for noncarcinogens).

RSL value for anthracene used as surrogate for phenanthrene.

RSL value for chromium(III) used for chromium since four soil samples were also analyzed for chromium (hexavalent).

RSL value for mercuric chloride (and other mercury salts) used for mercury.

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

J+ = Biased High

C = Carcinogenic

N = Noncarcinogenic

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater risk-based Soil Screening Level

from November 2019 RSL Table. If risk-based SSL not available,

used MCL-based SSL.

N/A = Not available/not applicable

Table 2.2a. Step 2 Subsurface Soil Screening - Risk Ratio, Maximum Detected Concentration, Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 1 COPC	Detection Frequency	Maximum Detected Concentration (Qualifier) (MG/KG)	Sample Location of Maximum Detected Concentration	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-6	Hazard Index ^a	Cancer Risk ^b	Target Organ
Aluminum	10 / 10	1.5E+04	CBD-S09-SB08-0810	7.70E+04	N/A	0.2	N/A	Neurological
Arsenic	10 / 10	5.8E+00 J	CBD-S09-SB10-0810	3.50E+01	6.80E-01	0.2	9E-06	Cardiovascular, Dermal
Chromium (hexavalent)	3 / 4	9.8E-01	CBD-S09-SB03-1315	2.30E+02	3.00E-01	0.004	3E-06	None Reported, Respiratory
Cobalt	10 / 10	4.4E+01	CBD-S09-SB02-1315	2.3E+01	4.20E+02	2	1E-07	Thyroid, Respiratory
Iron	10 / 10	1.8E+04	CBD-S09-SB05-0810	5.50E+04	N/A	0.3	N/A	Gastrointestinal
Manganese	10 / 10	2.6E+02	CBD-S09-SB02-1315	1.80E+03	N/A	0.1	N/A	Nervous
Thallium	10 / 10	3.4E-01 J	CBD-S09-SB05-0810	7.80E-01	N/A	0.4	N/A	Dermal
Cumulative Hazard Index ^c		•				3		
Cumulative Cancer Risk ^d							1E-05	

Notes:

Constituent selected as Navy Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 2 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05. Constituents selected as Step 2 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 2 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 2 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern

ELCR = Excess Lifetime Cancer Risk

HI = Hazard Index

HQ = Hazard Quotient

MG/KG = milligrams per kilogram

MDE = Maryland Department of the Environment

N/A = Not available/not applicable

RSL = Regional Screening Levels, November 2019

USEPA = US Environmental Protection Agency

1L-03	
Total Neurological/Nervous HI =	0.3
Total Cardiovascular HI =	0.2
Total Dermal HI =	0.6
Total Respiratory HI =	2
Total Gastrointestinal HI =	0.3
Total Thyroid HI =	2

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2b. Step 3 Subsurface Soil Screening - Risk Ratio, 95% UCL, Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Step 2 COPC	Detection Frequency		95% UCL (MG/KG)	95% UCL Rationale	Noncarcinogenic Residential Soil RSL HQ=1	Carcinogenic Residential Soil RSL ELCR = 1E-6	Hazard Index ^a	Cancer Risk ^b	Target Organ
Arsenic	10 / 10	4.2E+00	95% Student's-t UCL	1	3.50E+01	6.80E-01	0.1	6E-06	Cardiovascular, Dermal
Chromium (hexavalent)	3 / 4	9.8E-01	Maximum	5	2.30E+02	3.00E-01	0.004	3E-06	None Reported, Respiratory
Cobalt	10 / 10	2.5E+01	95% Chebyshev(Mean, Sd) UCL	1	2.30E+01	4.20E+02	1	6E-08	Thyroid, Respiratory
Thallium	10 / 10	2.9E-01	95% Student's-t UCL	1. 3	7.80E-01	N/A	0.4	N/A	Dermal
Cumulative Hazard Index ^c			•				2		
Cumulative Cancer Risk ^d	•							1E-05	

^a Hazard Index equals maximum detected concentration divided by the noncarcinogenic RSL divided by the acceptable hazard level of 1.

Constituent selected as Navy Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 0.5 or Cumulative Cancer Risk greater than 5E-05.

Constituent selected as USEPA Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or Cumulative Cancer Risk greater than 1E-04.

Constituent selected as a MDE Step 3 COPC if it contributes to an overall Hazard Index by target organ greater than 1 or a Cumulative Cancer Risk greater than 1E-05.

Constituents selected as Step 3 COPCs based on Navy criteria are indicated by bold text.

Constituents selected as Step 3 COPCs based on USEPA criteria are indicated by italic text.

Constituents selected as Step 3 COPCs based on MDE criteria are indicated by shading.

COPC = Chemical of Potential Concern MDE = Maryland Department of the Environment

ELCR = Excess Lifetime Cancer Risk N/A = Not available/not applicable

HI = Hazard Index RSL = Regional Screening Levels, November 2019
HQ = Hazard Quotient USEPA = US Environmental Protection Agency

MG/KG = milligrams per kilogram
UCL = Upper Confidence Limit

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. October, 2016. Prepared by Lockheed Martin Environmental Services).

UCL Rationale:

- (1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.
- (2) Shapiro-Wilk W Test/Lilliefors indicates data are normally distributed.
- (3) Anderson-Darling and/or Kolmogorov-Smirnov Tests indicate data are gamma distributed.
- (4) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

Total Cardiovascular HI = 0.1

Total Dermal HI = 0.4

Total Thyroid HI = 1

Total Respiratory HI = 1

^b Cancer Risk equals maximum detected concentration divided by the carcinogenic RSL divided by the acceptable risk level of 1E-06

^c Cumulative Hazard Index equals sum of hazard indices for each constituent.

^d Cumulative Cancer Risk equals sum of cancer risks for each constituent.

Table 2.2c. Comparison of Concentrations of COPCs to Background Concentrations - Site 9

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (8 - 15 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening		Exceeds Background?
Subsurface Sc	18540-29-9 7440-48-4	Chromium (hexavalent) Cobalt	2.9E-01 J 4.9E-01	9.8E-01 4.4E+01	-	CBD-S09-SB03-1315 CBD-S09-SB02-1315	_	0.31 - 0.31 N/A	9.8E-01 4.4E+01	4.9E-01 5.9E+00	YES YES

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background value is the surface soil background threshold value (BTV).

bgs = below ground surface

COPC = Chemical of Potential Concern

MG/KG = milligrams per kilogram

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.11/8/2019 8:09:07 AM

From File ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Cobalt (MG/KG)

General	l Stati	istics
---------	---------	--------

Total Number of Observations	10	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	0.49	Mean	6.875
Maximum	44	Median	3.1
SD	13.13	Std. Error of Mean	4.153
Coefficient of Variation	1.91	Skewness	3.084

Normal GOF Test

Shapiro Wilk Test Statistic	0.475	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.436	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	14.49	95% Adjusted-CLT UCL (Chen-1995)	18.03
		95% Modified-t UCL (Johnson-1978)	15.16

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.126	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.759	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.326	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.277	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.719	k star (bias corrected MLE)	0.57
9.564	Theta star (bias corrected MLE)	12.06
14.38	nu star (bias corrected)	11.4
6.875	MLE Sd (bias corrected)	9.107
	Approximate Chi Square Value (0.05)	4.833
0.0267	Adjusted Chi Square Value	4.115
	9.564 14.38 6.875	9.564 Theta star (bias corrected MLE) 14.38 nu star (bias corrected) 6.875 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 16.21 95% Adjusted Gamma UCL (use when n<50) 19.04

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.228	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.713	Mean of logged Data	1.09
Maximum of Logged Data	3.784	SD of logged Data	1.208

Assuming Lognormal Distribution

95% H-UCL	25.71	90% Chebyshev (MVUE) UCL	12.24
95% Chebyshev (MVUE) UCL	15.28	97.5% Chebyshev (MVUE) UCL	19.49
99% Chebyshev (MVUE) UCL	27.77		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

14.49	95% Jackknife UCL	13.71	95% CLT UCL
58.79	95% Bootstrap-t UCL	13.23	95% Standard Bootstrap UCL
15.12	95% Percentile Bootstrap UCL	53.58	95% Hall's Bootstrap UCL
		18.93	95% BCA Bootstrap UCL
24.98	95% Chebyshev(Mean, Sd) UCL	19.33	90% Chebyshev(Mean, Sd) UCL
48.19	99% Chebyshev(Mean, Sd) UCL	32.81	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 24.98

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium (hexavalent) (MG/KG)

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	1
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.29	Minimum Non-Detect	0.31
Maximum Detect	0.98	Maximum Non-Detect	0.31
Variance Detects	0.141	Percent Non-Detects	25%
Mean Detects	0.72	SD Detects	0.375
Median Detects	0.89	CV Detects	0.521
Skewness Detects	-1.621	Kurtosis Detects	N/A
Mean of Logged Detects	-0.458	SD of Logged Detects	0.677

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.846	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.341	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.613	KM Standard Error of Mean	0.198
KM SD	0.324	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.08	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.939	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.208	95% KM Chebyshev UCL	1.478
97.5% KM Chebyshev UCL	1.852	99% KM Chebyshev UCL	2.587

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	4.014	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.179	Theta hat (MLE)
N/A	nu star (bias corrected)	24.08	nu hat (MLE)
		0.72	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.29	Mean	0.624
Maximum	0.98	Median	0.613
SD	0.362	CV	0.58
k hat (MLE)	3.607	k star (bias corrected MLE)	1.068
Theta hat (MLE)	0.173	Theta star (bias corrected MLE)	0.584
nu hat (MLE)	28.86	nu star (bias corrected)	8.547
Adjusted Level of Significance (β)	0.00498		
Approximate Chi Square Value (8.55, α)	3.056	Adjusted Chi Square Value (8.55, β)	N/A
95% Gamma Approximate UCL (use when n>=50)	1.745	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.613	SD (KM)	0.324
Variance (KM)	0.105	SE of Mean (KM)	0.198
k hat (KM)	3.572	k star (KM)	1.06
nu hat (KM)	28.58	nu star (KM)	8.478
theta hat (KM)	0.171	theta star (KM)	0.578
80% gamma percentile (KM)	0.981	90% gamma percentile (KM)	1.39
95% gamma percentile (KM)	1.798	99% gamma percentile (KM)	2.74

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.48, α)	3.015	Adjusted Chi Square Value (8.48, β)	1.532
95% Gamma Approximate KM-UCL (use when n>=50)	1.722	95% Gamma Adjusted KM-UCL (use when n<50)	3.39

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.809	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.36	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.617	Mean in Log Scale	-0.637
SD in Original Scale	0.369	SD in Log Scale	0.659
95% t UCL (assumes normality of ROS data)	1.051	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	3.707		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.52	KM Geo Mean) -(KM Mean (logged)	
4.126	95% Critical H Value (KM-Log))	KM SD (logged)	
2.494	95% H-UCL (KM -Log))	KM Standard Error of Mean (logged)	
4.126	95% Critical H Value (KM-Log))	KM SD (logged)	
)	KM Standard Error of Mean (logged)	

DL/2 Statistics

DL/2 Normal		DL/2 Log-1 ransformed	
Mean in Original Scale	0.579	Mean in Log Scale	-0.81
SD in Original Scale	0.417	SD in Log Scale	0.894
95% t UCL (Assumes normality)	1.069	95% H-Stat UCL	14.72

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.08

Warning: Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.111/7/2019 10:19:02 AM

From File UCLInput_c.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Arsenic (MG/KG)

Gen	eral	Statistics	

Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.93	Mean	3.283
Maximum	5.8	Median	3.25
SD	1.583	Std. Error of Mean	0.501
Coefficient of Variation	0.482	Skewness	-0.159

Normal GOF Test

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.16	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.201	95% Adjusted-CLT UCL (Chen-1995)	4.08
		95% Modified-t UCL (Johnson-1978)	4.196

Gamma GOF Test

A-D Test Statistic	0.485	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.227	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.64	k star (bias corrected MLE)	2.615
Theta hat (MLE)	0.902	Theta star (bias corrected MLE)	1.256
nu hat (MLE)	72.8	nu star (bias corrected)	52.29
MLE Mean (bias corrected)	3.283	MLE Sd (bias corrected)	2.03
		Approximate Chi Square Value (0.05)	36.68
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	34.42

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4.68 95% Adjusted Gamma UCL (use when n<50) 4.987

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.875	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.0726	Mean of logged Data	1.045
Maximum of Logged Data	1.758	SD of logged Data	0.618

Assuming Lognormal Distribution

95% H-UCL	5.641	90% Chebyshev (MVUE) UCL	5.395
95% Chebyshev (MVUE) UCL	6.312	97.5% Chebyshev (MVUE) UCL	7.586
99% Chebyshev (MVUE) UCL	10.09		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4.201	95% Jackknife UCL	4.106	95% CLT UCL
4.172	95% Bootstrap-t UCL	4.074	95% Standard Bootstrap UCL
4.026	95% Percentile Bootstrap UCL	4.105	95% Hall's Bootstrap UCL
		4	95% BCA Bootstrap UCL
5.465	95% Chebyshev(Mean, Sd) UCL	4.785	90% Chebyshev(Mean, Sd) UCL
8.264	99% Chebyshev(Mean, Sd) UCL	6.409	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4.201

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Thallium (MG/KG)

General Statistics

Total Number of Observations	10	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum	0.079	Mean	0.241
Maximum	0.34	Median	0.24
SD	0.0769	Std. Error of Mean	0.0243
Coefficient of Variation	0.319	Skewness	-0.824

Nο	rmal	GOI	FΤ	eet

Shapiro Wilk Test Statistic 0.921	Shapiro Wilk GOF Test
% Shapiro Wilk Critical Value 0.842 Data appea	r Normal at 5% Significance Level
Lilliefors Test Statistic 0.197	Lilliefors GOF Test
5% Lilliefors Critical Value 0.262 Data appea	r Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCI	0.285	95% Adjusted-CLT UCL (Chen-1995)	0 274

5% Student's-t UCL 0.285 95% Adjusted-CLT UCL (Chen-1995) 0.274 95% Modified-t UCL (Johnson-1978) 0.284

Gamma GOF Test

A-D Test Statistic	0.607	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.727	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.25	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

5.583	k star (bias corrected MLE)	7.88	k hat (MLE)
0.0432	Theta star (bias corrected MLE)	0.0306	Theta hat (MLE)
111.7	nu star (bias corrected)	157.6	nu hat (MLE)
0.102	MLE Sd (bias corrected)	0.241	MLE Mean (bias corrected)
88.26	Approximate Chi Square Value (0.05)		
84.65	Adjusted Chi Square Value	0.0267	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.305 95% Adjusted Gamma UCL (use when n<50) 0.318

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.796	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.842	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.286	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.262	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.538	Mean of logged Data	-1.488
Maximum of Logged Data	-1.079	SD of logged Data	0.42

Assuming Lognormal Distribution

95% H-UCL	0.332	90% Chebyshev (MVUE) UCL	0.343
95% Chebyshev (MVUE) UCL	0.388	97.5% Chebyshev (MVUE) UCL	0.45
99% Chebyshev (MVUE) UCL	0.572		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.281	95% Jackknife UCL	0.285
95% Standard Bootstrap UCL	0.28	95% Bootstrap-t UCL	0.281
95% Hall's Bootstrap UCL	0.276	95% Percentile Bootstrap UCL	0.279
95% BCA Bootstrap UCL	0.273		
90% Chebyshev(Mean, Sd) UCL	0.314	95% Chebyshev(Mean, Sd) UCL	0.347
97.5% Chebyshev(Mean, Sd) UCL	0.393	99% Chebyshev(Mean, Sd) UCL	0.483

Suggested UCL to Use

95% Student's-t UCL 0.285

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Appendix F.6 AOC D Human Health Risk Screening Tables

Table 2.1. Occurrence, Distribution and Selection of Chemicals of Potential Concern - AOC D

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Scenario Timeframe: Current/Future

Medium: Surface Soil

Exposure Medium: Surface Soil (0-0.5 foot bgs)

														Step 1	
Exposure	CAS	Chemical	Minimum [1]	Maximum [1]	Units	Location	Detection	Range of	Concentration [2]	Background [3]	Screening [4]	Potential	Potential	COPC	Rationale for [5]
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion
															or Selection
Surface Soil	7439-92-1	Lead	1.0E+02	3.0E+03	MG/KG	CBD-AOD-SS02-1012	14/14	N/A	3.0E+03	5.0E+01	4.0E+02 L	1.4E+01	SSL	YES	ASL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for surface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)
Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater MCL-based Soil Screening Level

from November 2019 RSL Table.

N/A = Not available/not applicable

AOC = Area of Concern

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

LEAD MODEL FOR WINDOWS Version 1.1

Model Version: 1.1 Build11

User Name: Jacobs Date: 01/09/2019

Site Name: Naval Research Laboratory - Chesapeake Bay Detachment

Operable Unit: Site 4

Run Mode: Site Risk Assessment

Soil/Dust Data

Average lead surface soil concentration

Maternal Data

value from OLEM Directive 9285.6-56

GSD, Cutoff and Age Type

12 - 72 months

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time	Ventilation	Lung	Outdoor Air
	Outdoors	Rate	Absorption	Pb Conc
	(hours)	(m³/day)	(%)	$(\mu g Pb/m^3)$
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

***** Diet *****

Age	Diet Intake(µg/day)
.5-1 1-2 2-3 3-4 4-5 5-6	2.260 1.960 2.130 2.040 1.950 2.050
6-7	2.220

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)	
.5-1	0.200	
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: 4.000 µg Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: $924.200 \mu g/g$

Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000

Use alternate indoor dust Pb sources? No

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time Outdoors	Ventilation Rate	Lung Absorption	Outdoor Air Pb Conc
	(hours)	(m³/day)	(%)	$\left(\mu g \; Pb/m^3\right)$
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

***** Diet *****

Age	Diet Intake(µg/day)
.5-1	2.260
1-2	1.960
2-3	2.130
3-4	2.040
4-5	1.950
5-6	2.050
6-7	2.220

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)	
.5-1	0.200	
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: $4.000~\mu g~Pb/L$

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 924.200 $\mu g/g$

Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000

Use alternate indoor dust Pb sources? No

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
.5-1	1306.000	924.200
1-2	1306.000	924.200
2-3	1306.000	924.200
3-4	1306.000	924.200
4-5	1306.000	924.200
5-6	1306.000	924.200
6-7	1306.000	924.200

Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

***** Alternate Intake *****

Age	Alternate (µg Pb/day
.5-1	0.000
1-2	0.000
2-3	0.000
3-4	0.000
4-5	0.000
5-6	0.000
6-7	0.000

***** Maternal Contribution: Infant Model *****

Maternal Blood Concentration: $0.600~\mu g~Pb/dL$

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year	Air (μg/day)	Diet (μg/day)	Alternate (μg/day)	Water (µg/day)
.5-1	0.021	0.866	0.000	0.307
1-2	0.034	0.719	0.000	0.733
2-3	0.062	0.810	0.000	0.791
3-4	0.067	0.802	0.000	0.834
4-5	0.067	0.826	0.000	0.932
5-6	0.093	0.894	0.000	1.011
6-7	0.093	0.983	0.000	1.045
Year	Soil+Dust	Total	Blood	
((μg/day)	$(\mu g/\text{day})$	$(\mu g/dL)$	
.5-1	21.418	22.612	11.8	
1-2	32.551	34.037	13.7	
2-3	33.773	35.436	12.9	
3-4	34.907	36.610	12.5	
4-5	27.847	29.671	10.4	
5-6	25.796	27.794	8.8	
6-7	24.753	26.874	7.7	

Table 2.1b. Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas

U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 Base-wide Expanded Site Inspection Report Naval Research Laboratory – Chesapeake Bay Detachment

Exposure Medium: Surface Soil, AOC D Receptor: Industrial Worker

Variable	Description of Variable	Units	GSDI and PbBo from Analysis of NHANES 2009- 2014	GSDi and PbBo from Analysis of NHANES 2007-2010	GSDi and PbBo from Analysis of NHANES 2004-2007	GSDI and PbBo from Analysis of NHANES III (Phases 1&2)
PbS	Soil lead concentration	μg/g or ppm	1306	1306	1306	1306
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per ug/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	μg/dL	0.6	0.7	1.0	1.5
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
W_S	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil		-			
K _{SD}	Mass fraction of soil in dust		-			
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	219	219	219	219
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	μg/dL	2.5	2.6	2.9	3.4
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	μg/dL	5.9	5.6	6.8	10.3
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	μg/dL	10	10	10	10
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	%	0.5%	0.3%	1.1%	5.4%

Table 2.2. Occurrence, Distribution and Selection of Chemicals of Potential Concern - AOC D

Base-wide Expanded Site Inspection Report Naval Research Laboratory - Chesapeake Bay Detachment

Scenario Timeframe: Future Medium: Subsurface Soil

Exposure Medium: Subsurface Soil (1.5 - 2 feet bgs)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	-	Concentration [2] Used for Screening		Screening [4] Toxicity Value		Potential		Rationale for [5] Contaminant Deletion or Selection
Subsurface Soil	7439-92-1	Lead	7.8E+00	1.6E+02 J	MG/KG	CBD-AOD-SB12-1H02	10/10	N/A	1.6E+02	1.2E+01	4.0E+02 L	1.4E+01	SSL	NO	BSL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Navy Research Laboratory background threshold value for subsurface soil (95 percent upper tolerance limit).

[4] USEPA. November, 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: No Toxicity Information (NTX)

Essential Nutrient (NUT)

Below Screening Level (BSL)

bgs = below ground surface

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

J = Estimated Value

L = Lead screening level from November 2019 RSL Table.

MG/KG = Milligrams per kilogram

SSL = Protection of groundwater MCL-based Soil Screening Level

from November 2019 RSL Table.

N/A = Not available/not applicable

AOC = Area of Concern

Table Lead.2a RAGS D IEUBK LEAD WORKSHEET Child (Age 12 – 72 Months)

Expanded Site Investigation Report - AOC D

Naval Research Laboratory - Chesapeake Bay Detachment, Chesapeake Beach, Maryland

1. Lead Screening Questions

	Lead Concentration Used in Model Run		Basis for Lead Concentration Used For	Lead Screening Concentration		
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Surface Soil	1306	mg/kg	Average Detected Value in Soil	400	mg/kg	Recommended Soil Screening Level
Water	4	μg/L	Default Model Value	15	μg/L	Recommended Drinking Water Action Level

2. Lead Model Questions

Z. Lead Model Questions	
Question	Response for Residential Lead Model
What lead model (version and date was used)?	Lead Model for Windows, Version 1.1 Build 11 (February, 2010)
Where are the input values located in the risk assessment report?	Located in IEUBKwin OUTPUT (Attached as Table Lead.1b and Figure Lead 1)
What range of media concentrations were used for the model?	100 – 3000 mg/kg (surface soil)
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic Mean Concentration; Data are located in Appendix D.
Was soil sample taken from top 2 cm? If not, why?	Yes
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	No – Samples were collected for multiple analyses.
What was the point of exposure/location?	AOC D
Where are the output values located in the risk assessment report?	IEUBKwin OUTPUT (Attached as Table Lead.2b and Figure Lead.2)
Was the model run using default values only?	No – Assumed site-specific arithmetic mean concentration of lead in subsurface soil and groundwater, and maternal blood lead concentration of 0.6 µg Pb/dL.
Was the default soil bioavailability used?	Yes Default is 30%
Was the default soil ingestion rate used?	Yes Default values for 7 age groups are 85, 135, 135, 100, 090, and 85 mg/day
If non-default values were used, where is the rationale for the values located in the risk assessment report?	Section 5.

3. Final Result

Medium	Result	Comment/PRG ¹
Subsurface soil and groundwater	1306 mg/kg lead in subsurface soil results in 62.8 % of children above a blood lead level of 10 μg/dL. Geometric mean blood lead = 11.7 μg/dL. This exceeds the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 μg/dL blood lead.	PRG not calculated.

Table Lead.3a RAGS D ADULT LEAD WORKSHEET

Calculations of Blood Lead Concentrations – Industrial Worker

Expanded Site Investigation Report – AOC D
Naval Research Laboratory - Chesapeake Bay Detachment, Chesapeake Beach, Maryland

1. Lead Screening Questions

	Lead Concentration used in Model Run		Basis for Lead Concentration Used For	Lead Scre Concentra	0	
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Surface Soil	1306	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table Lead.3b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface soil concentration; See Appendix D.
What was the point of exposure and location?	AOC D
Where are the output values located in the risk assessment report?	Attached as Table Lead.3b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	Yes
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	Yes
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Default values were used.

3. Final Result

Medium	Result	Comment/RBRG ¹
Soil	1305 mg/kg lead soil results in geometric mean blood lead levels ranging from 2.5 to 3.4 ug/dL for women of child-bearing age in homogeneous and heterogeneous populations. The 95th percentile fetal blood lead concentrations range from 5.6 to 10.3 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL range from 0.5 % to 5.4%. The upper end of the range slightly exceeds the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead.	PRG not calculated.

Cutoff = 10.000 µg/dl Geo Mean = 11.664 GSD = 1.600 % Above = 62.836 **Age Range = User Designated: Ages 12 - 72 months**

Run Mode = Site Risk Assessment Comment = mat blood

Appendix G Ecological Risk Screening Tables

TABLE 1 **Ecological Surface Soil Screening Values Expanded Site Investigation Report** NRL-CBD, Chesapeake Beach, Maryland

Chemical	Scree	Screening Value and Source		
Inorganics (MG/KG)	•			
Aluminum	NSV			
Antimony	5.0	USEPA 2005		
Arsenic	7	USEPA 2005		
Barium	110	USEPA 2005		
Beryllium	2.5	USEPA 2005		
Cadmium	32.0	USEPA 2005		
Calcium	NSV			
Chromium (hexavalent)	0.4	Efroymson et al. 1997		
Chromium	10.0	USEPA 1995		
Cobalt	13.0	USEPA 2005		
Copper	70.0	USEPA 2007		
Cyanide	1.0	MHSPE 2000		
Iron	NSV			
Lead	120	USEPA 2005		
Magnesium	NSV			
Manganese	220	USEPA 2007		
Mercury	0.05	USEPA 2007		
Nickel	38	USEPA 2007		
Potassium	NSV			
Selenium	0.52	USEPA 2007		
Silver	560	USEPA 2006		
Sodium	NSV			
Thallium	0.05	USEPA 1995		
Vanadium	60	USEPA 1995		
Zinc	120	USEPA 2007		
Polychlorinated Biphenyls (UG/KG) ¹				
Aroclor-1016	160	LANL, 2017		
Aroclor-1221	160	LANL, 2017		
Aroclor-1232	160	LANL, 2017		
Aroclor-1242	160	LANL, 2017		
Aroclor-1248	160	LANL, 2017		
Aroclor-1254	160	LANL, 2017		
Aroclor-1260	160	LANL, 2017		
Aroclor-1262	160	LANL, 2017		
Aroclor-1268	160	LANL, 2017		
Pesticides (UG/KG)				
4,4'-DDD	100	USEPA 1995		
4,4'-DDE	100	USEPA 1995		
4,4'-DDT	100	USEPA 1995		
Aldrin	100	USEPA 1995		
alpha-BHC	NSV			
alpha-Chlordane	2.2	LANL, 2017		
beta-BHC	NSV			
delta-BHC	NSV			
Dieldrin	100	USEPA 1995		
Endosulfan I	NSV			

TABLE 1
Ecological Surface Soil Screening Values
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Chemical	Screer	ning Value and Source
Endosulfan II	NSV	
Endosulfan sulfate	NSV	
Endrin	100	USEPA 1995
Endrin aldehyde	NSV	
Endrin ketone	NSV	
gamma-BHC (Lindane)	100	USEPA 1995
Heptachlor	400	LANL, 2017
Heptachlor epoxide	100	USEPA 1995
Methoxychlor	100	USEPA 1995
Toxaphene	NSV	
Semivolatile Organic Compounds (UG/KG)		
1,1-Biphenyl	60,000	Efroymson et al. 1997b
1,2,4,5-Tetrachlorobenzene	NSV	
2,2'-Oxybis(1-chloropropane)	NSV	
2,3,4,6-Tetrachlorophenol	NSV	
2,4,5-Trichlorophenol	100	USEPA 1995
2,4,6-Trichlorophenol	100	USEPA 1995
2,4-Dichlorophenol	100	USEPA 1995
2,4-Dimethylphenol	100	USEPA 1995
2,4-Dinitrophenol	100	USEPA 1995
2,4-Dinitrotoluene	NSV	
2,6-Dinitrotoluene	NSV	
2-Chloronaphthalene	NSV	
2-Chlorophenol	100	USEPA 1995
2-Methylnaphthalene	NSV	See LMW PAHs
2-Methylphenol	100	USEPA 1995
2-Nitroaniline	NSV	
2-Nitrophenol	NSV	
3,3'-Dichlorobenzidine	NSV	
3-Nitroaniline	NSV	
4,6-Dinitro-2-methylphenol	NSV	
4-Bromophenyl-phenylether	NSV	
4-Chloro-3-methylphenol	NSV	
4-Chloroaniline	NSV	
4-Chlorophenyl-phenylether	NSV	
4-Methylphenol	100	USEPA 1995
4-Nitroaniline	NSV	
4-Nitrophenol	100	USEPA 1995
Acenaphthene	NSV	See LMW PAHs
Acenaphthylene	NSV	See LMW PAHs
Acetophenone	NSV	
Anthracene	NSV	See LMW PAHs
Atrazine	NSV	<u></u>
Benzaldehyde	NSV	
Benzo(a)anthracene	NSV	See HMW PAHs
Benzo(a)pyrene	NSV	See HMW PAHs
Benzo(b)fluoranthene	NSV	See HMW PAHs

TABLE 1
Ecological Surface Soil Screening Values
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Chemical	Screen	ing Value and Source
Benzo(g,h,i)perylene	NSV	See HMW PAHs
Benzo(k)fluoranthene	NSV	See HMW PAHs
bis(2-Chloroethoxy)methane	NSV	
bis(2-Chloroethyl)ether	NSV	
bis(2-Ethylhexyl)phthalate	NSV	
Butylbenzylphthalate	NSV	
Caprolactam	NSV	
Carbazole	NSV	
Chrysene	NSV	See HMW PAHs
Dibenz(a,h)anthracene	NSV	See HMW PAHs
Dibenzofuran	NSV	
Diethylphthalate	100,000	Efroymson et al. 1997
Dimethyl phthalate	200,000	Efroymson et al. 1997a
Di-n-butylphthalate	200,000	Efroymson et al. 1997
Di-n-octylphthalate	NSV	
Fluoranthene	NSV	See HMW PAHs
Fluorene	NSV	See LMW PAHs
Hexachlorobenzene	1,000,000	Efroymson et al. 1997a
Hexachlorobutadiene	NSV	
Hexachlorocyclopentadiene	10,000	Efroymson et al. 1997
Hexachloroethane	NSV	
Indeno(1,2,3-cd)pyrene	NSV	See HMW PAHs
Isophorone	NSV	
Naphthalene	NSV	See LMW PAHs
Nitrobenzene	40,000	Efroymson et al. 1997
n-Nitroso-di-n-propylamine	NSV	
n-Nitrosodiphenylamine	20,000	Efroymson et al. 1997a
Low Molecular Weight PAHs1	29,000	USEPA 2007
High Molecular Weight PAHs2	1,100	USEPA 2007
Pentachlorophenol	5,000	USEPA 2007
Phenanthrene	NSV	See LMW PAHs
Phenol	100	USEPA 1995
Pyrene	NSV	See HMW PAHs
Volatile Organic Compounds (UG/KG)		
1,1,1-Trichloroethane	300	USEPA 1995
1,1,2,2-Tetrachloroethane	300	USEPA 1995
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113	NSV	
1,1,2-Trichloroethane	300	USEPA 1995
1,1-Dichloroethane	300	USEPA 1995
1,1-Dichloroethene	NSV	
1,2,3-Trichlorobenzene	NSV	
1,2,4-Trichlorobenzene	100	USEPA 1995
1,2-Dibromo-3-chloropropane	NSV	
1,2-Dibromoethane	5,000	USEPA 1995
1,2-Dichlorobenzene	100	USEPA 1995
1,2-Dichloroethane	870,000	USEPA 1995
1,2-Dichloropropane	300	USEPA 1995

TABLE 1
Ecological Surface Soil Screening Values
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Chemical	Screening Value and Source		
1,3-Dichlorobenzene	NSV		
1,4-Dichlorobenzene	100	USEPA 1995	
2-Butanone	NSV		
2-Hexanone	12,600	USEPA 2003	
4-Methyl-2-pentanone	100,000	USEPA 1995	
Acetone	NSV		
Benzene	100	USEPA 1995	
Bromochloromethane	NSV		
Bromodichloromethane	NSV		
Bromoform	1,147,000	USEPA 1995	
Bromomethane	NSV		
Carbon disulfide	94.1	USEPA 2003	
Carbon tetrachloride	300	USEPA 1995	
Chlorobenzene	100	USEPA 1995	
Chloroethane	NSV		
Chloroform	300	USEPA 1995	
Chloromethane	NSV		
cis-1,2-Dichloroethene	300	USEPA 1995	
cis-1,3-Dichloropropene	300	USEPA 1995	
Cyclohexane	NSV		
Dibromochloromethane	NSV		
Dichlorodifluoromethane (Freon-12)	NSV		
Ethylbenzene	100	USEPA 1995	
Isopropylbenzene	NSV		
m- and p-Xylene	100	USEPA 1995	
Methyl acetate	NSV		
Methylcyclohexane	NSV		
Methylene chloride	300	USEPA 1995	
Methyl-tert-butyl ether (MTBE)	NSV		
o-Xylene	100	USEPA 1995	
Styrene	100	USEPA 1995	

TABLE 1
Ecological Surface Soil Screening Values
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Chemical	Screening Value and Source		
Tetrachloroethene	300	USEPA 1995	
Toluene	100	USEPA 1995	
Total Cresols	NSV		
trans-1,2-Dichloroethene	300	USEPA 1995	
trans-1,3-Dichloropropene	300	USEPA 1995	
Trichloroethene	300	USEPA 1995	
Trichlorofluoromethane (Freon-11)	16,400	USEPA 2003	
Vinyl chloride	300	USEPA 1995	

HMW PAHs - High molecular weight PAHs LMW PAHs - Low molecular weight PAHs

1 - Aroclor-1254 was used as a surrogate for all aroclors

TABLE 2
Surface Soil Data Used in the ERA
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Site	Sample ID	Depth (feet)	Date Collected
AOD	CBD-AOD-DP05	0-0.5	4/11/2018
	CBD-AOD-DP07	0-0.5	4/11/2018
	CBD-AOD-DP10	0-0.5	4/11/2018
	CBD-AOD-DP11*	0-0.5	4/11/2018
	CBD-AOD-DP12*	0-0.5	4/11/2018
	CBD-AOD-DP13	0-0.5	4/11/2018
	CBD-AOD-DP13*	0-0.5	4/11/2018
	CBD-AOD-DP18	0-0.5	4/11/2018
	CBD-AOD-DP19	0-0.5	4/11/2018
	CBD-AOD-DP21	0-0.5	4/11/2018
	CBD-AOD-DP25	0-0.5	4/11/2018
	CBD-AOD-SO01	0-0.5	10/15/2012
	CBD-AOD-SO01*	0-0.5	10/15/2012
	CBD-AOD-SO02	0-0.5	10/15/2012
	CBD-AOD-SO03	0-0.5	10/15/2012
	CBD-AOD-SO04	0-0.5	10/15/2012
Site 3	CBD-S03-DP01	0-0.5	10/17/2012
	CBD-S03-DP02	0-0.5	10/17/2012
	CBD-S03-DP03	0-0.5	10/17/2012
	CBD-S03-DP04	0-0.5	10/17/2012
	CBD-S03-DP05	0-0.5	10/17/2012
	CBD-S03-DP06	0-0.5	4/3/2018
	CBD-S03-DP07	0-0.5	4/3/2018
	CBD-S03-DP08	0-0.5	4/3/2018
	CBD-S03-DP09	0-0.5	4/3/2018
	CBD-S03-DP10	0-0.5	4/3/2018
	CBD-S03-DP11*	0-0.5	4/3/2018
	CBD-S03-DP12	0-0.5	4/4/2018
	CBD-S03-DP13	0-0.5	4/3/2018
	CBD-S03-DP14	0-0.5	4/4/2018
	CBD-S03-DP15	0-0.5	4/3/2018
Site 4	CBD-S04-DP01*	0-0.5	10/18/2012
	CBD-S04-DP02	0-0.5	10/18/2012
	CBD-S04-DP03	0-0.5	10/18/2012
	CBD-S04-DP04	0-0.5	10/18/2012
	CBD-S04-DP05	0-0.5	10/18/2012
	CBD-S04-S006	0-0.5	10/18/2012
	CBD-S04-DP07	0-0.5	4/5/2018
	CBD-S04-DP08	0-0.5	4/5/2018
	CBD-S04-DP09	0-0.5	4/4/2018
	CBD-S04-DP10	0-0.5	4/4/2018
	CBD-S04-DP11	0-0.5	4/5/2018

TABLE 2
Surface Soil Data Used in the ERA
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Site	Sample ID	Depth (feet) Date Collected
	CBD-S04-DP12	0-0.5	4/5/2018
	CBD-S04-DP13*	0-0.5	4/5/2018
	CBD-S04-DP14	0-0.5	4/5/2018
	CBD-S04-DP15	0-0.5	4/5/2018
	CBD-S04-DP16	0-0.5	4/5/2018
Site 5	CBD-S05-DP01*	0-0.5	10/18/2012
	CBD-S05-DP02	0-0.5	10/19/2012
	CBD-S05-DP03	0-0.5	10/18/2012
	CBD-S05-DP04	0-0.5	10/19/2012
	CBD-S05-DP05	0-0.5	10/19/2012
	CBD-S05-S006	0-0.5	10/19/2012
	CBD-S05-DP07	0-0.5	4/5/2018
	CBD-S05-DP08	0-0.5	4/5/2018
	CBD-S05-DP09	0-0.5	4/5/2018
	CBD-S05-DP10	0-0.5	4/5/2018
	CBD-S05-DP11	0-0.5	4/5/2018
	CBD-S05-DP12	0-0.5	4/5/2018
	CBD-S05-DP13*	0-0.5	4/5/2018
	CBD-S05-DP14	0-0.5	4/5/2018
	CBD-S05-DP15	0-0.5	4/5/2018
	CBD-S05-DP16	0-0.5	4/5/2018
	CBD-S05-SS17	0-0.5	4/6/2018
	CBD-S05-SS18*	0-0.5	4/6/2018
	CBD-S05-SS19	0-0.5	4/6/2018
	CBD-S05-SS20	0-0.5	4/6/2018
	CBD-S05-SS21	0-0.5	4/6/2018
	CBD-S05-SS22	0-0.5	4/6/2018
	CBD-S05-SS23	0-0.5	4/6/2018
Site 7	CBD-S07-DP01*	0-0.5	10/22/2012
	CBD-S07-DP02	0-0.5	10/22/2012
	CBD-S07-DP03	0-0.5	10/22/2012
	CBD-S07-DP04	0-0.5	10/22/2012
	CBD-S07-DP05	0-0.5	10/22/2012
	CBD-S07-DP06	0-0.5	10/22/2012
	CBD-S07-DP07	0-0.5	10/22/2012
	CBD-S07-DP08	0-0.5	10/22/2012
	CBD-S07-DP09	0-0.5	10/22/2012
	CBD-S07-DP20	0-0.5	4/3/2018
	CBD-S07-DP21*	0-0.5	4/3/2018
	CBD-S07-DP22	0-0.5	4/3/2018
	CBD-S07-DP23	0-0.5	4/3/2018
	CBD-S07-DP24	0-0.5	4/3/2018
	· - ·		, -,

TABLE 2
Surface Soil Data Used in the ERA
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Site	Sample ID	Depth (feet) Date Collected
	CBD-S07-DP25	0-0.5	4/3/2018
	CBD-S07-DP26	0-0.5	4/3/2018
	CBD-S07-DP27	0-0.5	4/4/2018
Site 9	CBD-S09-DP01*	0-0.5	10/12/2012
	CBD-S09-DP02	0-0.5	10/12/2012
	CBD-S09-DP03	0-0.5	10/12/2012
	CBD-S09-DP04	0-0.5	10/12/2012
	CBD-S09-DP05	0-0.5	4/4/2018
	CBD-S09-DP06*	0-0.5	4/4/2018
	CBD-S09-DP07	0-0.5	4/4/2018
	CBD-S09-DP08	0-0.5	4/4/2018
	CBD-S09-DP09	0-0.5	4/4/2018
	CBD-S09-DP10	0-0.5	4/4/2018

^{*} analytes with field duplicates.

TABLE 3
Hazard Quotients for Analytes in Surface Soil at Site 3
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu											
	Minimum	m		Maximu									
	Detection	Detection	Minimum	m					Maximum-based	EPC-based			
nalyte	Limit	Limit	Detection	Detection	EPC	EPC Basis	FOD	ESV	HQ	HQ	Background ³	COC?	Rationale
OA (UG/KG)													
,1,1-Trichloroethane	0.42	0.55			0.275	1/2 Max MDL	0 / 5	300	0.002	0.001		No	HQ(s) less than one
,1,2,2-Tetrachloroethane	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one
1,2-Trichloro-1,2,2-trifluoroethane (Freon-113	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
1,2-Trichloroethane	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one
1-Dichloroethane	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.000		No	HQ(s) less than one
1-Dichloroethene	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
2,3-Trichlorobenzene	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
2,4-Trichlorobenzene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.00		No	HQ(s) less than one
2-Dibromo-3-chloropropane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
2-Dibromoethane	0.42	0.55			0.275	1/2 Max MDL	0 5	5000	0.0001	0.0001		No	HQ(s) less than one
2-Dichlorobenzene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.00		No	HQ(s) less than one
2-Dichloroethane	0.42	0.55			0.275	1/2 Max MDL	0 5	870000	0.000001	0.000000		No	HQ(s) less than one
2-Dichloropropane	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one
3-Dichlorobenzene	0.21	0.28			0.14	1/2 Max MDL	0 5	NSV				No	Not detected
4-Dichlorobenzene	0.21	0.28			0.14	1/2 Max MDL	0 5	100	0.003	0.001		No	HQ(s) less than one
Butanone	0.55	1.7			0.85	1/2 Max MDL	0 5	NSV				No	Not detected
Hexanone	0.42	0.55			0.275	1/2 Max MDL	0 5	12600	0.00004	0.00002		No	HQ(s) less than one
Methyl-2-pentanone			0.44	3	1.72	Average	2 5	100000	0.00003	0.00002		No	HQ(s) less than one
etone			65	65	65	Average	1 5	NSV				No	Uncertainty
nzene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.00		No	HQ(s) less than one
omochloromethane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
omodichloromethane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	HQ(s) less than one
omoform	0.42	0.33			0.275	1/2 Max MDL	0 5	1147000	0.0000002	0.0000001		No	HQ(s) less than one
omomethane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
rbon disulfide	0.42	0.66			0.273	1/2 Max MDL	0 5	94.1	0.01	0.00	<u></u>	No	HQ(s) less than one
rbon tetrachloride	0.4	0.00			0.33	1/2 Max MDL	0 5	300	0.001	0.000		No	HQ(s) less than one
lorobenzene	0.21	0.28			0.14	1/2 Max MDL	0 5	100	0.001	0.000		No	HQ(s) less than one
lloroethane	0.21	0.28			0.14	1/2 Max MDL	0 5	NSV		0.001		No	Not detected
lloroform			0.14	0.14	0.273	·	1 5	300	0.0005	0.0005			HQ(s) less than one
loromethane	0.42	 0 FF				Average						No No	* *
	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV	0.001			No	Not detected
i-1,2-Dichloroethene	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.0005		No	HQ(s) less than one
s-1,3-Dichloropropene	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.0005		No	HQ(s) less than one
clohexane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
bromochloromethane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
chlorodifluoromethane (Freon-12)	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
hylbenzene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.003		No	HQ(s) less than one
ppropylbenzene	0.21	0.28			0.14	1/2 Max MDL	0 5	NSV				No	Not detected
and p-Xylene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.003		No	HQ(s) less than one
ethyl acetate	1.3	2.6			1.3	1/2 Max MDL	0 5	NSV				No	Not detected
ethylcyclohexane	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
ethylene chloride	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one
ethyl-tert-butyl ether (MTBE)	0.42	0.55			0.275	1/2 Max MDL	0 5	NSV				No	Not detected
Kylene	0.21	0.28			0.14	1/2 Max MDL	0 5	100	0.003	0.001		No	HQ(s) less than one
rene	0.21	0.28			0.14	1/2 Max MDL	0 5	100	0.003	0.001		No	HQ(s) less than one
trachloroethene	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one
luene	0.42	0.55			0.275	1/2 Max MDL	0 5	100	0.01	0.003		No	HQ(s) less than one
ans-1,2-Dichloroethene	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.0005		No	HQ(s) less than one
ans-1,3-Dichloropropene	0.42	0.55			0.275	1/2 Max MDL	0 5	300	0.002	0.001		No	HQ(s) less than one

TABLE 3
Hazard Quotients for Analytes in Surface Soil at Site 3
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum	Maximu m		Maximu									
	Detection	Detection	Minimum	m					Maximum-based	EPC-based			
nalyte	Limit	Limit	Detection		EPC	EPC Basis	FOD	ESV	HQ	HQ	Background ³	COC?	Rationale
richloroethene	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.0005		No	HQ(s) less than one
richlorofluoromethane (Freon-11)			0.28	0.28	0.28	Average	1 5	16400	0.00002	0.00002		No	HQ(s) less than one
inyl chloride	0.21	0.28			0.14	1/2 Max MDL	0 5	300	0.001	0.0005		No	HQ(s) less than one
/OA (UG/KG)						•							
1-Biphenyl	18	640			320	1/2 Max MDL	0 10	60000	0.0	0.01		No	Not detected
2,4,5-Tetrachlorobenzene	1.8	1.8			0.9	1/2 Max MDL	0 5	NSV				No	Not detected
2'-Oxybis(1-chloropropane)	3.6	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
3,4,6-Tetrachlorophenol	3.6	3.7			1.85	1/2 Max MDL	0 5	NSV				No	Not detected
1,5-Trichlorophenol	18	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
I,6-Trichlorophenol	3.6	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
I-Dichlorophenol	3.6	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
I-Dimethylphenol	36	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
-Dinitrophenol	180	2150			1075	1/2 Max MDL	0 10	100	22	11		No	Not detected
I-Dinitrotoluene	18	430			215	1/2 Max MDL	0 10	NSV				No	Not detected
5-Dinitrotoluene	3.6	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected Not detected
Chloronaphthalene	3.6	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected Not detected
Chlorophenol	3.6	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected Not detected
Methylnaphthalene	1.8	3			1.5	1/2 Max MDL	0 10	NSV				No	See Total LMW PAHs
Methylphenol	7.2	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
Vietnyiphenoi Vitroaniline	18	430			215	1/2 Max MDL	0 10	NSV		1.1			Not detected Not detected
litrophenol	3.6	215			107.5	1/2 Max MDL	0 10	NSV				No No	Not detected Not detected
•		370				·		NSV				_	
l'-Dichlorobenzidine	155				185	1/2 Max MDL	0 10					No	Not detected
Nitroaniline	36	430			215	1/2 Max MDL	0 10	NSV				No	Not detected
-Dinitro-2-methylphenol	18	2150			1075	1/2 Max MDL	0 10	NSV				No	Not detected
Bromophenyl-phenylether	1.8	430			215	1/2 Max MDL	0 10	NSV				No	Not detected
Chloro-3-methylphenol	7.2	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
Chloroaniline	18	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
Chlorophenyl-phenylether	1.8	430			215	1/2 Max MDL	0 10	NSV				No	Not detected
Methylphenol	3.6	3.7			1.85	1/2 Max MDL	0 5	100	0.04	0.02		No	HQ(s) less than one
Nitroaniline	36	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
litrophenol	36	430			215	1/2 Max MDL	0 10	100	4.3	2.2		No	Not detected
enaphthene			0.76	1.5	1.023333333	Average	3 10	NSV				No	See Total LMW PAHs
enaphthylene			0.69	12	4.83	Average	3 10	NSV				No	See Total LMW PAHs
etophenone	18	210			105	1/2 Max MDL	0 10	NSV				No	Not detected
thracene			2.6	13	7.8	Average	2 10	NSV				No	See Total LMW PAHs
razine	18	640			320	1/2 Max MDL	0 10	NSV				No	Not detected
nzo(a)anthracene			15	29	22	Average	2 10	NSV				No	See Total HMW PAH
nzo(a)pyrene			2.9	48	26.58333333	Average	6 10	NSV				No	See Total HMW PAH
nzo(b)fluoranthene			15	97	56.62	95% KM (t) UCL	3 10	NSV				No	See Total HMW PAH
nzo(g,h,i)perylene			9.1	42	23.36666667	Average	3 10	NSV				No	See Total HMW PAH
nzo(k)fluoranthene			13	30	21.5	Average	2 10	NSV				No	See Total HMW PAH
(2-Chloroethoxy)methane	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
(2-Chloroethyl)ether	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
(2-Ethylhexyl)phthalate	8.5	853			426.5	1/2 Max MDL	0 10	NSV				No	Not detected
tylbenzylphthalate	3.6	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
orolactam	18	5400			2700	1/2 Max MDL	0 10	NSV				No	Not detected
bazole	36	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
rysene			24	47	35.5	Average	2 10	NSV				No	See Total HMW PAH
benz(a,h)anthracene			3.7	10	6.16	Average	5 10	NSV				No	See Total HMW PAH

TABLE 3
Hazard Quotients for Analytes in Surface Soil at Site 3
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu											
	Minimum			Maximu									
		Detection							Maximum-based	EPC-based	3	-	
Analyte	Limit	Limit		Detection	EPC	EPC Basis	FOD	ESV	HQ	HQ		COC?	Rationale
Dibenzofuran	1.8	215			107.5	1/2 Max MDL	0 10					No	Not detected
Diethylphthalate	5.9	215			107.5	1/2 Max MDL	0 10	100000	0.00	0.00		No	HQ(s) less than one
Dimethyl phthalate	3.6	430			215	1/2 Max MDL	0 10		0.00	0.00		No	HQ(s) less than one
Di-n-butylphthalate	18	215			107.5	1/2 Max MDL	0 10	200000	0.001	0.001		No	HQ(s) less than one
Di-n-octylphthalate	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
luoranthene			29	52	40.5	Average	2 10	NSV				No	See Total HMW PAHs
luorene			1.1	2.1	1.466666667	Average	3 10	NSV				No	See Total LMW PAHs
lexachlorobenzene	1.8	215			107.5	1/2 Max MDL	0 10	1000000	0.0002	0.0001		No	HQ(s) less than one
lexachlorobutadiene	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
lexachlorocyclopentadiene	3.6	215			107.5	1/2 Max MDL	0 10	10000	0.0	0.0		No	Not detected
lexachloroethane	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
ndeno(1,2,3-cd)pyrene			10	51	30	Average	4 10	NSV				No	See Total HMW PAHs
sophorone	1.8	215			107.5	1/2 Max MDL	0 10	NSV				No	Not detected
laphthalene	1.8	3			1.5	1/2 Max MDL	0 10	NSV				No	See Total LMW PAHs
n-Nitroso-di-n-propylamine	3.6	215			107.5	1/2 Max MDL	0 10	NSV			1	No	Not detected
-Nitrosodiphenylamine	1.8	215			107.5	1/2 Max MDL	0 10	20000	0.0	0.0		No	Not detected
litrobenzene	1.8	215			107.5	1/2 Max MDL	0 10	40000	0.01	0.00		No	HQ(s) less than one
entachlorophenol	36	430			215	1/2 Max MDL	0 10	5000	0	0		No	Not detected
henanthrene			6.6	21	13.65	Average	4 10	NSV				No	See Total LMW PAHs
henol	3.6	215			107.5	1/2 Max MDL	0 10	100	2.2	1.1		No	Not detected
yrene			3.4	68	30.06	Average	5 10	NSV				No	See Total HMW PAHs
otal cresols	155	215			107.5	1/2 Max MDL	0 5	NSV			1	No	Not detected
ow Molecular Weight PAHs ¹			0.69	40.91	18.29	95% KM (t) UCL2		29000	0.001	0.001		No	HQ(s) less than one
High Molecular Weight PAHs ²			0	447	181.10	95% KM (t) UCL ²		1,100	0.41	0.16		No	HQ(s) less than one
PEST/PCB (UG/KG)			0	447	101.10	95% KIVI (t) OCL	0	1,100	0.41	0.10		NO	riq(s) less than one
1,4'-DDD	0.13	0.299			0.1495	1/2 Max MDL	0 8	100	0.0	0.0	1	No	Not detected
,,			2.73	13.5	5.602	95% KM (t) UCL	3 9	100	0.1	0.1		No	HQ(s) less than one
1,4'-DDT	0.26	0.599			0.2995	1/2 Max MDL	0 8	100	0.0	0.0		No	Not detected
Aldrin	0.13	0.299			0.1495	1/2 Max MDL	0 8	100	0.0	0.0		No	Not detected
ilpha-BHC	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No	Not detected
alpha-Chlordane	0.13	0.299			0.1495	1/2 Max MDL	0 8	2.2	0.14	0.07		No	HQ(s) less than one
Aroclor-1016	6.6	290			145	1/2 Max MDL	0 10		1.8	0.9		No	Not detected
Aroclor-1221	6.6	290			145	1/2 Max MDL	0 10		1.8	0.9		No	Not detected
Aroclor-1232	6.6	290			145	1/2 Max MDL	0 10		1.8	0.9		No	Not detected Not detected
Aroclor-1242	6.6	290			145	1/2 Max MDL	0 10		1.8	0.9		No	Not detected Not detected
Aroclor-1242	6.6	290			145	1/2 Max MDL	0 10		1.8	0.9		No	Not detected Not detected
Aroclor-1248 Aroclor-1254	6.6	290				1/2 Max MDL	0 10		1.8				Not detected Not detected
Aroclor-1254			 //1	 5500	145 3248	95% Adjusted Gamma UCL	10 10		1.8 34	0.9		No Voc	
Aroclor-1260 Aroclor-1262	 1 <i>1</i>	290	41			1/2 Max MDL	0 5			20		Yes	HQ(s) greater than or Not detected
	14				145 145	•		160 160	1.8	0.9		No No	Not detected Not detected
roclor-1268	14	290			145	1/2 Max MDL	0 5	160	1.8	0.9		No No	
eta-BHC	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No	Not detected
elta-BHC	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No No	Not detected
vieldrin	0.13	0.299			0.1495	1/2 Max MDL	0 8	100	0.0	0.0		No	Not detected
ndosulfan I	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No	Not detected
ndosulfan II	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No	Not detected
indosulfan sulfate	0.26	0.599			0.2995	1/2 Max MDL	0 8	NSV				No	Not detected
indrin	0.13	0.299			0.1495	1/2 Max MDL	0 8	100	0.0	0.0		No	Not detected
Endrin aldehyde	0.13	0.299			0.1495	1/2 Max MDL	0 8	NSV				No	Not detected
Endrin ketone	0.26	0.599			0.2995	1/2 Max MDL	0 8	NSV				No	Not detected

TABLE 3
Hazard Quotients for Analytes in Surface Soil at Site 3
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu												
	Minimum	m		Maximu										
	Detection	Detection	Minimum	m						Maximum-based	EPC-based			
Analyte	Limit	Limit	Detection	Detection	EPC	EPC Basis	FC	OD	ESV	HQ	HQ	Background ³	COC?	Rationale
gamma-BHC (Lindane)	0.13	0.299			0.1495	1/2 Max MDL	0	8	100	0.0	0.0		No	Not detected
Heptachlor	0.13	0.299			0.1495	1/2 Max MDL	0	8	400	0.00	0.00		No	HQ(s) less than one
Heptachlor epoxide	0.13	0.299			0.1495	1/2 Max MDL	0	8	100	0.0	0.0		No	Not detected
Methoxychlor	0.26	0.599			0.2995	1/2 Max MDL	0	8	100	0.0	0.0		No	Not detected
Toxaphene	13	29.9			14.95	1/2 Max MDL	0	8	NSV				No	Not detected
METAL (MG/KG)														
Aluminum			4500	7900	6160	Average	10	10	NSV			9340	No	Consistent with background
Antimony			0.076	0.9	0.2476	Average	10	10	5	0.18	0.05		No	HQ(s) less than one
Arsenic			1.2	14	3.68	Average	10	10	6.8	2.06	0.54	6.24	No	EPC-based HQ less than one
Barium			9.8	44	31.28	Average	10	10	110	0.40	0.28	105	No	HQ(s) less than one
Beryllium			0.24	0.64	0.41	Average	10	10	2.5	0.26	0.16	1.04	No	HQ(s) less than one
Cadmium			0.055	1.7	0.3366	Average	10	10	32	0.05	0.01	1.09	No	HQ(s) less than one
Calcium			180	780000	78757.6	Average	10	10	NSV			3560	No	Macronutrient
Chromium (hexavalent)			0.15	0.15	0.15	Average	1	1	0.4	0.38	0.38		No	HQ(s) less than one
Chromium			6.2	16	12.31	95% Student's-t UCL	10	10	10	2	1	27.3	No	Consistent with background
Cobalt			1.4	3.9	2.51	Average	10	10	13	0.30	0.19	5.41	No	HQ(s) less than one
Copper			1.9	16	5.46	Average	10	10	70	0.23	0.08	43.6	No	HQ(s) less than one
Cyanide			0.043	0.043	0.043	Average	1	5	1	0.04	0.04		No	HQ(s) less than one
Iron			5600	10000	8270	Average	10	10	NSV			17300	No	Consistent with background
Lead			2.9	95	18.63	Average	10	10	120	0.79	0.16	95.8	No	HQ(s) less than one
Magnesium			480	797000	80359.3	Average	10	10	NSV			1830	No	Macronutrient
Manganese			20	160	96.4	Average	10	10	220	0.73	0.44	208	No	HQ(s) less than one
Mercury			0.0078	0.012	0.010075	Average	4	10	0.05	0.24	0.20	0.99	No	HQ(s) less than one
Nickel			2.3	10	6.68	Average	10	10	38	0.26	0.18	15.1	No	HQ(s) less than one
Potassium			250	577000	58075.5	Average	10	10	NSV			986	No	Macronutrient
Selenium			0.25	1.3	0.916	95% KM (t) UCL	9	10	0.52	2.5	1.8	2.76	No	Consistent with background
Silver			0.024	0.16	0.074333333	Average	9	10	560	0.0003	0.0001	8.7	No	HQ(s) less than one
Sodium			14.1	379000	94809.125	Average	4	10	NSV				No	Macronutrient
Thallium			0.08	0.24	0.207	95% Student's-t UCL	10	10	0.05	5	4	0.441	No	Consistent with background
Vanadium			8.2	18	14.56	95% Student's-t UCL	10	10	60	0	0	26.1	No	Consistent with background
Zinc			29	70	42.875	Average	8	10	120	0.58	0.36	142	No	HQ(s) less than one

COC - Contaminant of concern

EPC - Exposure point concentration

ESV - Ecological screening value

FOD - Frequency of detection

HQ - Hazard quotient

MDL - Method detection limit

NSV - No screening value

1 - Low Molecular Weight PAHs were assumed to include 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene

2 - High Molecular Weight PAHs were assumed to include benzo(a)anthracene, benzo(b)fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene

TABLE 4
Hazard Quotients for Analytes in Surface Soil at Site 4
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum	Maximu	•	Maxin	mii				Maximu				
	Detection		n Mini		IIU				m-based	EPC-	Background	l	
nalyte	Limit	Limit		ection Detect	ion EPC	EPC Basis	FOD	ESV	HQ	based HQ	3	COC?	Rationale
OA (UG/KG)						2 - 3 - 3 - 3							
,1,1-Trichloroethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	300	0.002	0.001		No	HQ(s) less than one
,1,2,2-Tetrachloroethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	300	0.002	0.001		No	HQ(s) less than one
1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
1,2-Trichloroethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	300	0.002	0.001		No	HQ(s) less than one
1-Dichloroethane	0.21	0.29			0.145	1/2 Max MDL	0 / 6	300	0.001	0.0005		No	HQ(s) less than one
1-Dichloroethene	0.42	0.57			0.285	1/2 Max MDL	0 / 6					No	Not detected
2,3-Trichlorobenzene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
,4-Trichlorobenzene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	100	0.01	0.003		No	HQ(s) less than one
2-Dibromo-3-chloropropane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
2-Dibromoethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	5000	0.0001	0.00006		No	HQ(s) less than one
2-Dichlorobenzene	0.42	0.57			0.285	1/2 Max MDL	0 / 6		0.006	0.003		No	HQ(s) less than one
2-Dichloroethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6		7E-07	3E-07		No	HQ(s) less than one
2-Dichloropropane	0.42	0.57			0.285	1/2 Max MDL	0 / 6		0.002	0.001		No	HQ(s) less than one
3-Dichlorobenzene	0.42	0.29			0.145	1/2 Max MDL	0 / 6	NSV				No	Not detected
I-Dichlorobenzene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	100	0.003	0.001		No	HQ(s) less than one
Butanone	0.42	3.80			1.9	1/2 Max MDL	0 / 6	NSV		0.001		No	Not detected
Hexanone	0.42	0.57			0.285	1/2 Max MDL	0 / 6	12600	5E-05	2E-05		No	HQ(s) less than one
Methyl-2-pentanone	0.42	0.57			0.285	1/2 Max MDL	0 / 6	100000	6E-06	3E-06		No	HQ(s) less than one
etone					100 61.66667	Average	6 / 6	NSV		JL 00		No	Uncertainty
nzene					0.18 0.18	Maximum	1/6	100	0.002	0.002		No	HQ(s) less than one
omochloromethane	0.42	0.57		0.10 0	0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
omodichloromethane	0.42	0.57			0.285	1/2 Max MDL		NSV				No	HQ(s) less than one
moform	0.42	0.37			0.285	1/2 Max MDL			 3E-07	 1E-07			HQ(s) less than one
omomethane						-						No No	Not detected
	0.42	0.57			0.285	1/2 Max MDL 1/2 Max MDL	•	NSV	0.007	0.003		No	
rbon disulfide	0.33	0.63			0.315	•	0 / 6	94.1	0.007	0.003		No	HQ(s) less than one
rbon tetrachloride	0.21	0.29			0.145	1/2 Max MDL	0 / 6		0.001	0.0005		No	HQ(s) less than one
orobenzene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	100	0.003	0.001		No	HQ(s) less than one
loroethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
loroform	0.17	0.26			0.13	1/2 Max MDL	0 / 6		0.0009	0.0004		No	HQ(s) less than one
loromethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
-1,2-Dichloroethene	0.21	0.29			0.145	1/2 Max MDL	0 / 6		0.001	0.0005		No	HQ(s) less than one
s-1,3-Dichloropropene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	300	0.001	0.0005		No	HQ(s) less than one
clohexane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
bromochloromethane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
chlorodifluoromethane (Freon-12)	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
hylbenzene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	100	0.01	0.003		No	HQ(s) less than one
ppropylbenzene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	NSV				No	Not detected
and p-Xylene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	100	0.0057	0.00285		No	HQ(s) less than one
ethyl acetate	1.30	6.30			3.15	1/2 Max MDL	0 / 6	NSV				No	Not detected
ethylcyclohexane	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
thylene chloride	0.43	3.70			1.85	1/2 Max MDL	0 / 6		0.01	0.006		No	HQ(s) less than one
ethyl-tert-butyl ether (MTBE)	0.42	0.57			0.285	1/2 Max MDL	0 / 6	NSV				No	Not detected
Xylene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	100	0.0029	0.00145		No	HQ(s) less than one
yrene	0.21	0.29			0.145	1/2 Max MDL	0 / 6		0.003	0.001		No	HQ(s) less than one
etrachloroethene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	300	0.002	0.001		No	HQ(s) less than one
bluene				0.2	0.2 0.2	Maximum	1/6		0.002	0.002		No	HQ(s) less than one
ans-1,2-Dichloroethene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	300	0.001	0.0005		No	HQ(s) less than one
ans-1,3-Dichloropropene	0.42	0.57			0.285	1/2 Max MDL	0 / 6	300	0.002	0.001		No	HQ(s) less than one

TABLE 4
Hazard Quotients for Analytes in Surface Soil at Site 4
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu											
	Minimum			Maxi					Maximu		Doctor - L		
		Detection							m-based	EPC-	Background	-	
Analyte	Limit	Limit	Detectio	n Detec		EPC Basis	FOD	ESV	HQ	based HQ		COC?	Rationale
richloroethene	0.21	0.29			0.145	1/2 Max MDL	0 / 6	300	0.001	0.0005		No	HQ(s) less than one
richlorofluoromethane (Freon-11)			0.2	6 (0.26 0.26	Maximum	1 / 6	16400	2E-05	2E-05		No	HQ(s) less than one
/inyl chloride	0.21	0.29			0.145	1/2 Max MDL	0 / 6	300	0.001	0.0005		No	HQ(s) less than one
VOA (UG/KG)							0						
,1-Biphenyl			1	3	13 13	Maximum	1 / 11	60000	0.0002	0.0002		No	HQ(s) less than one
,2,4,5-Tetrachlorobenzene	1.80				0.95	1/2 Max MDL	0 / 6	NSV				No	Not detected
,2'-Oxybis(1-chloropropane)	3.50				123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
,3,4,6-Tetrachlorophenol	3.50	0.00			1.9	1/2 Max MDL	0 / 6	NSV				No	Not detected
4,5-Trichlorophenol	18.00	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
4,6-Trichlorophenol	3.50	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
4-Dichlorophenol	3.50	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
4-Dimethylphenol	35.00	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
4-Dinitrophenol	180.00	2470.00			1235	1/2 Max MDL	0 / 11	100	25	12		No	Not detected
4-Dinitrotoluene	18.00	494.00			247	1/2 Max MDL	0 / 11	NSV				No	Not detected
,6-Dinitrotoluene	3.50	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
Chloronaphthalene	3.50	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
Chlorophenol	3.50	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
Methylnaphthalene			3	2	32 32	Maximum	1 / 11	NSV				No	See Total LMW PAHs
Methylphenol	7.00	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
Nitroaniline	18.00	494.00			247	1/2 Max MDL	0 / 11	NSV				No	Not detected
Nitrophenol	3.50	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
3'-Dichlorobenzidine	141.00	380.00			190	1/2 Max MDL	0 / 11	NSV				No	Not detected
Nitroaniline	35.00	490.00			245	1/2 Max MDL	0 / 11	NSV				No	Not detected
6-Dinitro-2-methylphenol			2	3	23 23	Maximum	1 / 11	NSV				No	Uncertainty
Bromophenyl-phenylether	1.80	494.00			247	1/2 Max MDL	0 / 11	NSV				No	Not detected
Chloro-3-methylphenol	7.00	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
Chloroaniline	18.00	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
-Chlorophenyl-phenylether	1.80				247	1/2 Max MDL	0 / 11	NSV				No	Not detected
-Methylphenol	3.50				1.9	1/2 Max MDL	0 / 6	100	0.04	0.02		No	HQ(s) less than one
Nitroaniline	35.00	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
Nitrophenol	35.00				245	1/2 Max MDL	0 / 11	100	5	2		No	Not detected
cenaphthene			0.5		310 54.505	Average	6 / 11	NSV				No	See Total LMW PAHs
cenaphthylene			0.5		4.5 2.232	Average	5 / 11	NSV				No	See Total LMW PAHs
cetophenone	18.00	250.00			125	1/2 Max MDL	0 / 11	NSV				No	Not detected
nthracene	16.00		1.		580 89.7	Average	7 / 11	NSV				No	See Total LMW PAHs
trazine	18.00	740.00			370	1/2 Max MDL	0 / 11	NSV				No	Not detected
enzaldehyde	420.00				370 370	1/2 Max MDL	0 / 11	NSV				No	Not detected Not detected
enzaldenyde enzo(a)anthracene	420.00	740.00	1.		370 3100 430.7625	•	8 / 11	NSV				No	See Total HMW PAHs
			1.		3500 430.7623 3500 553.7143	Average		NSV					See Total HMW PAHs
enzo(a)pyrene			4		3500 553.7143 3900 639.2857	Average	7 / 11 7 / 11	NSV				No No	See Total HMW PAHS
enzo(b)fluoranthene						Average	7 / 11					No No	
enzo(g,h,i)perylene			1		800 131.4375	Average	8 / 11	NSV				No	See Total HMW PAHs
enzo(k)fluoranthene	1.00	247.00	5.		730 135.3286	J	7 / 11	NSV				No	See Total HMW PAHs
s(2-Chloroethoxy)methane	1.80	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
s(2-Chloroethyl)ether	1.80	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
s(2-Ethylhexyl)phthalate	5.00	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
utylbenzylphthalate	3.50	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
aprolactam	18.00	6200.00			3100	1/2 Max MDL	0 / 11	NSV				No	Not detected
arbazole			38		380 380	Maximum	1 / 11	NSV				No	Uncertainty
hrysene			1.	5 2	2600 372.0625	Average	8 / 11	NSV				No	See Total HMW PAHs

TABLE 4
Hazard Quotients for Analytes in Surface Soil at Site 4
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu											
	Minimum	m		Maximu					Maximu				
	Detection			m					m-based	EPC-	Background 3		
nalyte	Limit	Limit	Detection [EPC	EPC Basis	FOD	ESV	HQ	based HQ	3	COC?	Rationale
ibenz(a,h)anthracene			3.8		47.53333	Average	6 / 11	NSV				No	See Total HMW PAHs
ibenzofuran			2.2	170	58.36667	Average	3 / 11	NSV				No	Uncertainty
iethylphthalate	3.10	247.00		-	123.5	1/2 Max MDL	0 / 11	100000	0.002	0.001		No	HQ(s) less than one
imethyl phthalate			2.3	2.3	2.3	Maximum	1 / 11	200000	1E-05	1E-05		No	HQ(s) less than one
i-n-butylphthalate	18.00	247.00		-	123.5	1/2 Max MDL	0 / 11	200000	0.001	0.0006		No	HQ(s) less than one
i-n-octylphthalate	1.80	247.00		-	123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
uoranthene			1.2	4800	592.9222	Average	9 / 11	NSV				No	See Total HMW PAHs
uorene			3.2	210	55.125	Average	4 / 11	NSV				No	See Total LMW PAHs
exachlorobenzene	1.80	247.00			123.5	1/2 Max MDL	0 / 11	1000000	0.0002	0.0001		No	HQ(s) less than one
exachlorobutadiene	1.80	247.00		-	123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
exachlorocyclopentadiene	3.50	247.00			123.5	1/2 Max MDL	0 / 11	10000	0.02	0.01		No	Not detected
exachloroethane	1.80	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
deno(1,2,3-cd)pyrene			6.7	830	158.8143	Average	7 / 11	NSV				No	See Total HMW PAHs
ophorone	1.80	247.00			123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
aphthalene			1.1	84	29.1	Average	3 / 11	NSV				No	See Total LMW PAHs
Nitroso-di-n-propylamine	3.50				123.5	1/2 Max MDL	0 / 11	NSV				No	Not detected
Nitroso-di-n-propylamine Nitrosodiphenylamine	1.80	247.00			123.5	1/2 Max MDL	0 / 11	20000	0.01	0.006			EPC-based HQ less than one
trobenzene trobenzene	1.80				123.5	1/2 Max MDL	0 / 11	40000	0.006	0.006		No No	HQ(s) less than one
						-	-					No	• •
ntachlorophenol	35.00	13 1100			247	1/2 Max MDL	0 / 11	5000	0.1	0.05		No	Not detected
enanthrene			1.2	3500	413.3667	Average	9 / 11	NSV				No	See Total LMW PAHs
enol	3.50	247.00			123.5	1/2 Max MDL	0 / 11	100	2	1		No	Not detected
rene			2.3	4500	622.6625	Average	8 / 11	NSV				No	See Total HMW PAHs
etal cresols	141.00	247.00		-	123.5	1/2 Max MDL	0 / 5	NSV				No	Not detected
w Molecular Weight PAHs ¹			1.2	4719.4	558.5	Average	/	29000	0.2	0.02		No	HQ(s) less than one
igh Molecular Weight PAHs ²			1.2	24990	3165.2	Average	/	1,100	23	3		No	See text for discussion
EST/PCB (UG/KG)							0						
4'-DDD	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
1'-DDE			0.188	0.519	0.3535	Average	2 / 10	100	0.005	0.004		No	HQ(s) less than one
4'-DDT	0.26	0.47			0.2355	1/2 Max MDL	0 / 10	100	0.005	0.002		No	Not detected
drin	0.13	0.24			0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
pha-BHC	0.13			_	0.118	1/2 Max MDL	0 / 10	NSV				No	Not detected
pha-Chlordane	0.13				0.118	1/2 Max MDL	0 / 10	2.2	0.1	0.05		No	HQ(s) less than one
coclor-1016	6.50				7.5	1/2 Max MDL	0 / 10	160	0.09	0.05		No	HQ(s) less than one
coclor-1221	6.50				7.5 7.5	1/2 Max MDL	0 / 11	160	0.09	0.05			HQ(s) less than one
oclor-1221 oclor-1232	6.50					1/2 Max MDL	0 / 11	160	0.09	0.05		No No	
					7.5	-	-					No No	HQ(s) less than one
roclor-1242	6.50				7.5	1/2 Max MDL	0 / 11	160	0.09	0.05		No	HQ(s) less than one
oclor-1248	6.50				7.5	1/2 Max MDL	0 / 11	160	0.09	0.05		No	HQ(s) less than one
oclor-1254	6.50				7.5	1/2 Max MDL	0 / 11	160	0.09	0.05		No	HQ(s) less than one
oclor-1260			7.2	260	77.05	Average	4 / 11	160	2	0.5		No	EPC-based HQ less than one
oclor-1262	14.00			-	7.5	1/2 Max MDL	0 / 6	160	0.09	0.05		No	HQ(s) less than one
oclor-1268	14.00			-	7.5	1/2 Max MDL	0 / 6	160	0.09	0.05		No	HQ(s) less than one
ta-BHC	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	NSV				No	Not detected
Ita-BHC	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	NSV				No	Not detected
eldrin	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
dosulfan I	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	NSV				No	Not detected
ndosulfan II	0.13	0.24			0.118	1/2 Max MDL	0 / 10	NSV				No	Not detected
dosulfan sulfate	0.26	0.47			0.2355	1/2 Max MDL	0 / 10	NSV				No	Not detected
ndrin	0.13				0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
ndrin aldehyde	0.13	0.24			0.118	1/2 Max MDL	0 / 10	NSV	3.00=			No	Not detected

TABLE 4
Hazard Quotients for Analytes in Surface Soil at Site 4
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximu	ļ										
	Minimum	m		Maximu					Maximu				
	Detection	Detection	n Minimum	m					m-based	EPC-	Background	d	
Analyte	Limit	Limit	Detection D	Detection	EPC	EPC Basis	FOD	ESV	HQ	based HQ	3	COC?	Rationale
Endrin ketone	0.26	0.47		-	0.2355	1/2 Max MDL	0 / 10	NSV				No	Not detected
gamma-BHC (Lindane)	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
Heptachlor	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	400	0.001	0.0003		No	HQ(s) less than one
Heptachlor epoxide	0.13	0.24		-	0.118	1/2 Max MDL	0 / 10	100	0.002	0.001		No	Not detected
Methoxychlor	0.26	0.47		-	0.2355	1/2 Max MDL	0 / 10	100	0.005	0.002		No	Not detected
Toxaphene	13.00	23.60		-	11.8	1/2 Max MDL	0 / 10	NSV				No	Not detected
METAL (MG/KG)													
Aluminum			4400	21000	9172.727	Average	11 / 11	NSV			16800	No	Only one detection exceeds background
Antimony			0.084	2.1	0.538	Average	8 / 11	5	0.4	0.1		No	HQ(s) less than one
Arsenic			2.2	8.3	4.509091	Average	11 / 11	6.8	1	0.7	9.95	No	EPC-based HQ less than one
Barium			6.3	85	29.84545	Average	11 / 11	110	8.0	0.3	67	No	HQ(s) less than one
Beryllium			0.23	0.8	0.448182	Average	11 / 11	2.5	0.3	0.2	0.759	No	HQ(s) less than one
Cadmium			0.044	0.32	0.155714	Average	7 / 11	32	0.01	0.005	1.57	No	HQ(s) less than one
Calcium			210	893	483.8182	Average	11 / 11	NSV			3030	No	Consistent with background
Chromium (hexavalent)			0.05	0.35	0.155	Average	4 / 4	0.4	0.9	0.4		No	HQ(s) less than one
Chromium			7.8	32	14.65455	Average	11 / 11	10	3	1	42	No	Consistent with background
Cobalt			0.55	4	1.98	Average	11 / 11	13	0.3	0.2	4.8	No	HQ(s) less than one
Copper			2.8	46	9.845455	Average	11 / 11	70	0.7	0.1	21.3	No	HQ(s) less than one
Cyanide			0.026	0.026	0.026	Maximum	1/6	1	0.03	0.03		No	HQ(s) less than one
Iron			7600	37000	14854.55	Average	11 / 11	NSV			71300	No	Consistent with background
Lead			3.2	160	30.47273	Average	11 / 11	120	1	0.3	61.8	No	EPC-based HQ less than one
Magnesium			490	1670	897.2727	Average	11 / 11	NSV			1210	No	Macronutrient
Manganese			6.4	120	52.49091	Average	11 / 11	220	0.5	0.2	331	No	HQ(s) less than one
Mercury			0.0064	0.18	0.064067	Average	6 / 11	0.05	4	1	0.11	No	Low magnitude of exceedance
Nickel			0.99	11	4.399091	Average	11 / 11	38	0.3	0.1	10.1	No	HQ(s) less than one
Potassium			350	1180	609.3636	Average	11 / 11	NSV			1280	No	Consistent with background
Selenium			0.22	1.3	0.701818	Average	11 / 11	0.52	3	1	2.41	No	Consistent with background
Silver			0.033	1.6	0.41325	Average	8 / 11	560	0.003	0.0007	0.143	No	HQ(s) less than one
Sodium			18.9	18.9	18.9	Maximum	1 / 11	NSV				No	Macronutrient
Thallium			0.065	0.27	0.152182	Average	11 / 11	0.05	5	3	0.328	No	Consistent with background
Vanadium			14	32	20.36364	Average	11 / 11	60	0.5	0.3	42.8	No	Consistent with background
Zinc			15	170	49.28571	Average	7 / 11	120	1	0.4	65.6	No	EPC-based HQ less than one

COC - Contaminant of concern

EPC - Exposure point concentration

ESV - Ecological screening value

FOD - Frequency of detection

HQ - Hazard quotient MDL - Method detection limit

TABLE 5
Hazard Quotients for Analytes in Surface Soil at Site 5
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximum		nimum Ma	vim						Mavimus	EPC-	Background		
Analyte	Limit	Limit		ection Det	-	EPC	EPC Basis	FOD		ESV	Maximum	based HQ	3	COC?	Rationale
VOA (UG/KG)	Lillit	Lilling	Det	ection Det	ection	LFC	LFC Dasis	100		LJV	baseu riq	baseu riq		coc:	Nationale
1,1,1-Trichloroethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	300	0.002	0.001		No	HQ(s) less than one
1,1,2,2-Tetrachloroethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	300	0.002	0.001		No	HQ(s) less than one
1,1,2-Trichloro-1,2,2-trifluoroeth		0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
L,1,2-Trichloroethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	300	0.002	0.001		No	HQ(s) less than one
1,1-Dichloroethane	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
.,1-Dichloroethene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
1,2,3-Trichlorobenzene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
.,2,4-Trichlorobenzene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	100	0.007	0.003		No	HQ(s) less than one
.,2-Dibromo-3-chloropropane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV		0.003		No	Not detected
.,2-Dibromoethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	5000	0.0001	0.00007		No	HQ(s) less than one
.,2-Dichlorobenzene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	100	0.0001	0.00007		No	HQ(s) less than one
1,2-Dichloroethane	0.47	0.67				0.335	1/2 Max MDL	•	-	870000	8E-07	4E-07			HQ(s) less than one
.,2-Dichloroethane .,2-Dichloropropane	0.47	0.67				0.335	1/2 Max MDL	0 / 0 /	6	300	0.002	0.001		No No	HQ(s) less than one
L,3-Dichloropropane	0.47	0.87				0.335	1/2 Max MDL	•	6	NSV				No	Not detected
		0.33						0 /			0.002	0.002		No	
1,4-Dichlorobenzene	0.23					0.165	1/2 Max MDL	0 /	6	100	0.003	0.002		No	HQ(s) less than one
2-Butanone	2.90	9.90				4.95	1/2 Max MDL	0 /	6	NSV		 25 05		No	Not detected
-Hexanone	0.47	0.67				0.335	1/2 Max MDL	0 /	6	12600	5E-05	3E-05		No	HQ(s) less than one
-Methyl-2-pentanone	0.47	0.67			400	0.335	1/2 Max MDL	0 /	6	100000	7E-06	3E-06		No	HQ(s) less than one
Acetone				98	400	178	Average	6 /	6	NSV				No	Uncertainty
Benzene				0.32	0.32	0.32	Average	1 /	6	100	0.003	0.003		No	HQ(s) less than one
Bromochloromethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Bromodichloromethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Bromoform	0.23	0.33				0.165	1/2 Max MDL	0 /	6	1147000	3E-07	1E-07		No	HQ(s) less than one
Bromomethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Carbon disulfide	0.38	0.70				0.35	1/2 Max MDL	0 /	6	94.1	0.007	0.004		No	HQ(s) less than one
Carbon tetrachloride	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
Chlorobenzene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	100	0.003	0.002		No	HQ(s) less than one
Chloroethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Chloroform	0.14	0.32				0.16	1/2 Max MDL	0 /	6	300	0.001	0.0005		No	HQ(s) less than one
Chloromethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
cis-1,2-Dichloroethene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
is-1,3-Dichloropropene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
Cyclohexane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Dibromochloromethane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Dichlorodifluoromethane (Freon-	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
thylbenzene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	100	0.0067	0.00335		No	HQ(s) less than one
sopropylbenzene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	NSV				No	Not detected
n- and p-Xylene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	100	0.0067	0.00335		No	HQ(s) less than one
Methyl acetate				31	31	31	Average	1 /	5	NSV				No	Uncertainty
Methylcyclohexane	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
Nethylene chloride	0.47	1.40				0.7	1/2 Max MDL	0 /	6	300	0.005	0.002		No	HQ(s) less than one
леthyl-tert-butyl ether (МТВЕ)	0.47	0.67				0.335	1/2 Max MDL	0 /	6	NSV				No	Not detected
p-Xylene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	100	0.0033	0.00165		No	HQ(s) less than one
Styrene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	100	0.003	0.002		No	HQ(s) less than one

TABLE 5
Hazard Quotients for Analytes in Surface Soil at Site 5
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Detection	Detection									Maximum-	EPC-	Background		
Analyte	Limit	Limit	Detec	tion Dete	ction	EPC	EPC Basis	FO)	ESV	based HQ		3	COC?	Rationale
etrachloroethene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	300	0.002	0.001		No	HQ(s) less than one
oluene				0.24	1.8	0.881667	Average	6 /	6	100	0.02	0.009		No	HQ(s) less than one
rans-1,2-Dichloroethene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
rans-1,3-Dichloropropene	0.47	0.67				0.335	1/2 Max MDL	0 /	6	300	0.002	0.001		No	HQ(s) less than one
richloroethene	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.001		No	HQ(s) less than one
richlorofluoromethane (Freon-1				0.26	0.26	0.26	Average	1 /	6	16400	2E-05	2E-05		No	HQ(s) less than one
'inyl chloride	0.23	0.33				0.165	1/2 Max MDL	0 /	6	300	0.001	0.0006		No	HQ(s) less than one
VOA (UG/KG)								0							
,1-Biphenyl	18.00	1000.00				500	1/2 Max MDL	0 /	18	60000	0.02	0.008		No	HQ(s) less than one
2,4,5-Tetrachlorobenzene	1.80	100.00				50	1/2 Max MDL	0 /	6	NSV				No	Not detected
2'-Oxybis(1-chloropropane)	3.50	308.00				154	1/2 Max MDL	0 /	18	NSV				No	Not detected
3,4,6-Tetrachlorophenol	3.50	200.00				100	1/2 Max MDL	0 /	6	NSV				No	Not detected
4,5-Trichlorophenol	18.00	1000.00				500	1/2 Max MDL	0 /	18	100	10	5		No	Not detected
,4,6-Trichlorophenol	3.50	308.00				154	1/2 Max MDL	0 /	18	100	3	2		No	Not detected
4-Dichlorophenol	3.50	308.00				154	1/2 Max MDL	0 /	18	100	3	2		No	Not detected
,4-Dimethylphenol	35.00	2000.00				1000	1/2 Max MDL	0 /	18	100	20	10		No	Not detected
4-Dinitrophenol	180.00	10000.00				5000	1/2 Max MDL	0 /	18	100	100	50		No	Not detected
4-Dinitrotoluene	18.00	1000.00				500	1/2 Max MDL	0 /	18	NSV				No	Not detected
6-Dinitrotoluene	3.50	308.00				154	1/2 Max MDL	0 /	18	NSV				No	Not detected
Chloronaphthalene	3.50	308.00				154	1/2 Max MDL	0 /	18	NSV				No	Not detected
Chlorophenol	3.50	308.00				154	1/2 Max MDL	0 /	18	100	3	2		No	Not detected
Methylnaphthalene				13	330	134	Average	3 /	18	NSV				No	See total LMW PAHs
Methylphenol	6.90	400.00				200	1/2 Max MDL	0 /	18	100	4	2		No	Not detected
Nitroaniline	18.00	1000.00				500	1/2 Max MDL	0 /	18	NSV				No	Not detected
Nitrophenol	3.50	308.00				154	1/2 Max MDL	0 /	18	NSV				No	Not detected
.3'-Dichlorobenzidine	127.00	20000.00				10000	1/2 Max MDL	0 /	18	NSV				No	Not detected
Nitroaniline	35.00	2000.00				1000	1/2 Max MDL	0 /	18	NSV				No	Not detected
6-Dinitro-2-methylphenol	18.00	3080.00				1540	1/2 Max MDL	0 /	18	NSV				No	Not detected
Bromophenyl-phenylether	1.80	615.00				307.5	1/2 Max MDL	0 /	18	NSV				No	Not detected
Chloro-3-methylphenol	6.90	400.00				200	1/2 Max MDL	0 /	18	NSV				No	Not detected
-Chloroaniline	18.00	1000.00				500	1/2 Max MDL	0 /	18	NSV				No	Not detected
Chlorophenyl-phenylether	1.80	615.00				307.5	1/2 Max MDL	0 /	18	NSV				No	Not detected
Methylphenol	3.50	200.00				100	1/2 Max MDL	0 /	6	100	2	1		No	Not detected
Nitroaniline	35.00	2000.00				1000	1/2 Max MDL	-	18	NSV				No	Not detected
Nitrophenol	35.00	2000.00				1000	1/2 Max MDL	-	18	100	20	10		No	Not detected
cenaphthene				0.95	2600	1615	99% KM (Chebyshev) UCL	11 /		NSV				No	See total LMW PAHs
cenaphthylene				0.83		4.293636	Average	11 /		NSV				No	See total LMW PAHs
cetophenone	18.00	1000.00			-	500	1/2 Max MDL		18	NSV				No	Not detected
nthracene					6400	3984	99% KM (Chebyshev) UCL	12 /		NSV				No	See total LMW PAHs
razine	18.00	1000.00			00	500	1/2 Max MDL	0 /		NSV				No	Not detected
enzaldehyde	380.00					460	1/2 Max MDL	0 /		NSV				No	Not detected
enzo(a)anthracene					30000	18411	99% KM (Chebyshev) UCL	16 /		NSV				No	See total HMW PAHs
enzo(a)pyrene					3700	1369	M-UCL (use when k<=1 and 15	-		NSV				No	See total HMW PAHs
enzo(b)fluoranthene					3700	19656	99% KM (Chebyshev) UCL	16 /		NSV				No	See total HMW PAHs
enzo(g,h,i)perylene					13000	8003	99% KM (Chebyshev) UCL	16 /		NSV				No	See total HMW PAHs

TABLE 5
Hazard Quotients for Analytes in Surface Soil at Site 5
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum													
A malusta	Detection					EDC	FDC D '-	FOD	FCV/	Maximum-		Background 3		Dationals
Analyte	Limit	Limit	Dete	ction De		EPC	EPC Basis	FOD	ESV	based HQ			COC3	Rationale
Benzo(k)fluoranthene	1.00	200.00		2.4	11000	6783	99% KM (Chebyshev) UCL	15 / 18	NSV				No	See total HMW PAHs
bis(2-Chloroethoxy)methane	1.80	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
bis(2-Chloroethyl)ether	1.80	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
bis(2-Ethylhexyl)phthalate	6.60	1000.00			C1	500	1/2 Max MDL	0 / 18	NSV				No	Not detected
Butylbenzylphthalate	47.00	7700.00		61	61	61	Average	1 / 18	NSV				No	Uncertainty
Caprolactam	17.00	7700.00			2400	3850	1/2 Max MDL	0 / 19	NSV				No	Not detected
Carbazole				64	3100	1582	Average	2 / 19	NSV				No	Uncertainty
Chrysene				4.9	26000	15978	99% KM (Chebyshev) UCL	16 / 18	NSV				No	See total HMW PAHs
Dibenz(a,h)anthracene				4.6		79.40769	Average	13 / 18	NSV				No	See total HMW PAHs
Dibenzofuran				39	1200	619.5	Average	2 / 18	NSV				No	Uncertainty
Diethylphthalate	3.50	308.00				154	1/2 Max MDL	0 / 18	100000	0.003	0.002		No	HQ(s) less than one
Dimethyl phthalate				2.6	2.6	2.6	Average	1 / 18	200000	0.00001	0.00001		No	HQ(s) less than one
Di-n-butylphthalate				129	129	129	Average	1 / 18	200000	0.0006	0.0006		No	HQ(s) less than one
Di-n-octylphthalate	1.80	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
Fluoranthene				1	45000	27615	99% KM (Chebyshev) UCL	17 / 18	NSV				No	See total HMW PAHs
Fluorene				1.7	2100	876.6	97.5% KM (Chebyshev) UCL	12 / 18	NSV				No	See total LMW PAHs
Hexachlorobenzene	1.80	308.00				154	1/2 Max MDL	0 / 18	1000000	0.0003	0.0002		No	HQ(s) less than one
Hexachlorobutadiene	1.80	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
Hexachlorocyclopentadiene	3.50	308.00				154	1/2 Max MDL	0 / 18	10000	0.03	0.02		No	HQ(s) less than one
Hexachloroethane	1.80	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
ndeno(1,2,3-cd)pyrene				4.9	13000	8072	99% KM (Chebyshev) UCL	14 / 18	NSV				No	See total HMW PAHs
sophorone				195	195	195	Average	1 / 18	NSV				No	Low frequency of detection
Naphthalene				27	1500	709.7	M-UCL (use when k<=1 and 15	3 / 18	NSV				No	See total LMW PAHs
n-Nitroso-di-n-propylamine	3.50	308.00				154	1/2 Max MDL	0 / 18	NSV				No	Not detected
n-Nitrosodiphenylamine	1.80	308.00				154	1/2 Max MDL	0 / 18	20000	0.02	0.008		No	HQ(s) less than one
. , Nitrobenzene	1.80	308.00				154	1/2 Max MDL	0 / 18	40000	0.008	0.004		No	HQ(s) less than one
Pentachlorophenol	35.00	2000.00				1000	1/2 Max MDL	0 / 18	5000	0.4	0.2		No	HQ(s) less than one
Phenanthrene				3.5	27000	16641	99% KM (Chebyshev) UCL	16 / 18	NSV				No	See total LMW PAHs
Phenol	3.40	308.00			_, 000	154	1/2 Max MDL	0 / 19	100	3	2		No	Not detected
Pyrene				7.3	48000	29449	99% KM (Chebyshev) UCL	16 / 18	NSV				No	See total HMW PAHs
Total cresols	127.00	308.00		7.5	10000	154	1/2 Max MDL	0 / 12	NSV				No	Not detected
ow Molecular Weight PAHs ¹					39930	24614	99% KM (Chebyshev) UCL	/	29000					EPC-based HQ less than one
•				3.5				•		1	0.8		No	
High Molecular Weight PAHs ²				1	222120	136429	99% KM (Chebyshev) UCL	/	1,100	202	124		Yes	See text for discussion
PEST/PCB (UG/KG)														
,4'-DDD				0.691	5.15	1.47	95% KM (t) UCL	4 / 17	100	0.05	0.01		No	HQ(s) less than one
.,4'-DDE				0.431	153	82.47	M-UCL (use when k<=1 and 15	-	100	2	0.8		No	EPC-based HQ less than one
.,4'-DDT				1.47	181	46.88	95% KM (t) UCL	4 / 17	100	2	0.5		No	EPC-based HQ less than one
lldrin	0.12	0.46				0.232	1/2 Max MDL	0 / 17	100	0.005	0.002		No	HQ(s) less than one
llpha-BHC	0.12	0.46				0.232	1/2 Max MDL	0 / 17	NSV				No	Not detected
llpha-Chlordane				0.27	0.616	0.443	Average	2 / 17	2.2	0.3	0.2		No	HQ(s) less than one
Aroclor-1016	6.20	23.00				11.5	1/2 Max MDL	0 / 18	160	0.1	0.07		No	HQ(s) less than one
Aroclor-1221	6.20	23.00				11.5	1/2 Max MDL	0 / 18	160	0.1	0.07		No	HQ(s) less than one
Aroclor-1232	6.20	23.00				11.5	1/2 Max MDL	0 / 18	160	0.1	0.07		No	HQ(s) less than one
Aroclor-1242	6.20	23.00				11.5	1/2 Max MDL	0 / 18	160	0.1	0.07		No	HQ(s) less than one

TABLE 5
Hazard Quotients for Analytes in Surface Soil at Site 5
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

Analyte Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	Limit 6.20 14.00 14.00 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0	Detection Limit 23.00 19.00 19.00 0.46 0.46 0.46 0.46 0.46 0.93 0.46 0.46 0.93	Minimum Machemistry Minimum Machemistry Detection Dete		EPC Basis 1/2 Max MDL Average Average 1/2 Max MDL FOD 0 / 18 3 / 18 4 / 18 0 / 6 0 / 6 0 / 17 0 / 17 0 / 17 0 / 17 0 / 17	160 160 160 160 160 NSV NSV 100 NSV	Maximum- based HQ 0.1 0.3 0.5 0.1 0.1 0.005	0.07 0.2 0.2 0.06 0.06 0.002	3	NO	Rationale HQ(s) less than one Not detected Not detected HQ(s) less than one	
Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	6.20 14.00 14.00 0.12 0.12 0.12 0.12 0.12 0.12 0.24 0.12 0.12 0.12	23.00 19.00 19.00 0.46 0.46 0.46 0.46 0.93 0.46 0.46	9.1 5.6 	11.5 46 29.03333 80 32.7 9.5 9.5 0.232 0.232 0.232 0.232 0.232 0.232 0.464	1/2 Max MDL Average Average 1/2 Max MDL	0 / 18 3 / 18 4 / 18 0 / 6 0 / 6 0 / 17 0 / 17 0 / 17	160 160 160 160 160 NSV NSV 100 NSV	0.1 0.3 0.5 0.1 0.1 0.005	0.07 0.2 0.2 0.06 0.06 0.002	 	No No No No No No No	HQ(s) less than one Not detected Not detected
Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	14.00 14.00 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0	19.00 19.00 0.46 0.46 0.46 0.46 0.46 0.93 0.46 0.46	9.1 5.6 	46 29.03333 80 32.7 9.5 9.5 0.232 0.232 0.232 0.232 0.232 0.232 0.232	Average Average 1/2 Max MDL	3 / 18 4 / 18 0 / 6 0 / 6 0 / 17 0 / 17 0 / 17	160 160 160 160 NSV NSV 100 NSV	0.3 0.5 0.1 0.1 0.005	0.2 0.2 0.06 0.06 0.002	 	No No No No No No	HQ(s) less than one HQ(s) less than one HQ(s) less than one HQ(s) less than one Not detected Not detected
Aroclor-1260 Aroclor-1262 Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	14.00 14.00 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0	19.00 19.00 0.46 0.46 0.46 0.46 0.46 0.93 0.46 0.46	5.6	80 32.7 9.5 9.5 0.232 0.232 0.232 0.232 0.232 0.232	Average 1/2 Max MDL	4 / 18 0 / 6 0 / 6 0 / 17 0 / 17 0 / 17 0 / 17	160 160 160 NSV NSV 100 NSV	0.5 0.1 0.1 0.005	0.2 0.06 0.06 0.002	 	No No No No No	HQ(s) less than one HQ(s) less than one HQ(s) less than one Not detected Not detected
Aroclor-1262 Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	14.00 14.00 0.12 0.12 0.12 0.12 0.12 0.24 0.12 0.24 0.12	19.00 19.00 0.46 0.46 0.46 0.46 0.93 0.46 0.46		9.5 9.5 0.232 0.232 0.232 0.232 0.232 0.464	1/2 Max MDL	0 / 6 0 / 6 0 / 17 0 / 17 0 / 17 0 / 17	160 160 NSV NSV 100 NSV	0.1 0.1 0.005	0.06 0.06 0.002	 	No No No No	HQ(s) less than one HQ(s) less than one Not detected Not detected
Aroclor-1268 beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	14.00 0.12 0.12 0.12 0.12 0.12 0.24 0.12 0.24 0.12	19.00 0.46 0.46 0.46 0.46 0.46 0.93 0.46 0.46		9.5 0.232 0.232 0.232 0.232 0.232 0.464	1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL	0 / 6 0 / 17 0 / 17 0 / 17 0 / 17	160 NSV NSV 100 NSV	0.1 0.005	0.06 0.002	 	No No No No	HQ(s) less than one Not detected Not detected
beta-BHC delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.12 0.12 0.12 0.12 0.24 0.12 0.24 0.12	0.46 0.46 0.46 0.46 0.46 0.93 0.46		0.232 0.232 0.232 0.232 0.232 0.464	1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL	0 / 17 0 / 17 0 / 17 0 / 17	NSV NSV 100 NSV	 0.005	 0.002	 	No No No	Not detected Not detected
delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.12 0.12 0.12 0.24 0.12 0.12 0.24 0.12	0.46 0.46 0.46 0.46 0.93 0.46 0.46	 	0.232 0.232 0.232 0.232 0.464	1/2 Max MDL 1/2 Max MDL 1/2 Max MDL 1/2 Max MDL	0 / 17 0 / 17 0 / 17	NSV 100 NSV	0.005	0.002		No No	Not detected
Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.12 0.12 0.24 0.12 0.12 0.24 0.12	0.46 0.46 0.46 0.93 0.46 0.46	 	0.232 0.232 0.232 0.464	1/2 Max MDL 1/2 Max MDL 1/2 Max MDL	0 / 17 0 / 17	100 NSV	0.005	0.002		No	
Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.12 0.24 0.12 0.12 0.24 0.12	0.46 0.46 0.93 0.46 0.46	 	0.232 0.232 0.464	1/2 Max MDL 1/2 Max MDL	0 / 17	NSV					HQ(s) less than one
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.24 0.12 0.12 0.24 0.12	0.46 0.93 0.46 0.46	 	0.232 0.464	1/2 Max MDL	-						
Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.24 0.12 0.12 0.24 0.12	0.93 0.46 0.46	 	0.464	•	0 / 17					No	Not detected
Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.12 0.24 0.12	0.46 0.46			1/2 Max MDL		NSV				No	Not detected
Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.12 0.24 0.12	0.46		U 333		0 / 17	NSV				No	Not detected
Endrin ketone gamma-BHC (Lindane)	0.24 0.12				1/2 Max MDL	0 / 17	100	0.005	0.002		No	HQ(s) less than one
gamma-BHC (Lindane)	0.12	ი ია		0.232	1/2 Max MDL	0 / 17	NSV				No	Not detected
				0.464	1/2 Max MDL	0 / 17	NSV				No	Not detected
		0.46		0.232	1/2 Max MDL	0 / 17	100	0.005	0.002		No	HQ(s) less than one
Heptachlor	0.12	0.46		0.232	1/2 Max MDL	0 / 17	400	0.001	0.001		No	HQ(s) less than one
Heptachlor epoxide	0.12	0.46		0.232	1/2 Max MDL	0 / 17	100	0.005	0.002		No	HQ(s) less than one
Methoxychlor	0.24	0.93		0.464	1/2 Max MDL	0 / 17	100	0.009	0.005		No	HQ(s) less than one
Toxaphene	12.10	46.40		23.2	1/2 Max MDL	0 / 17	NSV				No	Not detected
METAL (MG/KG)												
Aluminum			2300	15000 7166.667	Average	18 / 18	NSV			16800	No	Consistent with background
Antimony			0.056	2.4 0.627455	Average	11 / 18	5	0.5	0.1		No	HQ(s) less than one
Arsenic			0.91	6 3.407778	Average	18 / 18	6.8	0.9	0.5	9.95	No	Consistent with background
Barium			6	76 27.56667	Average	18 / 18	110	0.7	0.3	67	No	HQ(s) less than one
Beryllium			0.15	1.4 0.424706	Average	17 / 18	2.5	0.6	0.2	0.759	No	HQ(s) less than one
Cadmium			0.033	1.2 0.323933	Average	15 / 18	32	0.04	0.01	1.57	No	Consistent with background
Calcium			25	6300 1739.511	Average	18 / 18	NSV			3030	No	Macronutrient
Chromium (hexavalent)	0.21	0.21		0.105	1/2 Max MDL	0 / 1	0.4	0.5	0.3		No	HQ(s) less than one
Chromium			4.4	24 21.03	15% Chebyshev (Mean, Sd) L	JC 18 / 18	10	2	2	42	No	Consistent with background
Cobalt			0.7	6.9 2.346111	Average	18 / 18	13	0.5	0.2	4.8	No	HQ(s) less than one
Copper			1.7	230 33.95556	Average	18 / 18	70	3	0.5	21.3	No	EPC-based HQ less than one
Cyanide			0.032	0.065 0.0569	KM Student's t	4 / 6	1	0.07	0.06		No	HQ(s) less than one
Iron			2600	28000 12676.47	Average	17 / 18	NSV			71300	No	Consistent with background
Lead			2.9	270 37.92222	Average	18 / 18	120	2	0.3	61.8	No	EPC-based HQ less than one
Magnesium			220	2350 996.0556	Average	18 / 18	NSV			1210	No	Macronutrient
Manganese			13	290 85.38889	Average	18 / 18	220	1	0.4	331	No	Consistent with background
Mercury			0.0066	0.35 0.134	95% KM (t) UCL	7 / 18	0.05	7	2.7	0.11	No	EPC-based HQ has low magnitude of
Nickel			1.4	26 7.233333	Average	18 / 18	38	0.7	0.2	10.1	No	HQ(s) less than one
Potassium			180	1620 712.3333	Average	18 / 18	NSV			1280	No	Macronutrient
Selenium			0.1	1.5 0.81	95% KM (t) UCL	16 / 18	0.52	3	2	2.41	No	Consistent with background
Silver			0.076	1 0.315278	Average	18 / 18	560	0.002	0.001	0.143	No	HQ(s) less than one
Sodium			13.1	41.2 23.2	Average	8 / 18	NSV				No	Macronutrient
Thallium			0.045	0.18 0.141	95% KM (t) UCL	15 / 18	0.05	4	3	0.328	No	Consistent with background
Vanadium			6	380 54.32	95% H-UCL	18 / 18	60	6	0.9	42.8	No	EPC-based HQ less than one
Zinc			5.9	280 55.55385	Average	13 / 18	120	2	0.5	65.6	No	EPC-based HQ less than one

TABLE 5
Hazard Quotients for Analytes in Surface Soil at Site 5
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum M	/laximum	1							
	Detection D	etection	Minimum Maximum					Maximum- EPC- Background	d	
Analyte	Limit	Limit	Detection Detection	EPC	EPC Basis	FOD	ESV	based HQ based HQ ³	COC?	Rationale

COC - Contaminant of concern

EPC - Exposure point concentration

ESV - Ecological screening value

FOD - Frequency of detection

TABLE 6
Hazard Quotients for Analytes in Surface Soil at Site 7
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximum	D. dissipances D. d							Maximu	FDC.			
Analyte	Detection Limit	Detection Limit	Minimum M Detection D	•	EPC	EPC Basis	FOD		ESV	m-based HQ	EPC- based HQ E	Rackground ¹	coc3	Rationale
VOA (UG/KG)	LIIIIL	LIIIIL	Detection D	etection	EPC	EFC Dasis	FUD		ESV	пц	baseu ng t	background	COC	Nationale
1,1,1-Trichloroethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	300	0.002	0.001		No	Not detected
1,1,2,2-Tetrachloroethane	0.43	0.70			0.35	1/2 Max MDL	0 /	۵	300	0.002	0.001		No	Not detected Not detected
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.43	0.70			0.35	1/2 Max MDL	- '.	9	NSV					Not detected Not detected
		0.70			0.35	1/2 Max MDL		9	300	0.002	0.001		No	
1,1,2-Trichloroethane	0.43					•	0 /	9					No	Not detected Not detected
1,1-Dichloroethane	0.21	0.35			0.175	1/2 Max MDL 1/2 Max MDL	0 /	9	300 NSV	0.001	0.001		No	
1,1-Dichloroethene	0.43	0.70			0.35	•	0 /	9	NSV				No	Not detected
1,2,3-Trichlorobenzene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
1,2,4-Trichlorobenzene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	100	0.007	0.004		No	Not detected
1,2-Dibromo-3-chloropropane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
1,2-Dibromoethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	5000	0.0001	0.00007		No	Not detected
1,2-Dichlorobenzene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	100	0.007	0.004		No	Not detected
1,2-Dichloroethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	870000	8.05E-07	4.02E-07		No	Not detected
1,2-Dichloropropane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	300	0.002	0.001		No	Not detected
1,3-Dichlorobenzene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	NSV				No	Not detected
1,4-Dichlorobenzene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	100	0.004	0.002		No	Not detected
2-Butanone			1	8.7	4.4	Average	9 /	9	NSV				No	Uncertainty
2-Hexanone			0.55	0.55	0.55	Average	1 /	9	12600	4E-05	4E-05		No	HQ(s) less than one
4-Methyl-2-pentanone	0.43	0.70			0.35	1/2 Max MDL	0 /	9	100000	0.000007	4E-06		No	Not detected
Acetone			12	250	102	Average	9 /	9	NSV				No	Uncertainty
Benzene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	100	0.007	0.004		No	Not detected
Bromochloromethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
Bromodichloromethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
Bromoform	0.21	0.35			0.175	1/2 Max MDL	0 /	9	1147000	3E-07	2E-07		No	Not detected
Bromomethane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
Carbon disulfide	0.23	2.30			1.15	1/2 Max MDL	0 /	9	94.1	0.02	0.01		No	Not detected
Carbon tetrachloride	0.21	0.35			0.175	1/2 Max MDL	0 /	9	300	0.001	0.0006		No	Not detected
Chlorobenzene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	100	0.004	0.002		No	Not detected
Chloroethane	0.43	0.70			0.35	1/2 Max MDL		9	NSV				No	Not detected
Chloroform	0.43	0.76			0.125	1/2 Max MDL	- '.	9	300	0.0008	0.0004		No	Not detected Not detected
Chloromethane	0.14	0.23			0.123	1/2 Max MDL	•	9	NSV				No	Not detected Not detected
cis-1,2-Dichloroethene	0.43	0.70			0.33	1/2 Max MDL	0 /	0	300	0.001	0.001		No	Not detected Not detected
·					0.175	1/2 Max MDL	•	9	300	0.001				
cis-1,3-Dichloropropene	0.21	0.35 0.70			0.175	1/2 Max MDL	- /	9	NSV		0.001		No	Not detected Not detected
Cyclohexane	0.43					•	0 /	9					No	
Dibromochloromethane	0.43	0.70			0.35	1/2 Max MDL	- /	9	NSV				No	Not detected
Dichlorodifluoromethane (Freon-12)	0.43	0.70			0.35	1/2 Max MDL	• /	9	NSV				No	Not detected
Ethylbenzene	0.43	0.70			0.35	1/2 Max MDL	• /	9	100	0.007	0.004		No	Not detected
Isopropylbenzene	0.21	0.35			0.175	1/2 Max MDL	- /	9	NSV				No	Not detected
m- and p-Xylene			0.4	0.4	0.4	Average	1 /	9	100	0.004	0.004		No	HQ(s) less than one
Methyl acetate			8.1	8.1	8.1	Average	- 1	9	NSV				No	Uncertainty
Methylcyclohexane	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
Methylene chloride	0.43	0.70			0.35	1/2 Max MDL	• /	9	300	0.002	0.001		No	Not detected
Methyl-tert-butyl ether (MTBE)	0.43	0.70			0.35	1/2 Max MDL	0 /	9	NSV				No	Not detected
o-Xylene			0.15	0.15	0.15	Average	1 /	9	100	0.0015	0.0015		No	HQ(s) less than one
Styrene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	100	0.004	0.002		No	Not detected
Tetrachloroethene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	300	0.002	0.001		No	Not detected
Toluene			2.9	2.9	2.9	Average	1 /	9	100	0.03	0.03		No	HQ(s) less than one
trans-1,2-Dichloroethene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	300	0.001	0.001		No	Not detected
trans-1,3-Dichloropropene	0.43	0.70			0.35	1/2 Max MDL	0 /	9	300	0.002	0.001		No	Not detected
Trichloroethene	0.21	0.35			0.175	1/2 Max MDL	0 /	9	300	0.001	0.001		No	Not detected
Trichlorofluoromethane (Freon-11)	0.21	0.35			0.175	1/2 Max MDL	0 /	9	16400	2E-05	1E-05		No	Not detected
Vinyl chloride	0.21	0.35			0.175	1/2 Max MDL		9	300	0.001	0.0006		No	Not detected
,	V.21	0.55			3.2.3	4/2 1110/11/10/2	٠,	_	200	5.001	2.2000			

TABLE 6
Hazard Quotients for Analytes in Surface Soil at Site 7
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximum						Maximu				
	Detection		Minimum N					m-based			1	
Analyte	Limit	Limit	Detection [Detection EPC	EPC Basis	FOD	ESV	HQ	based HQ	Background	COC?	Rationale
PEST/PCB (UG/KG)												
Aroclor-1016	6.00	76.00			1/2 Max MDL	0 / 17	160	0.5	0.2		No	Not detected
Aroclor-1221	6.00	76.00		30	1/2 Max MDL	0 / 17	160	0.5	0.2		No	Not detected
Aroclor-1232	6.00	76.00		30	1/2 Max MDL	0 / 17	160	0.5	0.2		No	Not detected
Aroclor-1242	6.00	76.00		- 38	1/2 Max MDL	0 / 17	160	0.5	0.2		No	Not detected
Aroclor-1248	6.00	76.00		30	1/2 Max MDL	0 / 17	160	0.5	0.2		No	Not detected
Aroclor-1254			50	50 50	Average	2 / 17	160	0.3	0.3		No	HQ(s) less than one
Aroclor-1260			4.2	940 377.3	Gamma Adjusted KM-UCL	11 / 17	160	6	2.4		No	Low magnitude of exce
Aroclor-1262	14.00	76.00		- 38	1/2 Max MDL	0 / 9	160	0.5	0.2		No	Not detected
Aroclor-1268	14.00	76.00		- 38	1/2 Max MDL	0 / 9	160	0.5	0.2		No	Not detected
METAL (MG/KG)												
Aluminum			2600	6600 4747.059	Average	17 / 17	NSV			9340	No	Consistent with backgı
Antimony			0.063	0.4 0.183333	Average	12 / 17	5	0.08	0.04		No	HQ(s) less than one
Arsenic			1.3	3.5 2.329412	Average	17 / 17	6.8	0.5	0.3	6.24	No	Consistent with backgı
Barium			6.4	33 18.56471	Average	17 / 17	110	0.3	0.2	105	No	Consistent with backgı
Beryllium			0.15	0.47 0.325882	Average	17 / 17	2.5	0.2	0.1	1.04	No	Consistent with backgı
Cadmium			0.024	0.52 0.168615	Average	13 / 17	32	0.02	0.005	1.09	No	Consistent with backgi
Calcium			150	397000 40526.88	Average	17 / 17	NSV			3560	No	Macronutrient
Chromium (hexavalent)			0.3	0.3 0.3	Average	1 / 1	0.4	0.8	0.8		No	HQ(s) less than one
Chromium			5	26 15.78	95% Student's-t UCL	17 / 17	10	3	2	27.3	No	Consistent with backgı
Cobalt			0.93	2.8 1.898235	Average	17 / 17	13	0.2	0.1	5.41	No	Consistent with backgi
Copper			2.2	15 4.876471	Average	17 / 17	70	0.2	0.07	43.6	No	Consistent with backgi
Cyanide			0.027	0.32 0.155	95% KM (t) UCL	5 / 9	1	0.3	0.2		No	HQ(s) less than one
Iron			3900	15000 7682.353	Average	17 / 17	NSV			17300	No	Consistent with backgi
Lead			2.7	82 21.38824	Average	17 / 17	120	0.7	0.2	95.8	No	Consistent with backgi
Magnesium			210	626000 75039.88	Average	17 / 17	NSV			1830	No	Macronutrient
Manganese			16	130 60.52941	Average	17 / 17	220	0.6	0.3	208	No	Consistent with backgi
Mercury			0.0062	0.047 0.0209	Average	8 / 17	0.05	0.9	0.4	0.99	No	HQ(s) less than one
Nickel			1.2	24 8.229412	Average	17 / 17	38	0.6	0.2	15.1	No	HQ(s) less than one
Potassium			240	431000 57079.82	Average	17 / 17	NSV			986	No	Macronutrient
Selenium			0.34	1 0.509	95% KM (t) UCL	9 / 17	0.52	2	0.98	2.76	No	Consistent with backgr
Silver			0.019	0.14 0.050455	Average	11 / 17	560	0.0003	9E-05	8.7	No	Consistent with backgr
Sodium			8.8	4880 1728.157	Average	7 / 17	NSV				No	Macronutrient
Thallium			0.042	0.24 0.151	95% KM (t) UCL	15 / 17	0.05	5	3	0.441	No	Consistent with backgi
Vanadium			6.9	120 63.38	95% Chebyshev (Mean, Sd) UCL	17 / 17	60	2	1.1	26.1	No	Low magnitude of exce
Zinc			5.3	260 56.58824	Average	17 / 17	120	2	0.5	142	No	EPC-based HQ less tha

COC - Contaminant of concern

EPC - Exposure point concentration

ESV - Ecological screening value

FOD - Frequency of detection

HQ - Hazard quotient

MDL - Method detection limit

NSV - No screening value

TABLE 7
Hazard Quotients for Analytes in Surface Soil at Site 9
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum			D.A. color						NA				
Accelose			n Minimum		EDC		505			Maximum-based		Danks	6063	Dationals
Analyte	Limit	Limit	Detection	Detection	EPC	EPC Basis	FOD		ESV	HQ	HQ	Background ³	COC?	Rationale
VOA (UG/KG)	0.47	0.66			0.22	4/2.84 8451	0. /		200	0.002	0.004		NI -	110/11/11/11
1,1,1-Trichloroethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.001		No	HQ(s) less than one
1,1,2,2-Tetrachloroethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.00-		No	HQ(s) less than one
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
1,1,2-Trichloroethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.001		No	HQ(s) less than one
1,1-Dichloroethane	0.23	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001	0.001		No	HQ(s) less than one
1,1-Dichloroethene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
1,2,3-Trichlorobenzene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
1,2,4-Trichlorobenzene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	100	0.007	0.003		No	HQ(s) less than one
1,2-Dibromo-3-chloropropane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
1,2-Dibromoethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	5000	0.0001	0.0001		No	HQ(s) less than one
1,2-Dichlorobenzene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	100	0.007	0.000		No	HQ(s) less than one
1,2-Dichloroethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	870000	0.000001	0.0000004		No	HQ(s) less than one
1,2-Dichloropropane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.001		No	HQ(s) less than one
1,3-Dichlorobenzene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	NSV				No	Not detected
1,4-Dichlorobenzene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	100	0.003	0.002		No	HQ(s) less than one
2-Butanone			4	8.1	6.8	Average	4 /	4	NSV				No	Uncertainty
2-Hexanone			7.4	7.4	7.4	Average	1 /	4	12600	0.0006	0.0006		No	HQ(s) less than one
4-Methyl-2-pentanone	0.47	0.66			0.33	1/2 Max MDL	0 /	4	100000	7E-06	0.000003		No	HQ(s) less than one
Acetone			35	67	52.5	Average	4 /	4	NSV				No	Uncertainty
Benzene			0.21	4.3	2.255	Average	2 /	4	100	0.04	0.02		No	HQ(s) less than one
Bromochloromethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
Bromodichloromethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
Bromoform	0.23	0.33			0.165	1/2 Max MDL	0 /	4	1147000	2.87707E-07	1.4385E-07		No	HQ(s) less than one
Bromomethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
Carbon disulfide			1.1	8.4	4.75	Average	2 /	4	94.1	0.09	0.05		No	HQ(s) less than one
Carbon tetrachloride	0.23	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001			No	HQ(s) less than one
Chlorobenzene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	100	0.003	0.000		No	HQ(s) less than one
Chloroethane	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
Chloroform	0.18	0.29			0.145	1/2 Max MDL	0 /	4	300	0.001			No	HQ(s) less than one
Chloromethane	0.13	0.66			0.33	1/2 Max MDL	0 /	1	NSV				No	Not detected
cis-1,2-Dichloroethene	0.47	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001			No	HQ(s) less than one
cis-1,3-Dichloropropene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001			No	HQ(s) less than one
Cyclohexane			3.4	3.4	3.4	•	1/	4	NSV				No	Uncertainty
Dibromochloromethane	 0.47	0.66	5. 4 		0.33	Average 1/2 Max MDL	-	4	NSV					•
						•	0 /	4					No No	Not detected
Dichlorodifluoromethane (Freon-12)	0.47	0.66	 1 7	 1 7	0.33	1/2 Max MDL	0 /	4	NSV 100				No No	Not detected
Ethylbenzene			1.7	1.7	1.7	Average	1 /	4	100	0.02	0.02		No	HQ(s) less than one
Isopropylbenzene			1.1	1.1	1.1	Average	1 /	4	NSV 100				No No	Uncertainty
m- and p-Xylene	1.10	4.10	4.3	4.3	4.3	Average	1 /	4	100	0.043	0.0.0		No No	HQ(s) less than one
Methyl acetate	1.10	4.10	 C 5	 C.F	2.05	1/2 Max MDL	0 /	4	NSV				No	Not detected
Methylcyclohexane			6.5	6.5	6.5	Average	1 /	4	NSV				No	Uncertainty
Methylene chloride	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.002		No	HQ(s) less than one
Methyl-tert-butyl ether (MTBE)	0.47	0.66			0.33	1/2 Max MDL	0 /	4	NSV				No	Not detected
o-Xylene			2.9	2.9	2.9	Average	1 /	4	100	0.029	0.0_0		No	HQ(s) less than one
Styrene			1.8	1.8	1.8	Average	1 /	4	100	0.02	0.02		No	HQ(s) less than one
Tetrachloroethene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.00=		No	HQ(s) less than one
Toluene			8.6	8.6	8.6	Average	1 /	4	100	0.09	0.00		No	HQ(s) less than one
trans-1,2-Dichloroethene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001	0.000		No	HQ(s) less than one
trans-1,3-Dichloropropene	0.47	0.66			0.33	1/2 Max MDL	0 /	4	300	0.002	0.001		No	HQ(s) less than one
Trichloroethene	0.23	0.33			0.165	1/2 Max MDL	0 /	4	300	0.001	0.0006		No	HQ(s) less than one

TABLE 7
Hazard Quotients for Analytes in Surface Soil at Site 9
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

		Maximum	n n Minimum	Maximum						Maximum-base	d FPC-hased			
Analyte	Limit	Limit		Detection	EPC	EPC Basis	FOD		ESV	HQ	HQ	Background ³	COC?	Rationale
Vinyl chloride	0.23	0.33			0.165	1/2 Max MDL	0 /	1	300	0.001	0.0006		No No	HQ(s) less than one
SVOA (UG/KG)	0.23	0.55			0.103	1/2 WIAX WIDE	0 /		300	0.001	0.0000		110	rig(s) less than one
1,1-Biphenyl	35.00	480.00			240	1/2 Max MDL	0 /	10	60000	0.008	0.004		No	HQ(s) less than one
L,2,4,5-Tetrachlorobenzene	3.50	7.80			3.9	1/2 Max MDL	0 /	4	NSV				No	Not detected
2,2'-Oxybis(1-chloropropane)	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected Not detected
2,3,4,6-Tetrachlorophenol	7.10	15.00			7.5	1/2 Max MDL	0 /	4	NSV				No	Not detected Not detected
2,4,5-Trichlorophenol	35.00	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8			EPC-based HQ less than one
•						•			100	2			No No	·
,4,6-Trichlorophenol	7.10	161.00			80.5	1/2 Max MDL	0 /	10			0.8		No	EPC-based HQ less than one
,4-Dichlorophenol	7.00	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8		No	EPC-based HQ less than one
,4-Dimethylphenol	71.00	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8		No	EPC-based HQ less than one
,4-Dinitrophenol	350.00	1610.00			805	1/2 Max MDL	0 /	10	100	16	8		No	Not detected
,4-Dinitrotoluene	35.00	321.00			160.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
6-Dinitrotoluene	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Chloronaphthalene	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Chlorophenol	7.10	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8		No	EPC-based HQ less than one
-Methylnaphthalene	2.10	84.00			42	1/2 Max MDL	0 /	10	NSV				No	See Total LMW PAHs
-Methylphenol	14.00	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8		No	EPC-based HQ less than one
-Nitroaniline	35.00	321.00			160.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Nitrophenol	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
3'-Dichlorobenzidine	121.00	1500.00			750	1/2 Max MDL	0 /	10	NSV				No	Not detected
Nitroaniline	71.00	320.00			160	1/2 Max MDL	0 /	10	NSV				No	Not detected
6-Dinitro-2-methylphenol	35.00	1610.00			805	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Bromophenyl-phenylether	3.50	321.00			160.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Chloro-3-methylphenol	14.00	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Chloroaniline	35.00	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Chlorophenyl-phenylether	3.50	321.00			160.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
-Methylphenol	7.10	15.00			7.5	1/2 Max MDL	0 /	4	100	0.2	0.08		No	HQ(s) less than one
-Nitroaniline	71.00	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
Nitrophenol	71.00	320.00			160	1/2 Max MDL	0 /	10	100	3	2		No	Not detected
cenaphthene			0.6	0.6	0.6	Average	1/	10	NSV				No	See Total LMW PAHs
cenaphthylene			1.1	3.6	2.433333333	Average	3 /	10	NSV				No	See Total LMW PAHs
cetophenone	35.00	160.00			80	1/2 Max MDL	0 /	10	NSV				No	Not detected
nthracene			2	12	4.7	-	4 /	10	NSV				No	See Total LMW PAHs
trazine	35.00	480.00			240	Average 1/2 Max MDL	0 /		NSV					Not detected
		480.00			240	1/2 Max MDL	-	10	NSV				No No	Not detected Not detected
enzaldehyde	35.00		10	 1F0		•	0 /	10					No	See Total HMW PAHs
enzo(a)anthracene			10	150	46.25	Average	4 /	10	NSV				No	
enzo(a)pyrene			1.8	46	23.11428571	Average	7 /	10	NSV				No	See Total HMW PAHs
enzo(b)fluoranthene			16	370	106.75	Average	4 /	10	NSV				No	See Total HMW PAHs
enzo(g,h,i)perylene			14	91	37.6	Average	5 /	10	NSV				No	See Total HMW PAHs
enzo(k)fluoranthene			91	91	91	Average	1 /	10	NSV				No	See Total HMW PAHs
s(2-Chloroethoxy)methane	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
s(2-Chloroethyl)ether	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
s(2-Ethylhexyl)phthalate			12	91	39.66666667	Average	3 /	10	NSV				No	Uncertainty
utylbenzylphthalate	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
aprolactam	35.00	4000.00			2000	1/2 Max MDL	0 /	10	NSV				No	Not detected
arbazole	71.00	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
hrysene			12	170	91	Average	2 /	10	NSV				No	See Total HMW PAHs
ibenz(a,h)anthracene			3.1	3.1	3.1	Average	1 /	10	NSV				No	See Total HMW PAHs
ibenzofuran	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
iethylphthalate	6.20	161.00			80.5	1/2 Max MDL	0 /	10	100000	0.002	0.0008		No	HQ(s) less than one
Dimethyl phthalate	7.10	320.00			160	1/2 Max MDL	0 /	10	200000	0.002	0.0008		No	HQ(s) less than one

TABLE 7
Hazard Quotients for Analytes in Surface Soil at Site 9
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum	Maximum	ı											
			Minimum							Maximum-based		2		
Analyte	Limit	Limit	Detection	Detection	EPC		FOD		ESV	HQ	HQ	Background ³	COC?	Rationale
Di-n-butylphthalate	35.00	161.00			80.5	1/2 Max MDL	0 /	10	200000	0.0008	0.0004		No	HQ(s) less than one
Di-n-octylphthalate	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
Fluoranthene			3.6	210	51.72	Average	5 /	10	NSV				No	See Total HMW PAHs
Fluorene	2.90	110.00			55	1/2 Max MDL	0 /	10	NSV				No	Not detected
Hexachlorobenzene	3.50	161.00			80.5	1/2 Max MDL	0 /	10	1000000	0.0002	0.00008		No	HQ(s) less than one
Hexachlorobutadiene	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
Hexachlorocyclopentadiene	7.10	161.00			80.5	1/2 Max MDL	0 /	10	10000	0.02	0.008		No	HQ(s) less than one
Hexachloroethane	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
Indeno(1,2,3-cd)pyrene			16	88	37.5	Average	4 /	10	NSV				No	See Total HMW PAHs
Isophorone	3.50	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
Naphthalene	2.10	84.00			42	1/2 Max MDL	0 /	10	NSV				No	See Total LMW PAHs
n-Nitroso-di-n-propylamine	7.10	161.00			80.5	1/2 Max MDL	0 /	10	NSV				No	Not detected
n-Nitrosodiphenylamine	3.50	161.00			80.5	1/2 Max MDL	0 /	10	20000	0.008	0.004		No	HQ(s) less than one
Nitrobenzene	3.50	161.00			80.5	1/2 Max MDL	0 /	10	40000	0.004	0.002		No	HQ(s) less than one
Pentachlorophenol	71.00	321.00			160.5	1/2 Max MDL	0 /	10	5000	0.06	0.03		No	HQ(s) less than one
Phenanthrene			2.1	130	27.31666667	Average	6 /	10	NSV				No	See Total LMW PAHs
Phenol	7.00	161.00			80.5	1/2 Max MDL	0 /	10	100	2	0.8		No	EPC-based HQ less than one
Pyrene			5.7	320	60.5875	Average	8 /	10	NSV				No	See Total HMW PAHs
Total cresols	121.00	161.00			80.5	1/2 Max MDL	0 /	6	NSV				No	Not detected
Low Molecular Weight PAHs ¹			2.1	142	89.04	(M (Chebyshev)	/	Ū	29000	0.005	0.0031		No	HQ(s) less than one
										0.005				• •
High Molecular Weight PAHs ²			1.8	1536	1324	(use when k<=	/		1,100	1	1.2		No	Low magnitude of exceedance
METAL (MG/KG)			2600	04.00	4500	A	40./	- 10	NIC) /			0240		Constitute the land of the land
Aluminum			2600	8100	4580	Average	10 /	10	NSV			9340	No	Consistent with background
Antimony			0.098	0.88	0.3256	Average	5 /	10	5	0.2	0.07		No	HQ(s) less than one
Arsenic			0.62	3	1.769	Average	10 /	10	6.8	0.4	0.3	6.24	No	Consistent with background
Barium			8.9	60	21.96	Average	10 /	10	110	0.5	0.2	105	No	Consistent with background
Beryllium			0.17	0.5	0.2925	Average	8 /	10	2.5	0.2	0.1	1.04	No	Consistent with background
Cadmium			0.03	0.34	0.164	Average	9 /	10	32	0.01	0.005	1.09	No	Consistent with background
Calcium			900	7900	3895	Average	10 /	10	NSV			3560	No	Macronutrient
Chromium (hexavalent)			0.15	1.05	0.575	Average	4 /	4	0.4	3	1.4		No	Low magnitude of exceedance
Chromium			7.8	20	13.28	Average	10 /	10	10	2	1	27.3	No	Consistent with background
Cobalt			0.64	6.1	2.185	Average	10 /	10	13	0.5	0.2	5.41	No	HQ(s) less than one
Copper			1.8	16	7.16	Average	10 /	10	70	0.2	0.1	43.6	No	Consistent with background
Cyanide	0.05	0.06			0.029	1/2 Max MDL	0 /	4	1	0	0		No	Not detected
Iron			3200	16000	8940	Average	10 /	10	NSV			17300	No	Consistent with background
Lead			1.9	37	13.61	Average	10 /	10	120	0.3	0.1	95.8	No	Consistent with background
Magnesium			606	2950	1374	Average	10 /	10	NSV			1830	No	Macronutrient
Manganese			15	230	71.3	Average	10 /	10	220	1	0.3	208	No	EPC-based HQ less than one
Mercury			0.012	0.11	0.0525	Average	4 /	10	0.05	2	1	0.99	No	Consistent with background
Nickel			1.1	23	8.04	Average	10 /	10	38	0.6	0.2	15.1	No	HQ(s) less than one
Potassium			230	1460	654.4	Average	10 /	10	NSV			986	No	Macronutrient
Selenium			0.25	1.1	0.576666667	Average	9 /	10	0.52	2	1	2.76	No	Consistent with background
Silver			0.041	3.9	0.71425	Average	8 /	10	560	0.01	0.001	8.7	No	Consistent with background
Sodium			17.6	143	45.91666667	Average	6 /	10	NSV				No	Macronutrient
Thallium			0.077	0.15	0.116666667	Average	6 /	10	0.05	3	2	0.441	No	Consistent with background
Vanadium			4.7	24	13.6	Average	10 /	10	60	0.4	0.2	26.1	No	Consistent with background
Zinc			6.1	51	27.81111111	Average	9 /	10	120	0.4	0.2	142	No	Consistent with background

Zinc Notes

COC - Contaminant of concern

EPC - Exposure point concentration

ESV - Ecological screening value

TABLE 7
Hazard Quotients for Analytes in Surface Soil at Site 9
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum	Maximun	n										
	Detection	Detection	n Minimum Maximum					Maximum-based	EPC-based				
Analyte	Limit	Limit	Detection Detection	EPC	EPC Basis	FOD	ESV	HQ	HQ	Background ³	COC?	Rationale	

FOD - Frequency of detection

HQ - Hazard quotient

MDL - Method detection limit

NSV - No screening value

TABLE 8
Hazard Quotients for Analytes in Surface Soil at AOC D
Expanded Site Investigation Report
NRL-CBD, Chesapeake Beach, Maryland

	Minimum	Maximum											
	Detection	Detection	Minimum	Maximum					Maximum-	EPC-based			
Analyte	Limit	Limit	Detection	Detection	EPC	EPC Basis	FOD	ESV	based HQ	HQ	Background ¹	COC?	Rationale
Lead			100	3000	1817 95%	6 Student's-t UCL	14 /14	120	25	15	96	Yes	HQ(s) greater than one.

Notes

COC - Contaminant of concern

EPC - Exposure point concentration

Appendix H Building 76 Historical Records Review

Building 76 Historical Records Search Naval Research Laboratory - Chesapeake Bay Detachment, Chesapeake Beach, Maryland

PREPARED FOR: NAVFAC Washington

COPY TO: NRL

PREPARED BY: CH2M HILL

DATE: March 3, 2020

Introduction

This technical memorandum presents a summary of the historical record search conducted for Building 76 at Naval Research Laboratory – Chesapeake Bay Detachment (NRL-CBD), Chesapeake Beach, Maryland. CH2M HILL (CH2M) has prepared this document under the Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC) Washington, Comprehensive Long-term Environmental Action – Navy (CLEAN) 9000 Contract N62470-16-D-9000, Contract Task Order JU23.

During a site visit for the former Small Arms Range (UXO 3) in June 2018, representatives of the Navy and Maryland Department of the Environment (MDE) observed debris along the hillside that bounds the Building 76 area to the west and south. It was speculated that the debris observed along the hillside slopes could be representative of a potential disposal area and that additional information about Building 76 should be collected. The Navy tasked CH2M to perform a historical records search for the Building 76 area to document the past historical practices at Building 76 and identify the potential for a release to the environment from these past historical practices at Building 76.

Facility and Site-Specific Background Information

Facility Background

NRL-CBD is located at 5813 Bayside Road in Calvert County, Maryland south of the town of Chesapeake Beach, Maryland. NRL-CBD is located approximately 40 miles southeast of Washington, DC and occupies approximately 160 acres along the western shoreline of the Chesapeake Bay (**Figure 1**). The facility is bounded by the Chesapeake Bay to the east and residential housing areas to the north, south, and west. The facility is separated into an eastern and western portion, separated by Bayside Road (Maryland State Route 261).

The mission of NRL-CBD is to provide and maintain facilities for use by the research divisions of the Naval Research Laboratory in Washington, D.C. for the testing, development, and evaluation of radar, radio, optical, and fire control equipment, along with other research projects requiring a maritime environment or open skies, but with land-based support facilities (NEESA, 1984).

The original acquisition of land for NRL-CBD was made in 1941 and construction progressed rapidly during the war years. Major expansion occurred in 1953–54 with construction of a large laboratory building, shop facilities, and complete utility systems (NEESA, 1984).

Site-Specific Background

Building 76 is located in the southeastern corner of the western portion (west of State Route 261) of the facility (**Figure 2**). In general, there is limited documentation about historic activities at Building 76. Most of the historical knowledge associated with Building 76 is derived from the *Initial Assessment Study*, referred to herein as the IAS, conducted by the Navy (NEESA, 1984). The IAS states that NRL-CBD operated a Maintenance and Support Branch at Building 76, also known as the Public Works Division, which provided services for grounds maintenance, carpentry, masonry, electrical work, plumbing, and paint maintenance; a machine shop; and general support services for research and development groups from NRL-DC. The IAS later states that Building 76 was constructed in 1953 and was used to support the Public Works Division and housed a portion of the Public Works Division including the grounds maintenance and carpentry divisions.

In addition to the Public Works Division housed inside Building 76, the IAS reports that a 300-gallon underground storage tank (UST) is located next to Building 76 but, does not specify where the UST is located. The UST was reported to be used for the disposal of waste oils which included used crankcase oil, spent gasoline used as a degreaser, paint thinner (mineral spirits and other solvents used in paint thinning and cleanup operations), and was mixed with Number 6 fuel oil from the power plant. The tank contents were emptied by a contractor and disposed of off-site one or two times per year. While the UST operations are located near Building 76 they appear to have been a separate operation and unrelated to the potential debris disposal that was observed along the hillside west and south of Building 76.

Currently Building 76 is used for storage for laboratory equipment used for research and development.

Historical Record Search

To support the historical records search, a review of available information was conducted. The historical records search consisted of: a site visit, a document search of available records at NRL-CBD, a review of historical aerial photographs and photographs obtained from NRL-CBD, and interviews with personnel from NRL-CBD. Freedom of Information Act records searches with regulatory agencies (U.S. Environmental Protection Agency [USEPA] and MDE) were not conducted. NRL-CBD is not currently and historically has not been regulated by USEPA; therefore, Building 76 records were unlikely to be available. Additionally, in consultation with MDE, it was determined that records for Building 76 did not exist.

Site Visit

A site visit at the Building 76 area was conducted on January 8, 2019 to obtain information about the current site setting, as well as to confirm the presence of debris material observed along the hillside to the west and south of Building 76. CH2M representatives met with Navy personnel from NAVFAC Washington and NRL-CBD to reconnaissance the area. Table 1 below presents a list of the personnel that participated in the Building 76 site visit.

Table 1. Site Visit Participants

Name	Organization
Ryan Mayer	NAVFAC Washington
Scott Lonesome	NRL-DC
Harold Rolfs	NRL-CBD
Bill Drury	NRL-CBD

Table 1. Site Visit Participants

Name	Organization
Larry Carpenter	NRL-CBD
Andrew Bogdanski	CH2M HILL
Stephen Dronfield	CH2M HILL

Upon arrival at the installation, the Navy and CH2M personnel met at the NRL-CBD administrative building and proceeded to Building 76 to perform the site reconnaissance. Throughout the site walk, Navy personnel took photographs of observations made during the visit, and these photographs are presented in a photo log as **Attachment 1**. The photo log displays observations noted during the site reconnaissance and provides summaries of the observations while **Attachment 1 - Figure 1** displays the Building 76 area and notes the locations and orientations of the photographs.

The group first walked along the parking lot apron starting to the west of Building 76 and moved southward along the steep hillside that bounds Building 76 to the south. The asphalt apron along the western portion of Building 76 is generally flat and used as an access drive for Building 76. A few Conex box storage containers are located on the apron between Building 76 and the access drive. There were no visual observations of historical filling or environmental releases noted in this area. Adjacent to the south side of Building 76, in the asphalt-covered apron, were various used research equipment and dumpsters which are stored for off-site disposal or recycling. The asphalt apron in the southern area is bounded by a one-to-two-foot-high soil berm along the top of the hillside. A stormwater catch basin located in the asphalt conveys stormwater into a pipe, which transports it down the hillside to the south where it discharges to a surface water body. There were no visible indications of buried waste observed in this area; however, minor surficial trash, likely wind-blown from the dumpsters, was observed on the ground surface along southern hillside (Attachment 1, Photos 4, 5, 6, and 7).

Further west of Building 76 and the asphalt apron lies an open flat grassy area that is suspected to have been created by filling. This grassy area is not bounded by a berm and the sidewall of the western extent exhibits erosion rills and exposed construction debris (i.e., large concrete and asphalt chunks, rebar). This area represents the likely source of the earlier observations of debris in the Building 76 area. Discussion with NRL-CBD personnel suggested that the western hillside area had been built-up using construction debris after the completion of Building 76. The original stormwater outfall from the western parking lot area was located along the western hillside area; however, this location is now currently located in the middle of the grassy area. NRL-CBD personnel noted that stormwater in the western catch basin would backup, which necessitated a new outfall. During excavation activities to install the new pipe for the outfall numerous construction debris items were encountered (Attachment 1, Photos 1, 2, and 3) further supporting the idea that the grassy area was constructed by landfilling activities. The excavated debris was segregated and consisted of concrete, scrap metal, and at least one empty crushed drum (Attachment 1, Photo 3).

The team then proceeded to drive to the bottom of the southern hillside and walked the length of the area back to the top of the Building 76 western hillside. Approaching the top of the western hillside, the team observed numerous locations of uncovered construction debris approximately 6–10 feet below ground surface (bgs), especially around the current stormwater outfall where erosion is pronounced (Attachment 1, Photos 8 and 9). Surficial debris down the valley and hillside appeared to be eroded from the same 6–10 feet bgs layer of construction debris at the top of the western hillside. The western hillside is bounded by an erosion channel which transports surface water runoff from other areas of the facility (Attachment 1, Photo 10). Debris was not observed beyond the west of this channel. Because the channel is located at a significantly lower elevation than the top of the hillside it is unlikely that fill

extends this far west, but surface debris items noted likely transported down the hillside as they eroded out from higher elevations.

Document Search

Following the site visit, CH2M reviewed historical records held at the NRL-CBD facility. These facility records mainly consisted of architectural drawings, utility and engineering plans, and a few old reports and forms. The only document relevant to Building 76 that was discovered was an architectural drawing dated from 1952 that showed the Building 76 area with the planned topography grading elevations and utilities (**Attachment 2**). This drawing confirmed the earlier discussions about the grassy area on the western side of Building 76 being filled-in to create a flat surface and showed the original grading elevations when Building 76 was constructed. No further relevant documents were found at the NRL-CBD facility.

Following the records search, the original grading elevations were incorporated into the project GIS and the original grading and current grading elevations were overlain to approximate the horizontal and vertical limits of the land filling that have occurred west of Building 76 (Figure 3). This comparison revealed that the horizontal extents were approximately 135 feet by 105 feet encompassing an area of approximately 0.26 acre. The vertical extent of fill was determined to be approximately 4 feet thick on the eastern edge (where the existing asphalt apron ends) and extents to an approximate depth of 20 feet along the western edge of the hillside. Cross-sectional lines oriented north to south (A to A') and west to east (B-B') are shown on Figure 3. The cross-sectional views of the estimated depth of fill placement 1 along these lines are presented on Figures 4 and 5.

Historical Photograph Review

Aerial Photographs

A series of historic aerial photographs (**Attachment 3**) covering the timeframe of 1938 to 1971 were reviewed to aid in the understanding of the land use of the Building 76 area and determine if signs of land disturbance or filling could be observed which would help establish a timeframe for the landfilling activities that occurred west of Building 76.

The aerial photograph from 1938 pre-dates the construction of the Building 76 and the establishment of NRL-CBD in 1941, and serves as a baseline for site conditions pre-Navy ownership (**Attachment 3**, **Figure 1**). In the 1938 aerial photograph, the Building 76 area, including the hillside to the west and south, is shown to be a cleared farm field with no buildings or structures in the vicinity.

The next aerial photograph reviewed was dated 1952, which immediately pre-dates the construction of Building 76 (Attachment 3, Figure 2). In this aerial it can be observed that land in portions of the Building 76 area (within the Building 76 footprint) have been disturbed and the area on top of the hill is relatively open, with vehicle parking and possible staging of laboratory equipment. It was also observed that the hillside was undergoing ecological succession, reverting from farm fields and starting to populate with trees and shrubs.

In the 1957 aerial photograph (**Attachment 3, Figure 3**), it was observed that Building 76 had been constructed, including the existing asphalt apron around the building. The hillside to the south and west had been cleared and graded and appeared to be maintained as mowed grass areas. There are no signs of soil disturbance or filling activities noted.

¹ For the purpose of this conceptual cross-section, the vertical elevation datum for the historical and current elevation contours were assumed to be the same.

Aerial photographs from 1960, 1964, 1969, 1970, and 1971 (Attachment 3, Figures 4 through 8) show the Building 76 area little changed from the 1957, with the exception of the hillsides to the west and south slowly becoming more vegetated with mature trees and the hillside converting from mowed grass areas to a wooded area.

Facility Photographs

In addition to the historic aerial photographs, historic photographs previously provided by NRL were reviewed to aid in the understanding of land use at Building 76. In a photograph dated October 1951 (Attachment 3, Figure 9), the area of Building 76 has been disturbed and is being used as a dirt parking lot for vehicles and equipment consistent with the 1952 aerial photograph. An April 1955 photograph (Attachment 3, Figure 10) shows Building 76 constructed. An asphalt apron is located around the building and the hillside to the south and west of Building 76 has been graded and maintained as a mowed grass area. This is consistent with the aerial photograph from 1957.

In an aerial photograph dated August 1977 (Attachment 3, Figure 11), the Building 76 area remains unchanged from the 1957 photograph, with the exception of the hillsides to the west and south becoming vegetated with trees and brush. There are signs of vegetation clearing to the west of Building 76 corresponding to the area identified through the topographic comparison. The photograph shows an area extending into the wooded hillside that has been cleared of trees. There do not appear to be signs of ground disturbance or excavation in the photograph.

In an April 1989 photograph (**Attachment 3, Figure 12**), the previously cleared area is still visible. There are no signs of filling or excavation; however, the ground surface appears to be disturbed and the area looks to be used for equipment storage.

Interview Questionnaires

As the last step of the historical records search, interview questionnaires were provided to select personnel from NRL-CBD. It should be noted that the historical landfilling that occurred west of Building 76 likely occurred sometime in the late-1970s, based on the photographic review, and there are no current NRL-CBD employees who also worked at NRL-CBD in the 1970s. Therefore, there are no known personnel who would have had direct first-hand knowledge of the activities that might have occurred. Instead three facility personnel from NRL-CBD were identified based on their longevity as an NRL-CBD employee and their historical knowledge of the facility. Survey interview forms were provided (Attachment 4) to solicit information on the historical operations of Building 76, with an emphasis on landfilling operations that may have occurred at Building 76. Interviewee 1, while a long-time employee at NRL-CBD, was unable to provide any information on the historical use at Building 76 as he is employed in a building located in a separate area of the facility from Building 76.

Interviewee 2 did not have any first-hand knowledge of the landfilling at Building 76. However, he did have some knowledge of the type of debris that is located in the filled area due to utility line repair work he was involved with. Interviewee 2 stated that during repair work to a stormwater line, a trench approximately 100 feet long by 8 feet deep was excavated though the filled area to replace a stormwater pipe. During the trench excavation, he noted that concrete and steel within the fill were encountered. The only records of the area that were known to him was the drawing identified in **Attachment 2** that showed the utility network, as well as the topographic grading plan from the construction of Building 76.

Interviewee 3, like Interviewees 1 and 2, did not have any first-hand knowledge of the landfilling at Building 76. Similar to Interviewee 2, he was also involved in the utility line repair work at Building 76 and noted that concrete and railroad tracks were encountered in the trench excavation during the repair work. Similarly, Interviewee 3 was also only aware of the drawing showing the utility line and topographic grading plan from the constriction of Building 76 (referred to as stormwater map).

Findings

Based on the historical records search and the information gathered through the site visit, the document search, the historical photo review, and the interviews, a better understanding of the historical use and operations of the Building 76 area and the potential for an environmental release has been collected.

Building 76 was constructed in 1953 and historically it housed the Public Works Division, which provided services for grounds maintenance, carpentry, masonry, electrical work, plumbing, and paint maintenance; a machine shop; and general support services. Currently, Building 76 is used for storage for laboratory equipment used for research and development.

The site visit confirmed the presence of buried debris in the subsurface to the west of Building 76 and was observed to consist of concrete and metal that was intermixed with soil. This observation was further supported by the comparison of the historical and current topographic grading plans, showing the disparity in the ground surface elevations to the west of Building 76 and the likely placement of fill material. Additionally, the observations by NRL-CBD personnel noted during the interviews, confirmed the type of debris material (concrete and steel) that was likely placed. The August 1977 photograph provides an approximate start date to when landfilling may have occurred, while the August 1989 photograph provides a conservative end date to landfilling operations. Given the small size of the area, 0.26 acre, it is unlikely that landfilling occurred for a duration of 12 years and probably ended much earlier than 1989. Additionally, the information gathered during the historical records search supports that landfilling was limited to the hillside slope along the western edge of Building 76 and did not extend to additional areas, such as the southern hillside slope.

The information gathered during the Building 76 historical records search indicates that there is the potential for a release to the environment from the past landfilling that occurred in the area west of Building 76. The Navy should consider sampling environmental media within the area of the landfilling to determine whether a release has occurred.

References

Naval Energy and Environmental Support Activity (NEESA). 1984. *Initial Assessment Study of Naval Research Laboratory, Washington D.C.* March.

Figures

Legend

- Catch Basin
- Outlet
- → Storm Sewer Line with Flow Direction
- Disposal Area
- Building Outline

Figure 2 Building 76 Disposal Area Location Map Building 76 Historical Records Search

uilding 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Imagery: Calvert County, MD - 2017

Legend

- Catch Basin
- Outlet
- Cross Section Line
- → Storm Sewer Line with Flow Direction
- Current Topo Line 2 Ft.
- Historic Topo Line 2 Ft.
- 🗖 Disposal Area
- Building Outline

Imagery: Calvert County, MD - 2017

Building 76 Disposal Area Current and Historic Topography

Building 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

ch2m:

LEGEND

Current elevation (2009)

— Historical elevation (1952)

Figure 4.

Building 76 Disposal Area Cross Section A to A'
Elevation Difference 1940 to 2020

Building 76 Historical Records Search
NRL Chesapeake Bay Detachment
Chesapeake Beach, Maryland

Current elevation (2009)

— Historical elevation (1952)

Figure 5.

Building 76 Disposal Area Cross Section B to B'
Elevation Difference 1940 to 2020

Building 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Attachment 1 Site Visit Photographic Log

PHOTOGRAPHIC LOG

Naval Research Laboratory -Chesapeake Beach, MD

Site Location: Building 76

Project Number: 692409CH

Photo No. Date: 01-08-2019

Description: Surficial debris and erosion along the hillside west of Building 76.

Photo No.

Date: 01-08-2019

2 Description: Exposed construction debris along the western hillside.

PHOTOGRAPHIC LOG

Naval Research Laboratory -

Chesapeake Beach, MD

Site Location: Building 76

Project Number: 692409CH

Photo No. Date: 01-08-2019

Description: Surficial trash along western hillside.

Photo No.

Date: 01-08-2019

Description: Southern hillside and valley.

PHOTOGRAPHIC LOG

Naval Research Laboratory -

Chesapeake Beach, MD

Site Location: Building 76 Project Number: 692409CH

Photo No. Date: 5 01-08

01-08-2019

Description:

Southern hillside with no visible debris.

Photo No. Date:

6 01-08-2019

Description:

Southern hillside with no visible debris.

PHOTOGRAPHIC LOG

Naval Research Laboratory -

Chesapeake Beach, MD

Site Location: Building 76 Project Number: 692409CH

Photo No. Date:

01-08-2019

Description:

Southern hillside with no visible debris.

Photo No. Date:

Date: 01-08-2019

Description:
Exposed construction
debris and western
hillside stormwater
outfall (black pipe to left).

PHOTOGRAPHIC LOG

Naval Research Laboratory -

Chesapeake Beach, MD

Site Location: Building 76 Project Number: 692409CH

Photo No. Date: 9 01-08

01-08-2019

Description:

Construction debris on the western hillside.

Photo No. Date: 10 01-08

01-08-2019

Description:

Ravine at the bottom of the western hillside.

1

Photo Location and Direction

- Transformer Bank
- Catch Basin
- Outlet
- → Wastewater Line with Flow Direction
- Ditch
- → Storm Sewer Line with Flow Direction

■ Building Outline

Imagery: Calvert County, MD - 2017

Figure 1
Building 76 Photo Locations
Building 76 Site Visit
NRL-CBD
Chesapeake Beach, Maryland

ch2m:

Attachment 2 Historical Documents

Attachment 3 Historical Photographs

Building 76 Outline

— Naval Research Laboratory-Chesapeake Bay

− J Detachment (NRL-CBD) Base Boundary

Building 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Building 76 Outline — Naval Research Laboratory-Chesapeake Bay → Detachment (NRL-CBD) Base Boundary

NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Feet 1 inch = 600 feet

600

Disposal Area Building 76 Outline Naval Research Laboratory-Chesapeake Bay Detachment (NRL-CBD) Base Boundary

Building 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

1 inch = 600 feet

— Naval Research Laboratory-Chesapeake Bay - □ Detachment (NRL-CBD) Base Boundary

Chesapeake Beach, Maryland

— Naval Research Laboratory-Chesapeake Bay → Detachment (NRL-CBD) Base Boundary

Chesapeake Beach, Maryland

Disposal Area Building 76 Outline Naval Research Laboratory-Chesapeake Bay Detachment (NRL-CBD) Base Boundary

Figure 7 1970 historic imagery Building 76 Historical Records Search

NRL Chesapeake Bay Detachment
Chesapeake Beach, Maryland

Building 76 Outline — Naval Research Laboratory-Chesapeake Bay - □ Detachment (NRL-CBD) Base Boundary

NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Figure 9
October 1951
Building 76 Historical Records Search
NRL Chesapeake Bay Detachment
Chesapeake Beach, Maryland

Figure 10 April 1955

Building 76 Historical Records Search NRL Chesapeake Bay Detachment Chesapeake Beach, Maryland

Figure 11
August 1977
Building 76 Historical Records Search
NRL Chesapeake Bay Detachment
Chesapeake Beach, Maryland

ch2m:

Figure 12 April 1989

Building 76 Historical Records Search
NRL Chesapeake Bay Detachment
Chesapeake Beach, Maryland

Attachment 4 Interview Forms

INTERVIEW FORM BUILDING 76: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

Date of Interview Form Completion	8/28/2019	
Interviewee Name		
Title	Physical Science Technician	
Organization	Chemistry Division Code 6186	
Address	5813 Bayside Road, Chesapeake Beach, MD 30732	
Phone		
Email		
CH2M HILL Staff conducting Interview (if applicable)		

1. Background Information

During a site visit by the Navy and Maryland Department of the Environment (MDE), construction type debris was observed along the steep hillside to the west and south of Building 76. As a result, the Navy tasked CH2M to perform a historical records search to determine past historical practices and the potential for releases to the environment related to the observed waste surrounding Building 76.

Building 76 (Industrial Building) is located on the western portion of NRL-CBD and is currently used primarily for storage. Historically, Building 76 was known to house industrial trade shops for the electrical, mechanical and plumbing trade branches. No known waste disposal activities have been documented at or near Building 76. However, erosion of the hillside to the west of Building 76 has exposed construction debris buried in the subsurface.

The Navy is requesting additional information about the historical use of Building 76 and the immediate surrounding area to complete an evaluation for the potential of a release of contaminants to the environment. The questions identified below are provided to enhance the understanding of the historical activities related to the Building 76 area at NRL-CBD.

INTERVIEW FORM SITE INVESTIGATION: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

2. Interview Questions:

1.	Do you have any first-hand knowledge or information regarding the location of this site?
	I did not work at building 76, therefore, I have no knowledge of what goes on in and around that building what so ever.
	H
2.	Do you have any first-hand knowledge or information regarding materials disposed of at this site (e.g., type of material/chemical, quantity, media [solid, liquid], timeframe of disposal [year(s)], and duration of disposal of site use)?
	same
3.	Are you aware of any reports, drawings, maps, and/or other documents with additional details regarding this site?
	same
L	

INTERVIEW FORM BUILDING 76: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

Date of Interview Form	
Completion	12-11-2019
Interviewee Name	
Title	small craft operator
Organization	NRL-CBD code 3522
Address	Small croft operator NRL - CBD code 3522 5813 Boyside Ral Ches. beach mol 20732
Phone	
Email	
CH2M HILL Staff conducting Interview (if applicable)	

1. Background Information

During a site visit by the Navy and Maryland Department of the Environment (MDE), construction type debris was observed along the steep hillside to the west and south of Building 76. As a result, the Navy tasked CH2M to perform a historical records search to determine past historical practices and the potential for releases to the environment related to the observed waste surrounding Building 76.

Building 76 (Industrial Building) is located on the western portion of NRL-CBD and is currently used primarily for storage. Historically, Building 76 was known to house industrial trade shops for the electrical, mechanical and plumbing trade branches. No known waste disposal activities have been documented at or near Building 76. However, erosion of the hillside to the west of Building 76 has exposed construction debris buried in the subsurface.

The Navy is requesting additional information about the historical use of Building 76 and the immediate surrounding area to complete an evaluation for the potential of a release of contaminants to the environment. The questions identified below are provided to enhance the understanding of the historical activities related to the Building 76 area at NRL-CBD.

INTERVIEW FORM SITE INVESTIGATION: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

2. Interview Questions:

1. Do you have any first-hand knowledge or information regarding the location of this site?

Due to the execution of a New storm Drain to Replace a last existing Storm Drain, we have some knowledge of the material at this site.

2. Do you have any first-hand knowledge or information regarding materials disposed of at this site (e.g., type of material/chemical, quantity, media [solid, liquid], timeframe of disposal [year(s)], and duration of disposal of site use)?

IN the course of Excevating
the site a Ditch through the
formention area 100 Ft Long By averge
Perth of 8 Ft was created the
Only material we uncovered was
concrete Blocks and various Pieces of Steel

3. Are you aware of any reports, drawings, maps, and/or other documents with additional details regarding this site?

The arthy Drowing we had showed the old sterm droin outfall that had been buried

INTERVIEW FORM BUILDING 76: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

Date of Interview Form Completion	
Interviewee Name	
Title	Customer Liaison Manager
Organization	NRL
Address	chesopeake Beach MP 20732
Phone	
Email	
CH2M HILL Staff conducting Interview (if applicable)	

1. Background Information

During a site visit by the Navy and Maryland Department of the Environment (MDE), construction type debris was observed along the steep hillside to the west and south of Building 76. As a result, the Navy tasked CH2M to perform a historical records search to determine past historical practices and the potential for releases to the environment related to the observed waste surrounding Building 76.

Building 76 (Industrial Building) is located on the western portion of NRL-CBD and is currently used primarily for storage. Historically, Building 76 was known to house industrial trade shops for the electrical, mechanical and plumbing trade branches. No known waste disposal activities have been documented at or near Building 76. However, erosion of the hillside to the west of Building 76 has exposed construction debris buried in the subsurface.

The Navy is requesting additional information about the historical use of Building 76 and the immediate surrounding area to complete an evaluation for the potential of a release of contaminants to the environment. The questions identified below are provided to enhance the understanding of the historical activities related to the Building 76 area at NRL-CBD.

INTERVIEW FORM SITE INVESTIGATION: NAVAL RESEARCH LABORATORY – CHESAPEAKE BAY DETACHMENT (NRL-CBD), CHESAPEAKE BEACH, MARYLAND

2. Interview Questions:

1.	Do you have any f	irst-hand k	nowledge or ir	formation rega	arding the le	ocation (of this s	ite?
----	-------------------	-------------	----------------	----------------	---------------	-----------	-----------	------

Just when we conducted a exception j'ob -

2. Do you have any first-hand knowledge or information regarding materials disposed of at this site (e.g., type of material/chemical, quantity, media [solid, liquid], timeframe of disposal [year(s)], and duration of disposal of site use)?

I know of rail road track and concrete.

3. Are you aware of any reports, drawings, maps, and/or other documents with additional details regarding this site?

Stormwater mop.

Appendix I Radiological Survey Report for April 3, 2018

Radiological Survey Report 3 April 2018 Naval Research Laboratory - Chesapeake Bay Detachment Chesapeake Beach, Maryland

PREPARED FOR: Ryan Mayer/NAVFAC Washington

Scott Lonesome/Naval Research Laboratory

COPY TO: Jeff Woodward/CH2M HILL

Andy Bogdanski/CH2M HILL

Tony Mason, CHP, RRPT/CH2M HILL

Simon Fong/CH2M HILL

PREPARED BY: CH2M HILL

DATE: May 4, 2018

Introduction

This technical memorandum has been prepared by CH2M HILL, Inc. (CH2M) under the Comprehensive Long-term Environmental Action – Navy (CLEAN) Contract N62470-16-D-9000, Contract Task Order JU23, for submittal to the Naval Facilities Engineering Command (NAVFAC) Washington. CH2M has been contracted to perform environmental characterization in support of the Department of the Navy's (Navy) Environmental Restoration Program. During the Expanded Site Inspection planning activities, CH2M was informed that three of the Environmental Restoration (ER) Sites at Naval Research Laboratory - Chesapeake Bay Detachment (NRL-CBD), Site 3 - Landfill No. 1, Site 4 - Landfill No. 2, and Site 5 – Landfill No. 3, had been identified as impacted by the potential for the presence of general radiological material (GRAM) through the Historical Radiological Assessment Report for the Naval Research Laboratory (CH2M, 2016).

As a precautionary measure to protect site worker safety, CH2M implemented radiological monitoring by a qualified radiation technician during intrusive activities performed at Sites 3, 4, and 5. The radiological monitoring included routine measurements of excavated material using a Ludlum 2221 survey meter with a Ludlum 44-10, 2-inch by 2-inch, sodium iodide (NaI) detector (Ludlum 2221/44-10) and a Bicron Micro Rem Tissue-Equivalent Survey Meter (Bicron Micro Rem). An action level of twice background was used to initiate a response of "safely pause, investigate, and notify project management." A complete list of instrumentation present onsite is provided in **Table 1** and the calibration certificates are provided in **Attachment 1**. Initial detector operational checks were performed through the collection of 20 static measurements and were used to establish +/- 20 percent acceptable count rates (ACR). Daily source checks were performed each morning to ensure detector responses within the +/-20 percent ACR. The initial and daily instrument source checks are provided in **Attachment 2**.

Table 1. Radiological Instrumentation

Table 1. Naulological ilistratification		
Survey Meter/Detector	Serial Number	Calibration Due Date
Ludlum 2360/43-93	274959/PR293983	3/28/2019
Bicron Micro Rem	9000	3/10/2019
Ludlum 2221/44-10	190201/PR150873	3/16/2019
Ludlum 2221/44-10	102034/PR164003	1/23/2019
Ludlum 3/44-9	131898/PR194693	3/16/2019

Discovery of the Unknown Radiological Object

On 3 April 2018, test pitting was in progress at Site 4, Test Pit #6 (**Figure 1**). Miscellaneous debris, including what appeared to be rusted metal, was encountered at approximately 3 feet below ground surface (bgs), becoming more persistent at approximately 6.5 feet bgs. It was decided that the debris and soil would be staged separately from the soil excavated to that point. At the discretion of the radiological technician, measurements using a Ludlum 2221/44-10 NaI detector were taken as close as safely possible to the excavator bucket containing soil and/or debris. The technician used personal protective equipment, including nitrile gloves. If the measurement was at or near the established instrument background level (i.e., mean 4,521 counts per minute [cpm]), the soil and debris were staged and another measurement of the material was taken at the top of the material pile. If that measurement was confirmed to be below twice the established instrument background levels (i.e., 9,042 cpm), the excavation continued. Background levels for the Ludlum 2221/44-10 and the Bicron Micro Rem were established by calculating the mean of 10 static measurements from a location of similar geologic characteristics as the site. The background measurement summary is provided in **Attachment 3**.

The excavation continued and the procedure described above was followed. Similar debris was encountered and no elevated measurements were identified. When the excavation reached approximately 9.5 feet bgs, the excavator picked up debris different from what had been encountered previously, including pieces of what appeared to be the same rusted metal and what appeared to be wires (three total). Since this material had not been encountered to this point, the work was safely paused and the wire was scanned with the Ludlum 2221/44-10 at a distance of approximately 1.5 to 2 feet. The wire was located near the top of the stockpile (top height of approximately 3 feet). Elevated levels above background were reported at approximately 20,000 cpm. Work was safely paused and a senior radiological consultant was notified. It was decided that a separate staging location (on a plastic liner) would be created to place the potentially radioactive item(s) that were found. An additional measurement taken slightly higher up on the stockpile confirmed the elevated count rate as approximately 35,000 cpm. Due to the unknown source of the elevated measurements and potential presence of removable activity, personnel frisks were performed with the Ludlum 3/44-9 during the inspection process whenever the technician left the soil area and separate staging location, with all measurements consistent with background.

Believing that the wire was the potential source of radiation, the wire was safely moved to the new staging location by the radiation technician and scanned using the Ludlum 2221/44-10 and Ludlum 3/44-9. Upon further inspection, no elevated measurements above background were identified on the wire. The radiation technician then observed, a large piece of what appeared to be rusted metal at the top of the stockpile, near where the wire had been removed. This object was identified as a potential source of the elevated readings and a measurement using the Ludlum 2221/44-10 was taken at approximately 1.5 to 2 feet, which was the closest distance that a reading could be obtained. The count rate was approximately 100,000 cpm and work was safely paused. The excavator bucket was scanned using the Ludlum 3/44-9 and no elevated measurements above background were observed. The CH2M Project Manager, Activity Manager and NAVFAC Washington Navy Technical Representative were then notified. NRL base personnel were already onsite and oversaw the inspection process and backfill of the excavation.

It was determined that the rusted object was the source of the elevated measurements and the object, along with the shovel used to transport the item, were moved to the separate staging area where only the radiation technician worked. A sketch and photograph of the object are provided in **Figures 2** and **3**, respectively. The object appeared to be partially rusted, approximately 2 feet in length and approximately 8 inches in diameter. The object had a hole in the center which allowed the radiation technician to observe the wall thickness which was noted to be approximately 1/8 inch thick. The object was observed to be rounded on one end with a square base on the other with a wire protruding from the square end. The object weighed approximately 20 to 30 pounds however, it was partially covered with soil and the hole through the center could have contained additional soil. The object was observed to be weighted more heavily on both the rounded and square ends. There were no discernable markings or labels on the object and it is unclear what the object is.

To better assess the radiation present in the item, measurements were taken, as close to the item as possible (but not on direct contact to prevent contaminating the meter in the event removable contamination was present). **Table 2** summarizes the measurements that were taken. The Ludlum 2221/44-10 was used to identify a potential "hot spot" on the object and the Bicron Micro Rem was used to measure dose rate. Scanning of the object indicated elevated measurements near the rounded end of the object. Although the outer metal casing of the item appeared to be approximately 1/8 inch in thickness in the center, no reasonable estimate of the shielding at the rounded end could be made. Measurements were approximately 20 to 30 percent less towards the square base. The measurements in **Table 2** were taken at the identified hot spot and the hot spot is shown on the sketch in **Figure 2**.

Figure 2. Sketch of the Radiological Object

Figure 3. Photograph of the Radiological Object

Table 2. Measurement Summary

Instrument	Measurement (near contact)	Notes
Ludlum 2221/44-10	~550,000 cpm	
Bicron Microrem	400 microrem/hour	
Ludlum 2360/43-93	9,587 cpm beta	One-minute static count
Ludlum 2360/43-93	11 cpm alpha	One-minute static count

After the inspection of the radiological object, the senior radiological consultant was notified of the information that was collected and it was decided that the object would be bagged and placed back in the bottom of the test pit. Two smears were taken on the item to identify if removable contamination was present. Field screening with the Ludlum 2360/43-93 alpha/beta instrument did not identify removable activity above background on the smears. Field screening included holding the smear as close to the detector face without contact and observing whether 1-minute integrated alpha and beta counts were representative of a 1-minute integrated area background taken away from the worksite. The results of the smear count were less than the background count. The object was placed in two black contractor trash bags and two radiological labels were placed on the bag for identification. The object was safely placed in the excavator bucket and deposited in the excavation at a depth of approximately 9.5 feet bgs.

The shovel that was used to move the item was frisked using the Ludlum 3/44-9 and a Masslin wipe was used and field screened with the Ludlum 2360/43-93 to identify removable contamination. No elevated activity was identified. The plastic used as staging for the item was frisked and a swipe was collected and field screened. No elevated activity was identified. The soil pile was scanned again using the Ludlum 2221/44-10 and no elevated measurements above background were identified. It was determined by the radiation technician that no loose contamination remained at the site. The backfill of the test pit was completed. Global Positioning System location of the test pits available to reference the location in the future and the datum information is provided in **Table 3**.

Table 3. Global Positioning System Location and Datum Information

Northing:	361,487
Easting:	1,444,969
Projected Coordinate System:	NAD 1983 StatePlane Maryland FIPS 1900 Feet
Projection:	Lambert Conformal Conic
False Easting:	1312335.958
False Northing:	0
Central Meridian:	-77
Standard Parallel 1:	38.3
Standard Parallel 2:	39.45
Latitude of Origin:	37.66666667
Linear Unit:	Foot

Reference

CH2M HILL. 2016. Historical Radiological Assessment Report, History of the Use of General Radioactive Materials 1923 to 2014, Naval Research Laboratory, Washington, D.C. December.

Figures

Attachment 1
Calibration Certificates

Safety and Ecology Corporation

SEC PROCEDURE # SEC-IS-418 Rev 2

2800 Solway Road Knoxville, TN 37931 Calibration Certificate

Page 1 of 1 3/28/2018

Calibration Certificate for 2360, Serial # 274959, Bar Code # , Property # SEC-7158

Date: 03/28/18

Date Last Cal. Expires: 11/17/18

Technician: Carl Hall

Location: 999999,

Reason For Calibration:

Short Cycled

EQUIPMENT USED DURING CALIBRATION

MODEL: 500-2

SERIAL #: 132896

CAL DUE: 04/20/18

MODEL:

SERIAL#:

CAL DUE:

AS FOUND DATA	Geot	ropism: SAT	AS F	OUND Instrumer	nt Condition: SAT AS	LEFT Instrument	Condition: SAT
New Batteries?	Battery	Check: SAT		AS FOUND Mech	nanical Zero: 0	AS LEFT Mechan	nical Zero: 0
HIGH VOLTAGE	AS F	OUND HV	<u>A</u>	S LEFT HV	WINDOW SETTINGS	AS FOUND	AS LEFT
(+/- 10% tolerance)	500 V:	511 V		AF V	BT (4 mV +/4 mV):	4 mV	AF mV
	1000 V:	1006 y		AF v	•		AV400
	1500 V:	1499 V		AF V	BW (40 mV +/- 4 mV):	40 mV	AF mV
AF HV	Setting:	650 V	AL HV Setting:	650 v	AT (120 mV +/- 10 mV):	120 mV	AF mV

		RATE N	IETER					DIG	SITAL	SCALER			
SCALE	RATE CPM	AS FOUND	% ERROR	AS LEFT	% ERROR	AF 250:	250	% ERR:	0.00%	AL 250:	AF	% ERR:	0.00%
x.1 or	100	100	0.00%	AF	0.00%				OSSESSES STATE				
x1	250	250	0.00%	AF	0.00%	AF 2500:	2500	% ERR:	0.00%	AL 2500:	AF	% ERR:	0.00%
	400	400	0.00%	AF	0.00%	AF 25K:	25 K	% ERR:	0.00%	AL 25K:	AF K	% ERR:	0.00%
x1 or x10	1000	1000	0.00%	AF	0.00%	AF 250K:	250 K	% ERR:	0.00%	AL 250K:	AF K	% ERR:	0.00%
	2500	2500	0.00%	AF	0.00%	✓ Is the As Found Data Within 20% of the Set P							
	4000	4000	0.00%	AF	0.00%							Jana Carlo	
x10 or	10K	10	0.00%	AF	0.00%			REP	RODU	CIBILIT	Y		
x100	25K	25	0.00%	AF	0.00%		x.1 or x1	Scale:	250	250		250	
	40K	40	0.00%	AF	0.00%	,	(1 or x10	Scale:	2500	2500		2500	
x100 or	100K	100	0.00%	AF	0.00%				25				
x1000	250K	250	0.00%	AF	0.00%		or x100					25 K	
	400K	400	0.00%	AF	0.00%	x100	or x1000	Scale:	250	K 250	K	250 K	
2.5						✓ Are	the Indi	vidual Co	unts Wit	hin 10% of th	ne Aver	age?	

✓ Is the As Found Data Within 20% of the Set Point?

Audio Response:

Overload Light: SAT

Low Battery (2.2V): SAT

Comments: Married as a set with:

Model: 43-93

Serial #: PR293983

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/28/19

Performed by: **Printed Name:**

Carl Hall

Reviewed by:

Date: 3-28-18

Safety and Ecology Corporation SEC PROCEDURE # 2800 Solway Road, Knoxville, TN 37931

SEC-IS-420 Rev 3 Page 1 of 1

CAL DUE 03/28/19

3/28/2018

Calibration Certificate

Calibration Certificate for 43-93, Serial # PR293983, Bar Code # , Property # SEC-7164

Date: 03/28/18

EQUIPMENT USED DURING CALIBRATION

Date Last Cal. Expires: 11/17/18

Technician: Carl Hall

SERIAL #: 274959

Location: 999999,

Reason For Calibration:

Short Cycled

NIST TRACEABLE SOURCES USED			SOURCE	ISOTOPE	ACTIVITY	2π	ASSAY DATE
Efficier	ncies from	last calibration	5744-06	Sr-90	15975 dpm	11,209 cpm	3/5/2018
Pu:	24.50	%	5746-06	Tc-99	31899 dpm	20,000 cpm	3/5/2018
Tc:	21.71	%	5747-06	Pu-239	25796 dpm	13,098 cpm	3/5/2018
Th:	22.15	%	5748-06	Th-230	34898 dpm	17,699 cpm	3/5/2018
SrY:	36.38	%					

MODEL: 2360

AS FOUND Instrument Condition: Calibration Setpoints AS FOUND DATA

HV: 650 V

AS LEFT Instrument Condition: SAT AS LEFT DATA after repair, HV adjust or Plateau

Threshold Beta:		Threshold Beta: 4		mV	Alpha:	120 mV
Back	Alpha		Beta	AF 4 1	T Efficienc	es
ground:	0	CPM	182	СРМ		A-B XTLK
Pu-239:	6147	CPM	437	СРМ	23.83%	4.15%
Tc-99:	2	СРМ	7246	СРМ	22.14%	
Th-230:	7702	СРМ	N/A		22.07%	
SrY-90:	N/A	100 to 1	6235	CPM	37.89%	

✓ Is the As Found Data within 20% of the efficiency from the last cal.?

HV: 650 ٧ Alpha Beta AL 4 π Efficiencies Back 0 CPM 182 CPM A-B XTLK ground: Pu-239: 6147 CPM 437 CPM 23.83% 4.15% Tc-99: 2 CPM 7246 CPM 22.14% Th-230: 7702 **CPM** N/A 22.07%

6235

"AF" in the AL Efficiency fields means to refer to the AF Efficiencies in the AS FOUND DATA Section

Reproducibility: Isotope:

Sr-90

6123 6278 6149

Average:

N/A

SrY-90:

6183.3 Are the individual counts within 10% of the average?

CPM

37.89%

If the As Found data (even after repair) is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the Plateau Data and go directly to Comments. Geometry of source = flush to surface, except gas proportional probes = 1/8" from surface unless otherwise specified

PLATEAU DATA		ce 1: T sponse		Source :			Backgrou	ind (CPM)	Net A to B	
High Voltage	A ch.	B ch.	Net Eff.	A ch.	B ch.	Net Eff.	A ch.	B ch.	Xtalk: <10%	
N/A		-							N/A	
	2.3		7				15 15		N/A	
			.,					,	N/A	
F									N/A	
							-		N/A	
									N/A	
						Pu-239	Tc-	99	Th-230	SrY-90
		21	Pi Efficie	encies	:	46.93%	35.3	32%	43.52%	54.00%

Comments: Married as a set with:

Model: 2360

Serial #: 274959

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/28/19

Performed by

Printed Name:

Carl Hall

Reviewed by

Date: 3-28

Calibration Certificate

ThermoFisher SCIENTIFIC

The world leader in serving science

Report Number	Calibration Date
00360141-9000	10-Mar-18
Manufacturer	Recommended Cal Due
Thermo Scientific	10-Mar-19
Instrument	As Found Condition
Micro Rem AO	Out of Tolerance
Serial Number	PO Number - Rev# / Rel#
9000	NA

Thermo Eberline LLC 312 Miami St. W. Columbia, S.C. 29170

USA

Calibration Standards used have calibration traceable to N.I.S.T.
Refer to back of the page for Certificate of Test & Calibration & Conformance

Test Equipment	Calibration Standards
87V S/N 35480109 Cal Due 15-Aug-18	MP2 S/N 788 Cal Due 26-Jun-18 Cs-137 10 mCi S/N 733 Cal Due 28-Feb-19
80K-40 S/N HVP-015 Cal Due 15-Nov-18	Cs-137 10 Ci S/N 375 Cal Due 28-Feb-19

Instrument Checkout Procedure	Probe Checkout Procedure
IWI024 rev. 16 Sep 14D	N/A

	Environmental Conditions	NEW RESERVE OF THE RESERVE OF THE PARTY OF T
Temperature (°C): 20.9	Relative Humidity (%): 27.3	Barometric Pressure (in Hg): 29.87

Calibration Data

Preliminaries:

5 VDC +/- .5 VDC: Yes

-4.5 VDC +/- .25 VDC: Yes

1 mVDC +/- .5 mVDC: Yes

Mechanical Zero: Yes

Geotropism: Yes

Isotopic Linearity:

Range	Test Point (mR/h)	Tolerance (μrem/h)	As Found (μrem/h)	AF Dev. (%)	AF In Tolerance	As Left (μrem/h)	AL Dev. (%)
X1000	160	144000 - 176000	165000	3.13	Yes	160000	0.00
X1000	40	36000 - 44000	40000	0.00	Yes	40000	0.00
X100	16	14400 - 17600	15500	-3.13	Yes	16000	0.00
X100	4	3600 - 4400	3500	-12.50	No	3800	-5.00
X10	1.6	1440 - 1760	1600	0.00	Yes	1600	0.00
X10	.4	360 - 440	350	-12.50	No	400	0.00
X1	.16	144 - 176	130	-18.75	No	160	0.00

Pulser Linearity:

Range	Test Point (CPM)	Tolerance (μrem/h)	As Found (μrem/h)	AF Dev. (%)	AF In Tolerance	As Left (μrem/h)	AL Dev. (%)
X1	16000	Pulser Ref = 160	160	N/A	Yes	160	N/A
X1	4000	36 - 44	40	0.00	Yes	40	0.00
X.1	1600	14.4 - 17.6	20	25.00	No	16	0.00
X.1	400	3.6 - 4.4	5	25.00	No	3.8	-5.00

Electronic Technician Sandra Spears

Administrator

Safety and Ecology Corporation 2800 Solway Road, Knoxville, TN 37931

Calibration Certificate

Page 1 of 1 3/17/2018

Calibration Certificate for 2221, Serial # 190201, Bar Code # , Property # SEC-5296

Date: 03/16/18

Date Last Cal. Expires: 01/23/19

Technician: Noah Keebler

Location: 999999,

Reason For Calibration: Due for Calibration

SEC PROCEDURE # SEC-IS-403 Rev 3

EQUIPMENT USED DURING CALIBRATION

MODEL: 500-2

SERIAL #: 268940

CAL DUE: 04/20/18

MODEL:

SERIAL #:

CAL DUE:

AS FOUND DATA	Geotropi	sm: SAT	AS FOUND In:	strument Condition:	SAT	AS LEFT Instrun	nent Condition: SAT	
HIGH VOLTAGE	AS	FOUND HV	AS LEFT HV	New Batter	ies?	AF Mechanical Zero	b : 0	
(+/- 10% tolerance)	/- 10% tolerance) 500 V: 504 ∨		AF V	Threshold ratio: 100=10mV		AL Mechanical Zero: 0		
	1000 V:	994 V	AF V	AF THRESHOLD:	10 mV	AF HV Reading:	1150 V	
	1500 V:	1495 V	AF V	AL THRESHOLD:	10 mV	AL HV Reading:	875 V	

	RATE M	ETER					DIG	ITAL S	SCALER			
RATE CPM	AS FOUND	% ERROR	AS LEFT	% ERROR		050		. 000/	100 April 100 Ap		name whereaster 42	V
100	100	0.00%	AF	0.00%	AF 250:	250	% ERR: 0	0.00%	AL 250:	AF	% ERR: 0	0.00%
250	250	0.00%	AF	0.00%	AF 2500:	2500	% ERR: 0	0.00%	AL 2500:	ÀF	% ERR: 0	.00%
400	400	0.00%	AF	0.00%	AF 25K:	25 K	% ERR: 0	.00%	AL 25K:	AF K	% ERR: 0	.00%
1000	1000	0.00%	AF	0.00%	AF 250K:	250.1 K	% ERR: 0	.04%	AL 250K:	AF K	% ERR: 0	.04%
2500	2500	0.00%	AF.	0.00%	Is the As Found Data Within 20% of the Sat Boint?							
4000	4000	0.00%	AF .	0.00%	is the As I dulid Data Within 20% of the Set Point?							
10K	10	0.00%	AF	0.00%			1	OG S	CALE			
25K	25	0.00%	AF	0.00%			_	000	VALL			
40K	40	0.00%	AF	0.00%	AF 200:	200	% ERR:	0.00%	AL 200:	AF	% ERR:	0.00%
100K	100	0.00%	AF	0.00%	AF 2000:	2000	% ERR:	0.00%	AL 2000:	AF	% ERR:	0.00%
250K	250	0.00%	AF	0.00%	AF 20K	20 K	% FRR	0.00%	AL 20K-	ΔE	K% EDD.	0.00%
400K	400	0.00%	AF	0.00%				0.00%	AL 200K:			0.00%
	100 250 400 1000 2500 4000 10K 25K 40K 100K 250K 400K	RATE CPM AS FOUND 100 100 250 250 400 400 1000 2500 2500 4000 4000 10K 10 25K 25 40K 40 100K 100 250K 250 400K 400	RATE CPM AS FOUND % ERROR 100 100 0.00% 250 250 0.00% 400 400 0.00% 1000 1000 0.00% 2500 2500 0.00% 4000 4000 0.00% 10K 10 0.00% 40K 40 0.00% 40K 40 0.00% 250K 250 0.00% 400K 400 0.00%	RATE CPM AS FOUND % ERROR AS LEFT 100 100 0.00% AF 250 250 0.00% AF 400 400 0.00% AF 1000 1000 0.00% AF 2500 2500 0.00% AF 4000 4000 0.00% AF 10K 10 0.00% AF 40K 40 0.00% AF 100K 100 0.00% AF 250K 250 0.00% AF 250K 250 0.00% AF 400K 400 0.00% AF	RATE CPM AS FOUND % ERROR AS LEFT % ERROR 100 100 0.00% AF 0.00% 250 250 0.00% AF 0.00% 400 400 0.00% AF 0.00% 1000 1000 0.00% AF 0.00% 2500 2500 0.00% AF 0.00% 4000 4000 0.00% AF 0.00% 10K 10 0.00% AF 0.00% 40K 40 0.00% AF 0.00% 100K 100 0.00% AF 0.00% 250K 250 0.00% AF 0.00% 400K 400 0.00% AF 0.00%	RATE CPM AS FOUND % ERROR AS LEFT AF 2500: 400 400 0.00% AF 0.00% AF 200% AF 200K: 250 0.00% AF 0.00% AF 200K: AF 200K: 400K 400 0.00% AF 0.00% AF 200K:	RATE CPM AS FOUND % ERROR AS LEFT % ERROR AF 250: 250 100 100 0.00% AF 0.00% AF 2500: 250 250 250 0.00% AF 0.00% AF 2500: 2500 400 400 0.00% AF 0.00% AF 25K: 25 K 1000 1000 0.00% AF 0.00% AF 250K: 250.1 K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K 4000 4000 0.00% AF 0.00% AF 250K: 250.1 K 25K 25 0.00% AF 0.00% AF 200: 200 100K 100 0.00% AF 0.00% AF 200: 200 250K 250 0.00% AF 0.00% AF 20K: 20 K 400K 400 0.00% AF <	RATE CPM AS FOUND % ERROR AS LEFT % ERROR 100 100 0.00% AF 0.00% AF 2500: 2500 % ERR: 0 250 250 0.00% AF 0.00% AF 2500: 2500 % ERR: 0 400 400 0.00% AF 0.00% AF 25K: 25 K % ERR: 0 1000 1000 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0 4000 4000 0.00% AF 0.00% Is the As Found D 10K 10 0.00% AF 0.00% AF 200: 200 ERR: 0 40K 40 0.00% AF 0.00% AF 2000: 200 ERR: 0 100K 100 0.00% AF 0.00% AF 2000: 200 ERR: 0 250K 250 0.00% AF 0.00% AF 200C: 200 K ERR: 0 250K 250 0.00%	RATE CPM AS FOUND % ERROR AS LEFT % ERROR O.00% AF 250: 250 % ERR: 0.00% 100 100 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% 250 250 0.00% AF 0.00% AF 25K: 25 K % ERR: 0.00% 400 400 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.00% 1000 1000 0.00% AF 0.00% ✓ Is the As Found Data Withing 2500 2500 0.00% AF 0.00% ✓ Is the As Found Data Withing 4000 4000 0.00% AF 0.00% ✓ Is the As Found Data Withing 10K 10 0.00% AF 0.00% AF 200: 200 % ERR: 0.00% 25K 25 0.00% AF 0.00% AF 200: 200 % ERR: 0.00% 40K 40 0.00% AF 0.00% AF 2000: 200 % ERR: 0.00% 250K 250 0.00% AF 0.00% AF 20K: 20 K % ERR: 0.00% 400K 400 0.00% AF 0.00% AF 20K: 20 K % ERR: 0.00%	RATE CPM AS FOUND % ERROR AS LEFT % ERROR 0.00% AF 250: 250 % ERR: 0.00% AL 250: 250 250 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% AL 2500: 400 400 0.00% AF 0.00% AF 25K: 25 K % ERR: 0.00% AL 250K: 1000 1000 0.00% AF 0.00% AF 250K: 25 N ERR: 0.00% AL 250K: 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: 25K 25 0.00% AF 0.00% AF 200C: 200 % ERR: 0.00% AL 200C: 250K <td< td=""><td>RATE CPM AS FOUND % ERROR AS LEFT % ERROR 100 100 0.00% AF 0.00% AF 250: 250 % ERR: 0.00% AL 250: AF 250 250 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% AL 2500: AF 400 400 0.00% AF 0.00% AF 25K: 25 K % ERR: 0.00% AL 25K: AF K 1000 1000 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.00% AL 250K: AF K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 4000 4000 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 25K 25 0.00% AF 0.00% AF 200C: 200 % ERR: 0.00% AL 200: AF 40K 40 0.00% AF 0.00% AF 200C: 200 % ERR: 0.00% AL 200C: AF 250K<</td><td>RATE CPM 100 100 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% AL 2500: ÅF /td></td<>	RATE CPM AS FOUND % ERROR AS LEFT % ERROR 100 100 0.00% AF 0.00% AF 250: 250 % ERR: 0.00% AL 250: AF 250 250 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% AL 2500: AF 400 400 0.00% AF 0.00% AF 25K: 25 K % ERR: 0.00% AL 25K: AF K 1000 1000 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.00% AL 250K: AF K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 2500 2500 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 4000 4000 0.00% AF 0.00% AF 250K: 250.1 K % ERR: 0.04% AL 250K: AF K 25K 25 0.00% AF 0.00% AF 200C: 200 % ERR: 0.00% AL 200: AF 40K 40 0.00% AF 0.00% AF 200C: 200 % ERR: 0.00% AL 200C: AF 250K<	RATE CPM 100 100 0.00% AF 0.00% AF 2500: 2500 % ERR: 0.00% AL 2500: ÅF

- 0	10	440	A -	Farind	Data	VAL:4him	200/	-5	46-	C-4	D-		10
	15	11111	AS	COUNT	Dala	Within	/11/0	OI	THE	201	P () I m	

✓ Is the As Found Data Within 20% of the Set Point?

<u>R</u>	<u>EPRODUC</u>	BILITY	
x.1 or x1 Scale:	250	250	250
x1 or x10 Scale:	2500	2500	2500
x10 or x100 Scale:	25 K	25 K	25 K
x100 or x1000 Scale:	250 K	250 K	250 K

Audio Response: SAT Audio Divide: SAT

> Push Buttons: SAT Lamp: SAT

Scaler/Digital: SAT

✓ Are the Individual Counts Within 10% of the Average?

✓ Fast / Slow Response Function Properly?

Comments: Married as a set with:

Model: 44-10

Serial #: PR150873

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/16/19

Performed by:

Printed Name: Noah Keebler

Safety and Ecology Corporation SEC PROCEDURE # SEC-IS-415 Rev 3

2800 Solway Road, Knoxville, TN 37931

Page 1 of 1

3/17/2018

Calibration Certificate

Calibration Certificate for 44-10, Serial # PR150873, Bar Code # , Property # SEC-5177

Date: 03/16/18

Date Last Cal. Expires: 04/13/12

Technician: Noah Keebler

Location: 999999,

Reason For Calibration: Due for Calibration

EQUIPMENT USED DURING CALIBRATION

MODEL: 2221

SERIAL #: 190201

CAL DUE: 03/16/19

MODEL:

AS FOUND Instrument Condition: SAT

875 V

86860

4034

SERIAL #:

CAL DUE:

NIST TRACEABLE SOURCES USED

SOURCE

ISOTOPE

ACTIVITY

217

ASSAY DATE

99CS250-0288

Cs-137

6.0658 uCi

1/3/2017

Efficiency from Last Calibration:

Center:

Background:

4 π Probe Efficiency: Cs-137

0.55 %

0.62%

HV From Last Calibration: 1150 V

Calibration Threshold:

AS FOUND DATA

1 MINUTE COUNTS (CPM)

AS LEFT DATA after repair of HV adjust

AS LEFT Instrument Condition: SAT

875 V HV:

Center: 86860

Background:

4034

4 π Probe Efficiency: Cs-137

"AF" in the AL Efficiency fields means to refer to the AF Efficiencies in the AS FOUND DATA Section

Is the As Found Efficiency Within 20% of the efficiency from the last cal.?

Reproducibility: Isotope:Cs-137 86860 86784 86889

Average: 86844 Are the individual counts within 10% of the average?

* If As Found Efficiency (even after repair) is within 10% of the last calibration and uniformity is <10%, the technician may N/A the Plateau Data and proceed to Comments. Geometry = Nat probes are 4 1/2" from source. All other probes are in contact with surface unless otherwise specified

PLATEAU AND SET POINT DATA (CPM)

High Voltage	Source Response	Background	<u>HV</u>	CENTER	Background	4 π Efficiency
725	82647	3399	V			
750	84853	3692		85		Cs-137
775	84925	3835				
800	84998	3909				
825	85165	3836				
850	85516	3957				
875	86860	4034				

Reviewed by:

Comments: Married as a set with:

Model: 2221

Serial #: 190201

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/16/19

Date: 3/16/18

Printed Name:

Safety and Ecology Corporation 2800 Solway Road, Knoxville, TN 37931

Calibration Certificate

Page 1 of 1 3/16/2018

Calibration Certificate for 2221, Serial # 102034, Bar Code # , Property # SEC-6478

Date: 03/15/18

Date Last Cal. Expires: 01/23/19

Technician: Noah Keebler

SEC PROCEDURE # SEC-IS-403 Rev 3

Location: 999999,

Reason For Calibration: Short Cycled

EQUIPMENT USED DURING CALIBRATION

MODEL: 500-2

SERIAL #: 268940

CAL DUE: 04/20/18

MODEL:

SERIAL #:

CAL DUE:

AS FOUND DATA	Geotropi	sm: SAT	AS FOUND In	strument Condition: SAT	AS LEFT Instrum	ent Condition	1: SAT
HIGH VOLTAGE	AS	FOUND HV	AS LEFT HV	New Batteries?	AF Mechanical Zero	: 0	
(+/- 10% tolerance)	500 V:	507 V	AF V	Threshold ratio: 100=10mV	AL Mechanical Zero	: 0	
	1000 V:	998 V	AF V	AF THRESHOLD: 10.1 mV	AF HV Reading:	1100 V	
	1500 V:	1492 V	AF V	AL THRESHOLD: 10 mV	AL HV Reading:	760 V	

		RATE N	ETER					DIG	SITAL S	CALER			
SCALE	RATE CPM	AS FOUND	% ERROR	AS LEFT	% ERROR	45.050	250	ov 500	0.009/	41.050		0	000/
x.1 or	100	100	0.00%	AF	0.00%	AF 250:	250	% ERR:	0.00%	AL 250:	AF	% ERR: 0	1.00%
x1	250	250	0.00%	AF	0.00%	AF 2500:	2500	% ERR:	0.00%	AL 2500:	AF	% ERR: 0	.00%
	400	400	0.00%	AF	0.00%	AF 25K:	25.03 K	% ERR:	0.12%	AL 25K:	AF K	% ERR: 0	.12%
x1 or	1000	1000	0.00%	AF	0.00%	AF 250K:	250.2 K	% ERR:	0.08%	AL 250K:	AF K	% ERR: 0	.08%
x10	2500	2500	0.00%	AF	0.00%	THE COURT OF THE PROPERTY OF T							
	4000	4000	0.00%	AF	0.00%		is the A	is i ound i	Jata Witin	11 20 /0 01 1110	Jetr	OIIIC :	
x10 or	10K	10	0.00%	AF	0.00%			TAX III	LOG S	CALE			
x100	25K	25	0.00%	AF	0.00%					0/100			
	40K	40	0.00%	AF	0.00%	AF 200:	200	% ERR:	0.00%	AL 200:	AF	% ERR:	0.00%
x100 or	100K	100	0.00%	AF	0.00%	AF 2000:	2000	% ERR:	0.00%	AL 2000:	AF	% ERR:	0.00%
x1000	250K	250	0.00%	AF	0.00%	AF 20K:	20 K	% ERR:	0.00%	AL 20K:	AF	K% ERR:	0.00%
	400K	400	0.00%	AF	0.00%	AF 200K:				AL 200K:		K% ERR:	0.00%
200													

~	Is	the	As	Found	Data	Within	20%	of	the	Set	Point	?
---	----	-----	----	-------	------	--------	-----	----	-----	-----	-------	---

✓ Is the As Found Data Within 20% of the Set Point?

REPRODUCIBILITY									
x.1 or x1 Scale:	250	250	250						
x1 or x10 Scale:	2500	2500	2500						
x10 or x100 Scale:	25 K	25 K	25 K						
x100 or x1000 Scale:	250 K	250 K	250 K						

Audio Response: SAT

Audio Divide: SAT

Push Buttons: SAT

Lamp: SAT

Scaler/Digital: SAT

✓ Are the Individual Counts Within 10% of the Average?

✓ Fast / Slow Response Function Properly?

Comments: Married as a set with:

Model: 44-10

Serial #: PR164003

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/15/19

Performed by:

Printed Name:

Safety and Ecology Corporation SEC PROCEDURE # SEC-IS-415 Rev 3 2800 Solway Road, Knoxville, TN 37931

Page 1 of 1 3/16/2018

Calibration Certificate

Calibration Certificate for 44-10, Serial # PR164003, Bar Code # , Property # SEC-6030

Date: 03/15/18

Date Last Cal. Expires: 01/22/19

Technician: Noah Keebler

Location: 999999,

Reason For Calibration: Short Cycled

EQUIPMENT USED DURING CALIBRATION

MODEL: 2221

SERIAL #: 102034

CAL DUE: 03/15/19

MODEL:

SERIAL #:

CAL DUE:

NIST TRACEABLE SOURCES USED

SOURCE

ISOTOPE

ACTIVITY

2π

ASSAY DATE

99CS250-0288

Cs-137

6.0658 uCi

1/3/2017

Efficiency from Last Calibration:

AS LEFT Instrument Condition: SAT

HV:

Center:

0.67 %

HV From Last Calibration: 1100 V Calibration Threshold:

10 mV

AS FOUND DATA

1 MINUTE COUNTS (CPM)

AS LEFT DATA after repair of HV adjust

760 V HV:

Center: 91420

Background: 4832

4 π Probe Efficiency: Cs-137

4 π Probe Efficiency: Cs-137

Background:

4832

AS FOUND Instrument Condition: SAT

760 V

91420

"AF" in the AL Efficiency fields means to refer to the AF Efficiencies in the AS FOUND DATA Section

✓ Is the As Found Efficiency Within 20% of the efficiency from the last cal.?

Reproducibility: Isotope:Cs-137 91420 91539 91687 Average: 91549 Are the individual counts within 10% of the average?

* If As Found Efficiency (even after repair) is within 10% of the last calibration and uniformity is <10%, the technician may N/A the Plateau Data and proceed to Comments. Geometry = Nal probes are 4 1/2* from source. All other probes are in contact with surface unless otherwise specified.

PLATEAU AND SET POINT DATA (CPM)

High Voltage	Source Response	Background	<u>HV</u>	CENTER	Background	4 π Efficiency
650	80414	4130	V			Cs-137
675	80667	4283				CS-137
700	80372	4298				
750	85632	4731				
760	91420	4832				
775	113556	5079				
		1.5				
** . * ***						

Comments: Married as a set with:

Model: 2221

Serial #: 102034

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/15/19

Reviewed by:

Date:

Performed by **Printed Name:**

Safety and Ecology Corporation 2800 Solway Road, Knoxville, TN 37931

SEC PROCEDURE # SEC-IS-405 Rev 2

Page 1 of 1 3/17/2018

Calibration Certificate

Calibration Certificate for 3, Serial # 131898, Bar Code # , Property # PFL-151

Date: 03/16/18

Date Last Cal. Expires: 08/05/17

Technician: Noah Keebler

Location: 999999,

Reason For Calibration: Due for Calibration

EQUIPMENT USED DURING CALIBRATION

MODEL: 500-2

SERIAL #: 268940

CAL DUE: 04/20/18

MODEL:

SERIAL #:

CAL DUE:

AS FOUND DATA

Geotropism:

AS FOUND Instrument Condition: SAT

AS LEFT Instrument Condition: SAT

HIGH VOLTAGE

AS LEFT HV

New Batteries? Battery Check: SAT Alarm: N/A

(+/- 10% tolerance)

500 V:

N/A

AF

AS FOUND Mechanical Zero: 0

AS LEFT Mechanical Zero:

1000 V:

N/A N/A

AS FOUND HV

AF

AS FOUND THRESHOLD: 32.8 mV

AS LEFT THRESHOLD: 32.8 mV

1500 V:

AS FOUND HV Reading: 900 V

AS LEFT HV Reading:

HV Range 400-1500V: SAT

		RATE N	IETER		
SCALE	RATE CPM	AS FOUND	% ERROR	AS LEFT	% ERROR
x.1 or	100	100	0.00%	AF	0.00%
x1	250	250	0.00%	AF	0.00%
	400	400	0.00%	AF	0.00%
x1 or	1000	1000	0.00%	AF	0.00%
x10	2500	2500	0.00%	AF	0.00%
	4000	4000	0.00%	AF	0.00%
x10 or	10K	10	0.00%	AF	0.00%
x100	25K	25	0.00%	AF	0.00%
	40K	40	0.00%	AF	0.00%
x100 or	100K	100	0.00%	AF	0.00%
x1000	250K	250	0.00%	AF	0.00%
	400K	400	0.00%	AF	0.00%

			DI	GIT!	AL SCALE	ER			
3	AF 250:	250	% ERR:	0.00%	6 AL 250	: AF	%	ERR:	0.00%
	AF 2500:	2500	% ERR:	0.00%	6 AL 2500	: AF	%	ERR:	0.00%
	AF 25K:	25 K	% ERR:	0.00%	AL 25K	: AF	K %	ERR:	0.00%
	AF 100K:	100.1 K	% ERR:	0.10%	AL 100K	: AF	K %	ERR:	0.10%
1(80)	~	Is the	As Found	Data	Within 20% o	f the Se	et Poin	it?	
			REF	PRO	DUCIBILI	TY			
	x.1	or x1 Sc	cale:	250	250		250		
	x1 c	or x10 Sc	cale: .	2500	2500		2500		
	x10 or	x100 Sc	cale:	25	K 25	K	25	K	. **
**	x100 or x	c1000 Sc	cale:	250	K 250	K	250	K	

✓ Is the As Found Data Within 20% of the Set Point?

Are the Individual Counts Within 10% of the Average? ✓ Fast / Slow Response Switch Functions Properly?

Audio Response: SAT

Audio Divide: N/A

Push Buttons: SAT

Lamp: N/A

Model: 44-9

Scaler/Digital: SAT Serial #: PR194693

Bar Code #:

✓ Does Instrument Meet Final Acceptance Criteria?

✓ Calibration Sticker Attached?

Date Instrument is Due For Next Calibration:

03/16/19

Performed by: Printed Name:

Noah Keebler

Comments Married as a set with:

C Date: 3/16/18 Reviewed by:

Safety and Ecology Corporation 2800 Solway Road, Knoxville, TN 37931

Calibration Certificate

SEC PROCEDURE # SEC-IS-407 Rev 2

Page 1 of 1 3/17/2018

Calibration Certificate for 44-9, Serial # PR194693, Bar Code # , Property # SEC-5620

Date: 03/16/18

Date Last Cal. Expires: 08/05/17

Technician: Noah Keebler

Location: 999999.

Reason For Calibration: Due for Calibration

EQUIPMENT USED DURING CALIBRATION

MODEL: 3

SERIAL # 131898

CAL DUE: 03/16/19

MODEL:

SERIAL#

CAL DUE:

NIST TRACEABLE SOURCES USED

SOURCE	ISOTOPE	ACTIVITY	2π	ASSAY DATE
4072-02	Tc-99	28299 dpm	17,700 cpm	1/3/2017
4076-02	Sr-90	10516 dpm	7,378 cpm	1/3/2017

Geometry = in contact with surface unless otherwise specified.

AS FOUND Instrument Condition:

PREVIOUS Tc-99 EFFICIENCY: 13.52 %

SAT

Calibration Voltage: 900 V

Calibration Threshold: 32.8 mV

AS LEFT Instrument Condition: SAT

AS FOUND DATA

1 MINUTE COUNTS (CPM)

AF Background:

3827

AVERAGE

Tc-99 Count:

3744

3759

3776.7

Sr-90 Count: 2695

4 π Efficiencies

Tc-99 EFF: 13.21%

Sr-90 EFF: 25.26%

AS LEFT DATA

1 MINUTE COUNTS (CPM)

AL Background:

Tc-99 Count:

39

3759

3827

3776.7

Sr-90 Count:

2695

3744

4 π Efficiencies

Tc-99 EFF: 13.21%

Sr-90 EFF: 25.26%

"AF" in the AL Efficiency fields means to refer to the AF Efficiencies in the AS FOUND DATA Section

✓ Is the AS FOUND efficiency within 20% of efficiency from last calibration?

✓ Reproducibility: Are the individual counts within 10% of the average?

Does the probe meet final acceptance criteria?

✓ Calibration sticker attached?

Comments: Married as a set with:

Model: 3

Serial #: 131898

Bar Code #:

Date Instrument is Due For Next Calibration:

Performed by:

Reviewed by:

Date: 3/16/18

Printed Name:

Initial and Daily Instru	Attachment 2 ument Source Checks

Attachment 2 - Initial and Daily Instrument Source Checks

Initial Instrument Setup											
Project Name/Number: NRL CBD Intrusive PN# 474183	Model: L2360 / L43-93	Serial Numbe 274959 / PR2		a Isotope Th-230	a Source SN 1295/92		b Isotope Sr-90	b Source SN S-2787	b dpm 19,500	Cal Due 3/28/2019	
Date	a Source CPM	a Bkg CPM	a Net CPM	b Source CPM	b Bk CPM	b Net CPM	HV	Power	DISP	INITIAL	Notes
											Calibration at bottom left corner of
3/31/18			561	2312				ok	ok	MW	detector, with detector face up
3/31/18			543					ok	ok	MW	
3/31/18			377	2400	242			ok	ok	MW	
3/31/18			556					ok		MW	
3/31/18		0	578		217			ok	ok	MW	
3/31/18		2	535		243			ok	ok	MW	
3/31/18			524	2391	188			ok	ok	MW	
3/31/18			538					ok	ok	MW	
3/31/18			583					ok	ok	MW	
3/31/18			546		214			ok	ok	MW	
3/31/18			573	2349				ok	ok	MW	
3/31/18	555	0	555	2277	218	2059	ok	ok	ok	MW	
3/31/18	554	1	553	2343	225	2118	ok	ok	ok	MW	
3/31/18	567	1	566	2351	231	2120	ok	ok	ok	MW	
3/31/18	536	1	535	2354	204	2150	ok	ok	ok	MW	
3/31/18	601	0	601	2311	199	2112	ok	ok	ok	MW	
3/31/18	577	1	576	2322	210	2112	ok	ok	ok	MW	
3/31/18	541	0	541	2365	204	2161	ok	ok	ok	MW	
3/31/18	615	2	613	2380	214	2166	ok	ok	ok	MW	
3/31/18	572	0	572	2360	220	2140	ok	ok	ok	MW	
Instrument Ranges	Average:	Average:		Average:	Average:			ACR	+20%	-20%	
	561.95	0.8		2342.85	216.6			a NET	673	449	
								b NET	2551	1701	

В	eta	Alpha			
1 sig	3 sig	1 sig	3 sig		
38.377	115.13	23.038355	69.11506		
Upper	Lower	Upper	Lower		
2458	2227.72	631.06506	492.8349		

Attachment 2 - Initial and Daily Instrument Source Checks

Initial Instrument Setup											
Project Name/Number:	Model:	Serial Number:		a Isotope	a Source SN	a dpm	b Isotope	b Source SN	b dpm	Cal Due	
NRL CBD Intrusive PN# 474183	L2360 / L43-93	274959 / PR293983		Th-230	1295/92	4,260	Sr-90	S-2787	19,500	3/28/2019	
Date	a Source CPM	a Bkg CPM	a Net CPM	b Source CPM	b Bkg CPM	b Net CPM	HV	Power	DISP	INITIAL	NOTES
											Second Calibration. Sources set at
											center of detector face.
4/2/18	856	0	856	4396	238	4158	ok	ok	ok	MW	
4/2/18			906		232			ok		MW	
4/2/18	884	. 0	884	4395	219	4176	ok	ok	ok	MW	
4/2/18	939	2	937	4427	249	4178	ok	ok	ok	MW	
4/2/18	911	. 2	909	4324	204	4120	ok	ok	ok	MW	
4/2/18	902	1	901	4422	249	4173	ok	ok	ok	MW	
4/2/18	876	2	874	4350	216	4134	ok	ok	ok	MW	
4/2/18			894					ok	ok	MW	
4/2/18			918					ok		MW	
4/2/18			899					ok	ok	MW	
4/2/18		. 1	841	4392	226			ok		MW	
4/2/18			916					ok		MW	
4/2/18			904		251			ok		MW	
4/2/18			883					ok		MW	
4/2/18			942					ok		MW	
4/2/18			892					_		MW	
4/2/18			873					ok		MW	
4/2/18 90			909					ok		MW	
4/2/18			868					_		MW	
4/2/18			951			4138	ok	ok		MW	
Instrument Ranges	Average:	Average:	4	Average:	Average:			ACR		-20%	
	898.65	0.8	j	4371.1	231.1			a NET b NET			
									4968	3312	

В	eta	Alpha				
1 sig	3 sig	1 sig	3 sig			
44.6612	133.9835	28.0305754	84.091726			
Upper	Lower	Upper	Lower			
4505.08	4237.116	982.741726	814.55827			

Attachment 2 - Initial and Daily Instrument Source Checks

		T		T		1				
Project Name/Number:		Model:		Serial Number:	Calibration		Remarks:			
IRL CBD Intrusive PN#	474183	microRem		09000		3/10/2019			taken or	contact
Date	Isotope	Serial Number	Source Activity (μCi)	Source Check µrem/hr	Background µrem/hr	Net μrem/hr	HV	ВАТТ	DISP	INITIAL
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	60	7	53	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	4	66	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	60	8	52	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	55	3	52	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	5	65	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	50	6	44	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	65	6	59	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	6	64	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	60	8	52	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	6	64	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	60	10	50	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	7	63	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	60	8	52	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	3	67	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	65	7	58	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	4	66	ok	ok	ok	MW
3/31/18		99-0292	7.03uCi on 1/30/2012	60	8	52	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	80	10	70	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	11	59	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03uCi on 1/30/2012	70	8	62	ok	ok	ok	MW
strument Ranges		+20%	-20%	Average:	Average:					
	NET	70	47	65.25	6.75					

Attachment 2 - Initial and Daily Instrument Source Checks

Initial Instrument Setup										
Project Name/Number:		Model (Scaler/Dete	Serial Number:		Calibration Due:			Remarks:		
NRL CBD Intrusive PN# 474183		L-2221 / L44-10		190201 / PR150873		3/16/2019			6 inches from source	
Date	Isotope	Serial Number	Source Activity (μCi)	Source Check CPM	Background CPM	Net CPM	HV	BATT	DISP	INITIAL
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77526	4635	72891	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03µCi on 1/30/2012	77444	4985	72459	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	75402	4639	70763	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76733	4988	71745	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77769	5086	72683	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	75416	5400	70016	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77048	5029	72019	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77735	4929	72806	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76681	4835	71846	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03µCi on 1/30/2012	75282	4657	70625		-	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	74499	5189	69310	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	78119	4963	73156			ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76728	5033	71695	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	73314	5277	68037	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03µCi on 1/30/2012	74267	4916	69351	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	75717	4652	71065				MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	75509	5499	70010	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	78135	5257	72878	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77512	4944	72568	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03µCi on 1/30/2012	74953	5349	69604	ok	ok	ok	MW
Instrument Ranges		+20%	-20%	Average:	Average:					
	NET	85531	57022	76289.45	5013.1					

Attachment 2 - Initial and Daily Instrument Source Checks

Initial Instrument Setup										
Project Name/Number:		Model (Scaler/Dete	ector):	Serial Number:	Calibration [Due:	Remarks:			
NRL CBD Intrusive PN#	474183	L-2221 / L44-10		102034 / PR164	4003	1/23/2019			6 inches from source	
Date	Isotope	Serial Number	Source Activity (μCi)	Source Check CPM	Background CPM	Net CPM	HV	BATT	DISP	INITIAL
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	75857	5677	70180	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	79165	4844	74321	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	81346	5444	75902	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77824	5649	72175	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77775	5437	72338	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	80004	5292	74712	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	78297	5099	73198	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76876	5230	71646	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	78768	5805	72963	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	82517	5765	76752	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	80219	5557	74662	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	78962	5607	73355	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	79680	5793	73887	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76886	5324	71562	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76701	6293	70408	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	74836	5920	68916	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	77919	5116	72803	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	76455	5502	70953	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	80753	5487	75266	ok	ok	ok	MW
3/31/18	Cs 137	99-0292	7.03μCi on 1/30/2012	79893	5933	73960	ok	ok	ok	MW
Instrument Ranges		+20%	-20%	Average:	Average:					
	NET	87597	58399	78536.65	5538.7					

Attachment 2 - Initial and Daily Instrument Source Checks

Initial Instrument Setup										
Project Name/Numbe	r:	Model (Scaler/De	etector):	Serial Number:		Calibration	Due:		Remarks:	
NRL CBD Intrusive PN#	† 474183	L-3 / L44-9	,	131898 / PR194	693	3/16/2019			180-2 sample holder, middle	
Date	Isotope	Serial Number	Source Activity (dpm)	Source Check CPM	Background CPM	Net CPM	HV	BATT	DISP	INITIAL
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1535	35	1500	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1454	28	1426	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1487	33	1454	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1532	41	1491	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1474	39	1435	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1441	41	1400	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1415	40	1375	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1438	32	1406	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1464	25	1439	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1496	38	1458	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1508	37	1471	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1494	36	1458	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1475	31	1444	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1474	32	1442	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1469	27	1442	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1416	36	1380	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1524	35	1489	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1440	41	1399	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1553	32	1521	ok	ok	ok	MW
3/31/18	SrY-90	S-2787	19,500 dpm on 3/2/1994	1497	40	1457	ok	ok	ok	MW
Instrument Ranges		+20%	-20%	Average:	Average:					
	NET	1733	1156	1479.3	34.95					

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check											
Project Name/Number:	Model:	Serial Num	ber:	a Isotope	a Source SN	a dpm	b Isotope	b Source SN	b dpm	Cal Due	
NRL CBD Intrusive PN# 474183	L2360 / L43-93	274959 / P	R293983	Th-230	1295/92	4,260	Sr-90	S-2787	19,500	3/28/2019	
Date/Time	a Source CPM	a Bkg CPM	a Net CPM	b Source CPM	b Bkg CPM	b Net CPM	HV	Power	DISP	INITIAL	Notes
4/2/2018 8:30	558	0	558	3504	212	3292	ok	ok	ok	MW	Counting mechanism
			0			0					checked on
			0			0					04/02/2018. Five
			0			0					checks performed,
			0			0					each confirmed at 1
			0			0					minute. Recalibration
			0			0					performed with
			0			0					source at center of
			0			0					detector face.
			0			0					Recalibration done on 4/2/2018 at 2200.
Instrument Ranges	Average:	Average:		Average:	Average:			ACR	+20%	-20%	
	558	0		3504	212			a NET	673	449	
			· 			-		b NET	2551	1701	

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check											
Project Name/Number:	Model:	Serial Num	nber:	a Isotope	a Source SN	a dpm	b Isotope	b Source SN	b dpm	Cal Due	
NRL CBD Intrusive PN#	L2360 / L43-93	274959 / F	R293983	Th-230	1295/92	4,260	Sr-90	S-2787	19,500	3/28/2019	
474183											
Date/Time	a Source CPM	a Bkg CPM	a Net CPM	b Source CPM	b Bkg CPM	b Net CPM	HV	Power	DISP	INITIAL	Notes
4/3/2018 6:20	898	1	897	4395	254	4141	ok	ok	ok	MW	Represents
4/4/2018 6:23	884	2	882	4461	266	4195	ok	ok	ok	MW	check against
4/5/2018 6:21	873	0	873	4483	278	4205	ok	ok	ok	MW	ACRs obtained
4/6/2018 6:18	901	2	899	4393	298	4095	ok	ok	ok	MW	on 4/2/2018.
4/9/2018 6:20	912	1	911	4412	269	4143	ok	ok	ok	MW	
4/10/2018 6:27	889	0	889	4375	278	4097	ok	ok	ok	MW	
Instrument Ranges	Average:	Average:		Average:	Average:			ACR	+20%	-20%	
	892.8333333	1		4419.833333	273.833333			a NET	1077	449	
			•					b NET	4968	3312	

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check										
Project Name/Number:		Model:		Serial Number:		Calibration	n Due:		Remarks	S:
NRL CBD Intrusive PN# 4741	.83	microRem		09000		3/10/2019)		taken or	contact
Date/Time	Isotope	Serial Number	Source Activity (μCi)	Activity Source Check Background				BATT	DISP	INITIAL
4/2/2018 9:15	Cs 137	99-0292	7.03uCi on 1/30/2012	80	12	68	ok	ok	ok	MW
4/3/2018 6:45	Cs 137	99-0292	7.03uCi on 1/30/2012	70	10	60	ok	ok	ok	MW
4/4/2018 6:53	Cs 137	99-0292	7.03uCi on 1/30/2012	80	14	66	ok	ok	ok	MW
4/5/2018 6:30	Cs 137	99-0292	7.03uCi on 1/30/2012	60	11	49	ok	ok	ok	MW
4/6/2018 6:38	Cs 137	99-0292	7.03uCi on 1/30/2012	70	7	63	ok	ok	ok	MW
4/9/2018 6:29	Cs 137	99-0292	7.03uCi on 1/30/2012	70	8	62	ok	ok	ok	MW
4/10/2018 6:38	Cs 137	99-0292	7.03uCi on 1/30/2012	80	12	68	ok	ok	ok	MW
4/11/2018 6:43	Cs 137	99-0292	7.03uCi on 1/30/2012	80	10	70	ok	ok	ok	MW
4/12/2018 6:52	Cs 137	99-0292	7.03uCi on 1/30/2012	70 9		61	ok	ok	ok	MW
Instrument Ranges		+20%	-20%							
	NET	70	47							

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check										
Project Name/Number:		Model (Scaler/Dete	ector):	Serial Number:	Calibration		n Due:		Remarks:	
NRL CBD Intrusive PN# 47418	33	L-2221 / L44-10		190201 / PR1508	73	3/16/2019	ı		6 inches fro	om source
Date/Time	Isotope	Serial Number	Source Activity (μCi)	Source Check Background			BATT	DISP	INITIAL	
4/2/2018 8:55	Cs 137	99-0292	7.03μCi on 1/30/2012	67376	4090	63286	ok	ok	ok	MW
4/3/2018 6:34	Cs 137	99-0292	7.03µCi on 1/30/2012	72521	4400	68121	ok	ok	ok	MW
4/4/2018 6:45	Cs 137	99-0292	7.03μCi on 1/30/2012	71816	3942	67874	ok	ok	ok	MW
4/5/2018 6:43	Cs 137	99-0292	7.03μCi on 1/30/2012	72437	4138	68299	ok	ok	ok	MW
4/6/2018 6:32	Cs 137	99-0292	7.03µCi on 1/30/2012	69636	4203	65433	ok	ok	ok	MW
4/9/2018 6:34	Cs 137	99-0292	7.03μCi on 1/30/2012	68432	4296	64136	ok	ok	ok	MW
4/10/2018 6:42	Cs 137	99-0292	7.03µCi on 1/30/2012	71395 4385		67010	ok	ok	ok	MW
Instrument Ranges	ACR	+20%	-20%							
	NET	87597	58399							

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check										
Project Name/Number: NRL CBD Intrusive PN# 474183		Model (Scaler/Dete L-2221 / L44-10	ector):	Serial Number: 102034 / PR1640	Calibration			Remarks: 6 inches from source		
Date/Time	Isotope	Serial Number	Source Activity (μCi)	Source Check CPM	ource Check Background Net CPM HV BATT			BATT	DISP	INITIAL
4/2/2018 8:50	Cs 137	99-0292	7.03μCi on 1/30/2012	75651	5011	70640	ok	ok	ok	MW
4/3/2018 6:39	Cs 137	99-0292	7.03μCi on 1/30/2012	74692	5199	69493	ok	ok	ok	MW
4/4/2018 6:40	Cs 137	99-0292	7.03μCi on 1/30/2012	75001	4743	70258	ok	ok	ok	MW
4/5/2018 6:50	Cs 137	99-0292	7.03μCi on 1/30/2012	76489	5230	71259	ok	ok	ok	MW
4/6/2018 6:43	Cs 137	99-0292	7.03μCi on 1/30/2012	74139	5028	69111	ok	ok	ok	MW
4/9/2018 6:38	Cs 137	99-0292	7.03μCi on 1/30/2012	75364	5186	70178	ok	ok	ok	MW
4/10/2018 6:48	Cs 137	99-0292	7.03μCi on 1/30/2012	74624	5094	69530 ok ok		ok	MW	
Instrument Ranges	ACR	+20%	-20%							
	NET	85531	57022							

Attachment 2 - Initial and Daily Instrument Source Checks

Daily Response Check										
Project Name/Number: NRL CBD Intrusive PN# 474					ue:		Remarks: 180-2 sample holder, middle			
Date/Time	Isotope	Serial Number	Source Activity (dpm)	Source Check CPM	Background CPM	Net CPM	HV	BATT		
4/2/2018 9:08	SrY-90	S-2787	19,500 dpm on 3/2/1994	1390	39	1351	ok	ok	ok	MW
4/3/2018 6:50	SrY-90	S-2787	19,500 dpm on 3/2/1994	1466	29	1437	ok	ok	ok	MW
4/4/2018 6:34	SrY-90	S-2787	19,500 dpm on 3/2/1994	1451	38	1413	ok	ok	ok	MW
4/5/2018 6:54	SrY-90	S-2787	19,500 dpm on 3/2/1994	1502	29	1473	ok	ok	ok	MW
4/6/2018 6:49	SrY-90	S-2787	19,500 dpm on 3/2/1994	1478	31	1447	ok	ok	ok	MW
4/9/2018 6:45	SrY-90	S-2787	19,500 dpm on 3/2/1994	1388	27	1361	ok	ok	ok	MW
4/10/2018 6:55	SrY-90	S-2787 19,500 dpm on 3/2/1994 1492 34 1458 ok ok ok M'							MW	
Instrument Ranges	ACR	+20%	+20% -20%							
	NET	1733	1156							

Attachment 3 Background Activity Measurement Form

PROJECT NUMBER LOCATION 474183.FI.DM NRL CBD

Background Activity Measurement Form

PROJECT: NRL CBD ESI LOCATION/SITE NAME: NRL CBD Sites 3, 4, 5

TYPE OF INTRUSIVE ACTIVITY: Test Pitting, Soil Boring

DATE: 4/2/2018

TECHNICIAN: M. Witmer

INSTRUMENTATION:

NUMBER	Meter/Detector	S/N	CAL. DUE
1	L2221/44-10	19021/PR150873	3/16/2019
2	Bicron Micro Rem	9000	3/10/2019

BACKGROUND LOCATION INFORMATION

- Background measurements were taken southeast of the eastern boundary of Site 3. See field log book for diagram.
- Background measurements were collected for the Bicron Micro Rem (S/N 9000) and the L2221/44-10 (S/N 19021/PR150873). If either intstrument was identified as out of service during daily source checks, additional background measurements would be

Background Measurement Summary

INSTRUMENT:	MEASUREMENTS
L2221/44-10 (19021/PR150873)	4,880
	4,109
	4,821
NOTES: 10, 1-min. static measurements, on	4,451
contact with ground surface, values in counts per minute (CPM)	4,468
	4,342
	4,748
	4,229
	4,321
	4,841
AVERAGE	4,521

INSTRUMENT:	MEASUREMENTS
Bicron Micro Rem (9000)	2.5
	8
	3
NOTES: 10 measurements, waist level,	9
values in microRem/h (uRem/h)	5
	8
	5
	6
	5
	4
AVERAGE	6

Appendix J Statistical Analysis of XRF Data

Statistical Analysis of XRF Data Naval Research Laboratory – Chesapeake Bay Detachment

Chesapeake Beach, Maryland

Explanation of Random Number Generation Procedure:

To perform a statistical analysis of the XRF Data, field bias needed to be removed from the selection of lab analyzed samples. To accomplish this, a random number generation program was utilized to pre-select XRF grids prior to mobilization. The grids were enumerated, and the random number generator selected which of the grids would be sent to the lab for analysis. With this method, the field team did not introduce bias into the selection of the lab samples.

XRF Screening Results

Project: ESI at NRL-CBD

XRF Sampler: Stephen Dronfield

	•				Tabl	e 1: X-ray Fluorescence (XRF) Gun Results for Lea	ad for Surface and Subsur	face Soil Samples					
				Surface So	il						Subsurface S	Soil		
Sample	Consider ID	Collection	on	Run 1 XRF Lead	Run 2 XRF Lead	Run 3 XRF Lead	Average XRF Lead	Constants	Collection	on	Run 1 XRF Lead	Run 2 XRF Lead	Run 3 XRF Lead	Average XRF Lead
Location	Sample ID	Date	Time ¹	Concentration, ppm	Concentration, ppm	Concentration, ppm	Concentration, ppm	Sample ID	Date	Time ¹	Concentration, ppm	Concentration, ppm	Concentration, ppm	Concentration, ppm
5	CBD-AOD-SS05-000H	4/11/2018	9:45	185.5	222.0	244.0	217.2	CBD-AOD-SB05-1H02	4/11/2018	9:50	27.5	30.3	29.5	29.1
6	CBD-AOD-SS06-000H	4/11/2018	10:08	356.0	394.0	440.0	396.7	CBD-AOD-SB06-1H02	4/11/2018	10:05	11.4	10.4	8.3	10.0
7	CBD-AOD-SS07-000H	4/11/2018	10:15	422.0	367.0	257.0	348.7	CBD-AOD-SB07-1H02	4/11/2018	10:20	19.0	25.3	20.4	21.6
8	CBD-AOD-SS08-000H	4/11/2018	10:33	217.0	201.0	179.8	199.3	CBD-AOD-SB08-1H02	4/11/2018	10:39	198.2	146.8	165.2	170.1
9	CBD-AOD-SS09-000H	4/11/2018	10:49	22.0	31.7	38.0	30.6	CBD-AOD-SB09-1H02	4/11/2018	10:57	155.3	228.0	37.9	140.4
10	CBD-AOD-SS10-000H	4/11/2018	11:10	124.6	120.9	138.3	127.9	CBD-AOD-SB10-1H02	4/11/2018	11:15	16.3	14.2	18.3	16.3
11	CBD-AOD-SS11-000H	4/11/2018	11:24	135.8	122.9	139.0	132.6	CBD-AOD-SB11-1H02	4/11/2018	11:35	33.4	40.1	26.3	33.3
12	CBD-AOD-SS12-000H	4/11/2018	11:45	496.0	417.0	673.0	528.7	CBD-AOD-SB12-1H02	4/11/2018	11:50	32.3	34.8	29.7	32.3
12	CBD-AOD-SS12P-000H	4/11/2018	11:55	324.0	422.0	436.0	394.0	CBD-AOD-SB12P-1H02	4/11/2018	12:00	33.3	45.4	123.8	67.5
13	CBD-AOD-SS13-000H	4/11/2018	13:05	1113.0	1273.0	1131.0	1172.3	CBD-AOD-SB13-1H02	4/11/2018	13:17	54.1	29.2	32.6	38.6
15	CBD-AOD-SS13P-000H	4/11/2018	13:11	1029.0	1354.0	942.0	1108.3	CBD-AOD-SB13P-1H02	4/11/2018	13:23	41.0	74.1	32.1	49.1
14	CBD-AOD-SS14-000H	4/11/2018	13:29	85.3	82.7	175.2	114.4	CBD-AOD-SB14-1H02	4/11/2018	13:35	18.6	23.2	16.7	19.5
15	CBD-AOD-SS15-000H	4/11/2018	13:41	226.0	167.5	417.0	270.2	CBD-AOD-SB15-1H02	4/11/2018	13:46	31.8	24.0	30.7	28.8
16	CBD-AOD-SS16-000H	4/11/2018	13:53	304.0	254.0	238.0	265.3	CBD-AOD-SB16-1H02	4/11/2018	13:58	49.7	42.0	65.5	52.4
17	CBD-AOD-SS17-000H	4/11/2018	14:11	502.0	504.0	577.0	527.7	CBD-AOD-SB17-1H02	4/11/2018	14:16	149.7	113.0	107.4	123.4
18	CBD-AOD-SS18-000H	4/11/2018	14:26	939.0	1014.0	935.0	962.7	CBD-AOD-SB18-1H02	4/11/2018	14:32	243.0	152.1	145.0	180.0
10	CBD-AOD-SS11P-000H	4/11/2018	11:28	231.0	179.5	143.5	184.7	CBD-AOD-SB11P-1H02	4/11/2018	11:41	31.4	62.1	19.7	37.7
19	CBD-AOD-SS19-000H	4/11/2018	14:42	379.0	367.0	271.0	339.0	CBD-AOD-SB19-1H02	4/11/2018	14:48	10.9	12.0	16.8	13.2
20	CBD-AOD-SS20-000H	4/11/2018	14:59	405.0	136.4	85.9	209.1	CBD-AOD-SB20-1H02	4/11/2018	15:05	96.3	141.0	100.6	112.6
21	CBD-AOD-SS21-000H	4/11/2018	15:15	192.5	156.8	192.6	180.6	CBD-AOD-SB21-1H02	4/11/2018	15:25	56.4	76.2	75.4	69.3
22	CBD-AOD-SS22-000H	4/11/2018	15:35	764.0	609.0	650.0	674.3	CBD-AOD-SB22-1H02	4/11/2018	15:41	16.1	18.6	17.2	17.3
23	CBD-AOD-SS23-000H	4/11/2018	15:48	869.0	1107.0	942.0	972.7	CBD-AOD-SB23-1H02	4/11/2018	15:57	30.3	29.7	30.1	30.0
24	CBD-AOD-SS24-000H	4/11/2018	16:05	415.0	590.0	344.0	449.7	CBD-AOD-SB24-1H02	4/11/2018	16:11	25.4	17.2	13.9	18.8
25	CBD-AOD-SS25-000H	4/11/2018	16:22	91.1	95.5	118.2	101.6	CBD-AOD-SB25-1H02	4/11/2018	16:30	60.0	32.7	60.0	50.9
26	CBD-AOD-SS26-000H	4/12/2018	8:40	115.8	298.0	180.2	198.0	CBD-AOD-SB26-1H02	4/12/2018	8:45	21.3	26.8	18.0	22.0
27	CBD-AOD-SS27-000H	4/12/2018	8:55	55.7	70.3	246.0	124.0	CBD-AOD-SB27-1H02	4/12/2018	9:00	12.1	13.9	32.4	19.5
28	CBD-AOD-SS28-000H	4/12/2018	9:11	123.3	41.9	107.4	90.9	CBD-AOD-SB28-1H02	4/12/2018	9:16	15.7	15.7	10.0	13.8
29	CBD-AOD-SS29-000H	4/12/2018	9:33	28.2	37.2	46.7	37.4	CBD-AOD-SB29-1H02	4/12/2018	9:40	56.5	37.9	100.5	65.0

¹ Refers to the time that the sample being analyzed by the XRF, and to be sent to the lab, is removed from the 5-point composite ziplock bag

Central Tendency Comparison Test Results

Parameter	No. of Samples	Shapiro-Wilk Normality Test XRF Samples (p-value)	Shapiro-Wilk Normality Test Lab Samples (p-value)	F-Test for Equal Variance (p-value)	Student's t-test (p-value)	Welch's t-test (p-value)	Wilcoxon Rank Sum Test (p-value)	KS Test (p-value)	Are conc.	Basis of Decision
Lead	26	0.000	0.000	0.000	0.097	0.100	0.293	0.493	No	KS test
Log (Lead)	26	0.385	0.459	0.307	0.278	0.278	0.293	0.493	No	t-test

Notes:

KS = Kolmogorov-Smirnov

Wilcoxon p-value = 0.293; 99% CI for Difference in Locations: [-230.7, 66.6]

Linear Regression Analysis

Result (ppm) 1,000 2,000 CBD-AOD-SB05-1H02 CBD-AOD-SB07-1H02 CBD-AOD-SB10-1H02 CBD-AOD-SB11-1H02 CBD-AOD-SB11P-1H02 CBD-AOD-SB12-1H02 CBD-AOD-SB12P-1H02 -CBD-AOD-SB13-1H02-Laboratory CBD-AOD-SB13P-1H02 CBD-AOD-SB18-1H02-CBD-AOD-SB19-1H02 CBD-AOD-SB21-1H02-CBD-AOD-SB25-1H02 CBD-AOD-SS05-000H Ex-situ XRF CBD-AOD-SS07-000H -CBD-AOD-SS10-000H -CBD-AOD-SS11-000H CBD-AOD-SS11P-000H -CBD-AOD-SS12-000H -CBD-AOD-SS12P-000H CBD-AOD-SS13-000H CBD-AOD-SS13P-000H CBD-AOD-SS18-000H CBD-AOD-SS19-000H -CBD-AOD-SS21-000H -CBD-AOD-SS25-000H

Lead Concentrations by XRF and Off-Site Laboratory

```
Call:
```

lm(formula = XRF ~ LAB, data = dat[dat\$LAB <= mval,])</pre>

Residuals:

Min 1Q Median 3Q Max -192.3 -25.3 -11.1 25.6 160.5

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 34.24310 18.05492 1.897 0.07 . LAB 0.38981 0.01826 21.344 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 76.67 on 24 degrees of freedom Multiple R-squared: 0.95, Adjusted R-squared: 0.9479 F-statistic: 455.5 on 1 and 24 DF, p-value: < 2.2e-16

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05

Call:

gvlma(x = fit)

	Value	p-value		Decision
Global Stat	8.6131	0.07153	Assumptions	acceptable.
Skewness	0.0983	0.75388	Assumptions	acceptable.
Kurtosis	1.3721	0.24145	Assumptions	acceptable.
Link Function	1.3525	0.24483	Assumptions	acceptable.
Heteroscedasticity	5.7901	0.01612	Assumptions	NOT satisfied!

Index Plot of Hat Values

Influence Plot


```
Call:
```

lm(formula = XRF ~ LAB, data = dat)

Residuals:

Min 1Q Median 3Q Max -0.50941 -0.09994 0.03596 0.12732 0.28087

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.33834 0.13504 2.505 0.0194 *

LAB 0.76233 0.05759 13.238 1.6e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2018 on 24 degrees of freedom Multiple R-squared: 0.8795, Adjusted R-squared: 0.8745 F-statistic: 175.2 on 1 and 24 DF, p-value: 1.596e-12

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05

Call:

gvlma(x = fit)

Value p-value Decision
Global Stat 5.65171 0.22671 Assumptions acceptable.
Skewness 2.97957 0.08432 Assumptions acceptable.
Kurtosis 0.07248 0.78776 Assumptions acceptable.
Link Function 0.71432 0.39801 Assumptions acceptable.
Heteroscedasticity 1.88534 0.16973 Assumptions acceptable.

Linear Correlation Plot for Lead Ex-situ XRF

Index Plot of Hat Values

Influence Plot

